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ABSTRACT Identifying tiny objects with extremely low resolution is generally considered a very chal-
lenging task even for human vision, due to limited information presented inside the object areas. There
have been very limited attempts in recent years to deal with low-resolution recognition. The existing
solutions rely on either generating super-resolution images or learning multi-scale features. However, their
performance improvement becomes very limited, especially when the resolution becomes very low. In this
paper, we propose a Representation Learning Generative Adversarial Network (RL-GAN) to generate super
image representation that is optimized for recognition. Our solution deals with the classical vision task of
object recognition in the distance. We evaluate our idea on the challenging task of low-resolution object
recognition. Comparison of experimental results conducted on public and our newly created WIDER-
SHIP datasets demonstrate the effectiveness of our RL-GAN, which improves the classification results
significantly, with 10-15% gain on average, compared with benchmark solutions.

INDEX TERMS Convolutional neural networks, generative adversarial networks, low resolution object
recognition, representation learning.

I. INTRODUCTION

Recent advances in object recognition are largely stimu-
lated by deep learning techniques, such as ResNet [1],
DenseNet [2] and SeNet [3], which learn deep representations
from regions of interest (Rols) and perform classification.
Those models work well on regions with sufficient image
details, but they perform poorly when dealing with objects
with extremely low resolution (FIGURES 4 and 6 show some
examples of such low-resolution images). However, identi-
fying objects in the far distance is of great interest in many
applications, such as remote sensing for Earth Vision [4],
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far-field video surveillance on Unmanned Aerial Vehicles
(UAV5s) [5], and privacy-preserving video analysis [6].

Low-resolution (LR) object recognition, i.e., identify-
ing tiny objects from extremely low resolution images
is generally considered a very challenging task even for
human vision, because the information presented inside
the object areas is too little to allow vision algorithms
to identify them. As pointed out in [7] where the very
low resolution face recognition problem was defined for
the first time, a minimum face resolution of 32 x 32
is required for stand-alone recognition algorithms. There-
fore, contrary to its high-resolution (HR) counterpart,
which can achieve high accuracy, the performance of LR
object recognition is poor and functional solutions are still
rare.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 53203


https://orcid.org/0000-0002-3689-1621
https://orcid.org/0000-0001-5943-7379
https://orcid.org/0000-0002-0940-3338
https://orcid.org/0000-0001-8962-540X
https://orcid.org/0000-0002-9838-6532
https://orcid.org/0000-0002-0279-6255
https://orcid.org/0000-0002-0422-8454
https://orcid.org/0000-0001-5161-9311

IEEE Access

Y. Xi et al.: See Clearly in the Distance: RL-GAN for Low Resolution Object Recognition

The last couple of years have seen increasing interest from
the research community on LR face or activity recognition,
e.g., the discriminative learning approach [8], the knowledge
distillation method [9], as well as [6], [10], [11] for LR
activity recognition.

An intuitive solution is to super-resolve LR images and
generate super-resolution (SR) images (a.k.a, ‘Hallucina-
tion’) and then simply apply techniques designed for rec-
ognizing objects of high or normal resolution [12], [13].
Recall that there is a fundamental difference between object
recognition and image super-resolution (SR). Image SR aims
to generate images of better visual quality for human viewing,
but the goal of object recognition is to achieve high recogni-
tion accuracy. Although, intuitively, classification conducted
on images of higher resolution produces higher accuracy in
general, this is not always and necessarily true, especially
when the generated super-resolution images contain distorted
information or severe artifacts, which result in poor classifica-
tion results. Moreover, the two steps, namely super-resolution
and classification, are typically designed and optimized sepa-
rately and the resultant SR images do not necessarily lead into
optimal recognition performance. Last but not the least, this
approach generally requires high computation load during
both training and inference stages. Therefore, training the
entire system end-to-end and optimising the networks also
for the task of interest has become a recent trend.

Another major stream of solutions is to exploit the semantic
similarity among all predicted candidate objects and cluster
those candidates of the same category into one group to
boost the recognition performance of the network when han-
dling tiny objects [14], [15]. However, this approach cannot
work effectively when the objects are not from the same
scene or not crowded enough.

Recently, representation-transforming based methods [9],
[16]-[18] have attempted to simultaneously transform LR
images and their corresponding HR images into a common
feature subspace while minimizing the distance between
them, and have attracted much interest from the research
community.

Lietal. [19] designed a generator, which learned to transfer
perceived poor representations of small objects to super-
resolved ones that were similar enough to real large objects
to fool a competing discriminator. That is to say, the method
used the features of large size objects as supervision signals
to guide the features of small size objects. The correspon-
dence between the large size objects and their small size
counterparts is the key, without which, the features of a
different, large size object will mislead the features of another
small size object and hence affect the classification. Instead,
the pairing HR and LR images used in our approach ensures
that the representation of an HR image is used to guide the
generator to transform the representation of its LR counter-
part to the high-quality one.

In our work, aiming at achieving high classification accu-
racy directly from LR images, we propose a Representation
Learning Generative Adversarial Network (RL-GAN). In the
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proposed approach shown in FIGURE 1, the feature repre-
sentations learned from HR images are used as a guide to
enhance the discriminative ability of the feature representa-
tion extracted from LR images. Such enhancement is essen-
tially to super-resolve the LR feature representation, so as to
achieve similar attributes to the HR feature representation and
make them more discriminative, for better classification.

As an application of our proposed RL-GAN for low-
resolution object recognition, in this work we define a
rarely attempted problem of ‘low resolution ship classifica-
tion’ (LRSC) from satellite images, and demonstrate, with
extensive experiments, how our proposed RL-GAN can see
more clearly in the distance. We focus on the key step in
object detection and recognition, and focus our experiments
on low resolution object classification. The existing low-
resolution ship datasets either are created for detection pur-
pose (e.g., DOTA [4]) and do not contain ground-truth ship
type labels, or are captured from CCTV cameras mounted on
harbors (e.g., SeaShip [20]) instead of satellites, or contain
only high-resolution images (e.g., HRSC [21]). We have
created a new dataset ‘“WIDER-SHIP’ for low-resolution
ship classification and evaluated our proposed approach on
it. We have also tested our approach on other benchmark
datasets, to show that our proposed solution can also be
applied to other objects.

In summary, the main contributions of this work are:
1) We propose a RL-GAN architecture to enhance the dis-
criminability of the LR image representation resulting in
comparable classification performance with that conducted
on HR images. 2) We propose a Residual Representation
based generator to generate a more effective representation
of LR images. The residual representation is adapted to fuel
back the lost details in the representation space of LR images.
3) We produce a new dataset WIDER-SHIP, which provides
paired images of multiple resolutions of ships in satellite
images and can be used to evaluate not only LR image
classification, but also LR object recognition.

Il. RELATED WORK

Recently, there have seen increasing interest from the
research community on various low-resolution vision prob-
lems. The existing solutions can be roughly grouped
into three major streams, i.e., the super-resolution based
approaches, the resolution- or scale-invariant representation
based approaches, the transfer learning based methods and
the representation-transforming based approaches.

The super-resolution based approaches attempt to con-
vert LR images or representations into their HR counter-
parts for improved recognition. In [22], Noh et al. proposed
representation-level enhancement method for LR object
recognition, which leveraged HR image features as super-
vision signals for guiding the enhancement of the LR ones.
For example, in [12], [13], [23], photo-realistic HR images
were generated from LR images for the task of classifica-
tion. However, since SR and recognition are often optimized
separately, it is hard to achieve a solution optimal for the
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FIGURE 1. Details of the proposed RL-GAN. The context enclosed by the blue dotted lines is a standard CNN for object
recognition. (a) The residual feature generator is a deep residual network, which takes the features from lower-level layers as
input and learns the residual feature between HR and LR images in feature representations. Then, the enhanced representation
is achieved through element-wise sum operation between the residual and LR representation. (b) The feature discriminator
takes the features of the enhanced representation (fake samples) of LR images and feature of HR images (real samples) as

inputs and tries to differentiate them.

recognition task with these SR based recognition models.
Bai et al. [24] proposed a super-resolution Rols based gen-
erative adversarial network, which consisted of two modules,
i.e., the generator, which was a super-resolution network to
up-sample LR images into HR ones and recover the detailed
information for more accurate detection, and the discrimi-
nator, which was a multi-task network for classification and
bounding box regression. In [25] Jiao et al. proposed a unified
CNN architecture capable of bridging SR and person re-
identification (re-ID) model learning. Instead of in the image
space, Tan et al. [18] proposed a Feature Super-Resolution
GAN model that super-resolved the poor representations of
LR images to highly discriminative ones. In [26], Wang
et al. proposed a Cascaded Super-resolution GAN model,
which cascaded multiple SR-GANs [27] in series for low
resolution re-ID. However, one of the major drawbacks of the
above-mentioned approaches is that the resultant SR images
may contain serious artifacts, especially if the original LR
images are of very low resolutions. In other words, the severe
information loss in LR images makes it unlikely to extract
sufficient recognizable features directly from LR subjects.
Resolution-invariant or scale-invariant representations
have been proven to be very useful for cross-resolution
recognition [16], [17], [28], [29]. Mao et al. [28] pro-
posed a novel representation robust to resolution variance by
jointly training a Foreground-Focus Super-Resolution mod-
ule and Resolution-invariant Feature Extractor. Li et al. [16]
proposed resolution-invariant image representations, which
could recover the missing details in LR images for improving
person re-ID performance. Inspired by this, Chen et al. [17]
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proposed a Resolution Adaptation and re-Identification Net-
work, which could effectively align and extract feature rep-
resentations across resolutions. In addition, Lin ef al. [29]
proposed Feature Pyramid Networks to be robust to resolu-
tion or scale variation.

The transfer learning based methods transfer exter-
nal knowledge in high-resolution images to improve the
performance for low-resolution object recognition. In micro-
video classification, Nie et al. [30] presented a deep transfer
model, which could transfer external sound knowledge to
strengthen the low-quality acoustic modality in micro-videos.
Luo et al. [31] proposed a significance-aware informa-
tion bottlenecked transferring network for domain adaptive
semantic segmentation. By transferring a significance-aware
feature purified from the source domain, the method
eased feature alignment, and thus significantly improved
the feature-space adaptation performance. Inspired by this,
Luo et al. [32] proposed the category-level transferring net-
work for domain adaptive semantic segmentation. By trans-
ferring category-level data distribution from the source
domain, the method adaptively weighted the adversarial loss
for each feature according to how well their category-level
alignment 1is, thus improving the feature-space adaptation
performance.

Before the recognition step, [33]-[35] all designed an
image super-resolution module, which super-resolved LR
images into high quality images to improve the performance
of recognition. Note that, image super-resolution focuses
on increasing the resolution of a given image to provide
better visual quality for human viewing. Instead of image
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super-resolution, we propose a feature enhancement mod-
ule, which enhances the whole poor features of LR images
by learning the discrepancy in feature space between HR
and LR to narrow the gap between the two representations.
Reference [18] proposed a feature super-resolution model,
which transformed the raw poor features of LR images to high
quality features of their corresponding HR images. Instead
of transforming the whole poor features of LR images to the
high quality feature of its corresponding HR image, in our
work we enhance the whole poor features of LR images by
learning the discrepancy in feature space between HR and LR
to narrow the gap between the two representations.

In [36], Han et al. proposed a Part-based Convolutional
Neural Network for visual categorization, which consisted
of Squeeze-and-Excitation(SE) block, Part Localization Net-
work(PLN) and Part Classification Network(PCN), used
for feature re-calibration, distinctive part localization, and
image classification, respectively. In [37], Yao et al. pro-
posed an efficient stacked discriminative sparse autoencoder,
which learned high-level features on an auxiliary satellite
image data set for the land-use classification task. In [38],
Cheng et al. proposed a simple but effective method to learn
discriminative CNNs to boost the performance of remote
sensing image scene classification. In this work, we propose
to explore low-resolution object recognition instead of just
object recognition. The major challenge is how to recover
the missing information in low-resolution images and signif-
icantly improve recognition performance for low-resolution
images simultaneously.

A more direct approach is to simultaneously transform a
LR feature map and the corresponding HR feature map into
the feature maps in a common feature subspace where the dis-
tance between the two feature maps is minimized [39], [40].
Li et al. [41] proposed a joint multi-scale discriminant com-
ponent analysis model by learning a shared representation
across different scales to solve the LR person Re-ID problem.
Wang et al. [42] made the first attempt to solve the very
low resolution recognition problem using a deep learning
approach. Lu et al. [43] presented a deep-coupled ResNet,
which extracted discriminative features shared by face images
of different resolutions in a trunk network. Wei et al. [44]
presented an algorithm that learned a sparse image trans-
formation by coupling the sparse structures of image pairs
from both HR and LR spaces. Bulat and Tzimiropoulos [45]
proposed a multi-task deep model to simultaneously learn
face super-resolution and facial landmark localization trained
using a generative adversarial network (GAN).

The core idea of the representation-transforming based
approaches is to narrow the gap between LR representation
and HR representation. As a result, the performance in LR
image classification is mainly influenced by what represen-
tation to learn and how to make use of it. In other words,
the desired representation should be selectively generated
with a generator from HR data, which is guided by a discrimi-
nator and an LR image classification process in a proper way.
Our method proposed in this paper follows this core idea.
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1ll. PROBLEM DEFINITION

We first formally define the LR object recognition problem,
and then introduce our proposed residual-learning based gen-
erator and discriminator.

Let R = {(Gprs Xirs WXir € Ippyxiy € Iip,y € C} o be
the training data, where Ij,, = {x,ir, .. .,xflvr} consisting of
N images are the HR images used for training and [, =
{xllr, ceey xl’y } are their LR counterparts used for training.

Denote S = {(x;,,y)|x;, € I].,y' € C} as the testing data,
where Il’r = {xl/rl, . ,xl,f” } consists of M disjoint LR testing
images. Note that, although the training dataset R contains
both HR images I, and LR images I;,, the testing dataset S
only contains LR images /.. In this paper, we focus on how
to train a mapping function ¢(-) on R, but test ¢(-) on only S
to inference its label y'.

Let Fi(x), forx € I, Ul,,i € {1,2,...,Q0}and i € Z,
be the feature map obtained after the i-th block convolution
layer. Here, Q is the index of the last block convolution layer
for feature extraction. Let ¢¢(-) be the classification module
of ¢(-).

Problem: Given R and S, the task of LR object recognition
is to train a classifier y = ¢(xz,, x;r), which minimizes the
loss L that measures the difference between y and its ground
truth label y as:

N
N 1
04 = argmin — E L3, y), (1)
6, N i=1

where 6 is the set of parameters of ¢ and L represents the
cross-entropy loss function.

Definition 1 (Residual-Learning Based Generator): Given
Fi(x), the task of the generator is to generate the missing
features in the representation space of x;, by residual learning.
The generator, essentially a mapping function G(F;(x;-)) with
the set of parameters 6y, is to learn the residual function:

G(Fi(xir)) = Folxn) — Folxir), @)

where Fg(xy,) and Fg(x;,) are the feature maps obtained after
the last convolution layer of the Q-th block from the HR and
LR training images, respectively.

Thus, the representation, denoted as E;(x), x € I;, after the
missing details being generated with the Generator G, can be
represented as:

Ej(x) = G(Fi(x)) + Fo(x). 3

Definition 2 (Adversarial-Learning Based Discriminator):
Following the adversarial training scheme, the discriminator,
denoted as D(x, 6y), x € {Fo(xpr), Ei(x;-)} with the set of
parameters 6,4, is to learn to differentiate between the HR
feature representation F'g(xy, ) and the regenerated LR feature
representation E;(x;).

IV. REPRESENTATION LEARNING GAN (RL-GAN)

In this section, we present the details of our RL-GAN to
ensure that feature representations learned from LR images
have comparable capability with those learned from HR
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images in terms of image classification. We first give a brief
overview of our proposed RL-GAN architecture. The details
of the generator G used to generate an enhanced representa-
tion from LR representation are presented. Then, we give the
details of the discriminator D, which is used to differentiate
generated representations from the real HR representation.
In the end, we describe the testing pipeline on LR image
classification for object recognition.

A. OVERVIEW

Inspired by the DCGAN in [46], we propose to perform
representation learning by GANs and then reuse parts of
GAN:Ss as representation enhancement for classification.

Our RL-GAN consists of two subnetworks, i.e., a represen-
tation generator network G and a representation discriminator
network D. The G network aims to map the raw representa-
tions of LR images to highly discriminative ones by discov-
ering the latent distribution correlations between LR and HR
domains, so as to narrow the gap between the representations
of LR and HR. The D network estimates the probability that
a representation comes from the real data or from the fake
data generated by G. While maximizing the probability that
areal HR representation comes from the real HR images and
a generated HR representation does not come from the HR
images, it actually also provides guidance for updating G.
Furthermore, we propose an effective residual-learning based
generator.

Formally, the generator G and discriminator D in standard
GANSs [47] play the following minimax two-player game:

mén mDax VD, G) = Expy,0)[logD(x)]
+Ez~p.pllog(1 — D(G(2)], (4)

where G learns to map data z from the noisy distribution
P.(z) to the real data distribution Pgu,(x), and D estimates
the probability of a sample coming from the data distribution
P j414(x) rather than that generated by G.

In our case, x and z represent HR and LR image repre-
sentations, i.e., Fo(xp,) and Fo(x;), respectively. We design
a generator G to map data z from the LR representation
distribution to the HR representation distribution as

G(Fo(xir)) = Fo(xnr), &)

in the feature space rather than the pixel space. Therefore, our
goal becomes optimizing the minimax objective:

min max V(D, G)
G D

= EFp(o)~PauaFon ) [10gD(Fo(xnr))]
+ Eryu)~PoFoulog(l — DIG(Fo(xi)].  (6)

In [1], the hypothesis for residual learning was that,
it is easier to optimize the residual mapping than to
optimize the original, unreferenced mapping. Inspired by
this idea, we propose a residual-learning based generator
G(Fi(x;r), 8,). Rather than hoping that G directly generates
the original mapping in Equation (5), we optimize G so as
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to fit a residual mapping. Also, considering that low-level
features contain more details than high-level features, we take
Equation (2), so our goal further becomes optimizing the
following minimax objective:

minmax V(D, G)
G D

= Ery(om)~PauaFon) [10gD(Fo(xar))]
+ Ery(m)~PoFoanlog(l — D(G(Fi(xir))+Fo(xir))].

ResidualLearning

(N

B. RESIDUAL-LEARNING BASED GENERATOR
As mentioned above, the generator G(F;(x;,), 0;) in the pro-
posed network aims to recover the missing details in the
representation space of x;-. We obtain 0, by optimizing the
following loss function:

Adversarial Loss L,g,, defined by

Laav = log(1 — D(G(Fi(xir)) + Fo(xir))). ®)

That is to say, G tries to confuse D with the generated repre-
sentation by residual learning, and the L,g4, is introduced to
encourage G to produce the super-resolved representation for
Xy as that of xy,..

Classification Loss, denoted as L, is to guarantee that
the generated representation E;j(x;-) works well for training
an image classifier, and is defined by

N
Loa = ;L@c(El(xn)),y). ©)
MSE Loss, inspired by [45], is a strong pixel-wise con-
straint and is added to G, to help guide G to generate a
representation, which converges to the data representation
better and more efficiently. The MSE Loss is defined as

W H
1 2
Luse = o le ;(Fg,j,k(xhr) — Eijx(u))?,  (10)
]: =

where W and H are the dimensions of xj;-.
Thus, the overall loss function used for training G is:

0, = arg Héin(a X Lagy + B X Lela + vy X Lysg), (11)
g

where o, B and y are the hyper-parameters used to control
the relative importance of the corresponding losses. In our
work, we set the hyper-parameters in all experiments as o« =
I, 8 = 1 and y = 0.5 to emphasize the contribution
of adversarial and classification losses and lower down the
relative importance of the pixel-wise MSE loss.

FIGURE 2 shows the architecture of the generator G in our
RL-GAN, which takes the features F;(x;-) output from the last
convolutional layer of the i-th block as its input. The input
Fi(xg,) is first passed into the 9 x 9 convolutional filters. Its
output is then fed into the 1 x 1 convolutional filters so that its
dimension is aligned with F(x;,). Note that here we employ
a large kernel to exploit more global contextual information
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FIGURE 2. The architecture of residual-learning based generator. The input is the feature map F;(x;,.), and its output is the residual representation
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FIGURE 3. The architecture of our adversarial-learning based discriminator architecture. It attempts to differentiate between the high-resolution
feature representation Fo(xp,) and the regenerated low-resolution feature representation E; (x;).

in Fi(x;-). Also, the core of our generator G includes several
cascaded residual blocks, each of which consists of two con-
volutional layers with small 3 x 3 kernels and 512 feature

TABLE 1. Comparison of the existing ship datasets. Resolution refers to
metres per pixel.

maps followed by batch-normalization layers and PReLU as
the activation function. Then, the adaptive average pooling
layer is used to resize the width and height of representation
Fo(x;,) to be the same as Fg(xp,-). Thus, the learned residual
representation is enhanced from the representation Fo(x;)

Ship Dataset Resolution #Category Source
CIFAR-10 [48] - 1 WEB
VOC2007 [49] - 1 WEB

SeaShip [20] - 6 CCTV

NWPU VHR [50] 2m 1 Satellite
HRSC [21] I.1m 16 Satellite
DOTA [4] 2.5m 1 Satellite

WIDER-SHIP 0.6m ~ 4.9m 3 Satellite

for LR image classification by element-wise sum operation.
Moreover, we use the features from the bottom layer of
the feature extractor, because they preserve many low-level
details in the feature space between Fp(x;-) and Fo(xp,).

C. ADVERSARIAL LEARNING BASED DISCRIMINATOR
The discriminator D(x, 6;) aims to differentiate between
E;(x;r) and Fo(x,) to guide the G to produce a more realistic
representation.

We obtain 6, by optimizing the following loss function:

—[log(D(Fo(xpr))) + log(1 — D(E;(x;)))].

FIGURE 3 shows the architecture of the Discriminator D,
which contains seven convolutional layers with an increasing
number of 3 x 3 filter kernels. Similar to the architecture
in [27], we use LeakyReLU activation throughout the net-
work. Strided convolutions are used to reduce the representa-
tion resolution each time the number of features is doubled.
The resultant 2, 048 feature maps are followed by two dense
layers and a final sigmoid activation to obtain a probability
for representation classification.

L= 12)
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D. RL-GAN FOR LOW-RESOLUTION IMAGE
CLASSIFICATION

FIGURE 1 illustrates the pipeline of using our proposed
RL-GAN for low-resolution image classification. Firstly,
an LR image x; is fed into the Feature Extractor, which
yields Fp(x;-) and Fi(x;-). Then, F;(x;,) is passed through G,
which outputs the residual representation G(F;(x;-)). After
that, the enhanced representation E;(x) is achieved through
element-wise sum operation between G(F;(x;-)) and Fo(x;.).
Finally, we apply the Classifier ¢¢c(-) on E;(x) as the final
predicted label y as:

V= ¢c(Foxir) + G(Fi(xiy))). 13)

V. WIDER-SHIP DATASET

As an application of our proposed RL-GAN for low-
resolution object recognition, we aim at a rarely attempted
problem of low resolution ship classification from satellite
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images. However, among the existing ship databases col-
lected from various channels [4], [20], [21], [50], the DOTA
dataset, a large-scale dataset for object detection in aerial
images published in [4], does not provide fine-grained cat-
egory information of ships; The HRSC dataset [21] identifies
16 categories of ships, but their pixel resolution is high at
around Im; The NWPU VHR dataset [50] contains only a
limited number of ship instances; The SeaShip dataset [20]
consists of a large number of ships labelled with fine-
grained categories, but their images were captured at harbors
rather than from satellites. Similarly, the CIFAR-10 [48] and
VOC2007 datasets [49] contain CCTV images, where cam-
eras were fixed in harbors, so there is a domain gap from
our goal to test on satellite images. Furthermore, the pixel
resolutions of ship instances in the aforementioned datasets
are relatively high, and each pixel covers at most a 3m x 3m
area. Thus, for low-resolution ship classification, creating a
dataset consisting of a reasonable number of ship instances
and fine-grained category annotations, has become one of the
main obstacles to such research.

Therefore, we create a ship dataset for LRSC, which is
named “WIDER-SHIP” to highlight the large dynamic range
of the pixel resolutions of images, ranging from 0.6m to
4.9m in this dataset, for ship classification. To the best of
our knowledge, the WIDER-SHIP dataset is currently the first
dataset for LRSC, containing a large number of ship instances
and fine-grained category annotations.

To be specific, we collect 590 satellite images and fully
annotated 3,077 ships using oriented bounding boxes, with
three most popular ship categories, i.e., Bulker, Container and
Tanker. There are four levels of pixel resolutions, i.e., 0.60m,
1.19m, 2.39m and 4.78m, in the dataset. Some samples of the
images from this dataset are shown in FIGURE 4. FIGURE 5
presents the statistics of the spatial resolutions and orienta-
tions of the three types of ships.

Bulker

Tanker

Container

0.60m

1.19m

2.39m
478m Ml 7] /]

FIGURE 4. Examples of ship images in the WIDER-SHIP dataset, which
consists of four levels of pixel resolution (meters per pixel), i.e., 0.60m,
1.19m, 2.39m and 4.78m.

In our experiments, at each resolution, we conduct 5-fold
cross-validation and report the average and standard devia-
tion of the accuracy, with 80% and 20% data for training
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FIGURE 5. Statistics of instances in WIDER-SHIP.

and testing, respectively, in each round. Moreover, for fair
comparison, we adopt the same evaluation metrics employed
in the PASCAL VOC.

VI. EXPERIMENTS

To demonstrate the effectiveness of our proposed RL-GAN
for ship-type classification, extensive experiments are con-
ducted on the benchmark datasets HRSC, as well as our newly
created dataset WIDER-SHIP. Moreover, to further show
that our proposed approach can also be applied to general
object classification, more experiments are conducted on the
CIFAR-10 dataset [48] and compared with other LR image
classification approaches.

A. DATASETS AND EVALUATION

The HRSC dataset [21] contains 1, 061 images with 2, 976
ships of four categories, which are collected from Google
Earth images. The resolution of HRSC is only 1.19m, not cov-
ering low resolution. To generate LR images for both training
and testing, we down-sample HR images by a factor of s =
{1, 0.5, 0.25, 0.125}, and normalize them into dimensions of
p X p, where p € {128, 64, 32}. They are then up-scaled
back to the original resolution using Nearest Neighbor (NN)
interpolation to ensure sufficiently large spatial supports for
the pooling layers.

The CIFAR-10 dataset [48] consists of 60, 000 32 x 32
color images of 10 classes of objects, with 6,000 images per
class. For each class, there are 5,000 images for training and
1,000 for testing. To compare fairly with [42] who focused
themselves on low resolution object recognition, we follow
the same settings as their experiments, where the original HR
images are first down-scaled by s = 0.25 into 8 x 8. They are
then up-scaled back to 32 x 32 by NN interpolation, becoming
the LR images. As shown in FIGURE 6, images in the first
row are high resolution, and images in the second row are
their corresponding LR ones.

B. IMPLEMENTATION DETAILS

The training process is divided into two stages. First,
ResNet34 is trained with the loss function in Equation (1).
The learning rate is initialized as 1 x 107*. Secondly,
we employ the trained ResNet34 model for HR and LR image
feature extraction and classification. The mini-batch size is
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FIGURE 6. Examples of original and down-sampled images in CIFAR-10.

TABLE 2. Comparison of classification accuracy (%) (average of the 5-fold cross-validation + standard variation) with or without RL-GAN at different
image resolutions (in terms of metres per pixel) on WIDER-SHIP and HRSC datasets.

DataSet Method 0.60m 1.19m 2.39m 4.78m

ResNet [1] 79.33 £0.59 71.67+1.03 6550+ 1.33 5525 +2.54
Skip Connection + ResNet 77.50 £ 0.68  70.72 £2.05 61.83 £1.50
WIDER-SHIP Nearest train + ResNet 7633 £1.66 70.25+196 61.33 +1.88

ESRGAN [23] 7833 £1.59 70.67 £0.76 47+ 2.05
RL-GAN - 82.17 £ 0.57 80.33 +£0.55 67.33 + 0.85
ResNet [1] 8433 £0.88  63.424 0.67 52.574+0.88 43.14+0.46

HRSC ESRGAN [23] 83.5040.35 7440.95 66+2.06
RL-GAN 84.2940.24 83.431+0.74 73.141+0.98

set to 16, and each mini-batch consists of 16 HR images and
16 LR ones. During this stage, to easily fit the distribution
of the representation of HR images, we fix the well trained
ResNet34 and optimize RL-GAN. For the baseline models,
the total number of weighted layers of ResNet is 34, and the
generator of ESRGAN contains 16 residual blocks.

For optimization, we use Adam with §; = 0.9 and 8, =
0.999. We alternately update the generator and discriminator
networks until the model converges. We implement our model
with the PyTorch framework and train it on a single NVIDIA
QUADRO P5000 GPU with 16GB RAM.

C. PERFORMANCE COMPARISON

1) WIDER-SHIP CLASSIFICATION

Table 2 provides the comparison of ship classification
with or without our RL-GAN on our newly created WIDER-
SHIP dataset. It can be seen from the table that, with our pro-
posed RL-GAN, image classification performed on 1.19m,
2.39m and 4.78m resolutions outperform the ResNet on the
same low resolution images by more than 10% (81.67%,
80% and 66% vs 71%, 65% and 55%) and even outperforms
the performance of the 0.6m high-resolution images. This
demonstrates the effectiveness of our RL-GAN in accurately
classifying low-resolution images.

We further compare our solution with the SR-based meth-
ods, i.e., using the ESRGAN [23] to super-resolve the
LR images, to produce HR images for recognition. We
first use these methods to transfer the original LR images
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(with resolution of 1.19m and 128 x 128, 2.39m and 64 x 64,
and 4.78m and 32 x 32) to high-resolution images (256 x256),
and then we use the trained ResNet34 as the base model to
test on the new images. Table 2 shows the comparison results,
where there are 3-15% gains achieved with our approach.

2) HRSC SHIP CLASSIFICATION

Similarly, Table 2 compares the ship classification accuracy
with or without our proposed RL-GAN on the HRSC dataset.
With our approach, image classification performed on the
images with the resolutions of 1.19m, 2.39m and 4.78m has
improved by 20-30% and the results are comparable with
those on the 0.6m high-resolution images. Also note that,
the SR-based approaches [23] can improve the recognition
when the resolution of the input images is not very low
(1.19m). However, when the original images’ resolutions
become too low (2.39m and 4.78m), the improvement drops
significantly. On the contrary, our proposed RL-GAN has
performed much better, especially for very low resolution
images.

3) CIFAR-10 FOR LOW RESOLUTION CLASSIFICATION

Our proposed approach can also be applied to other types
of objects. Note that, the existing works for LR vision are
created either for different applications (e.g., face or activity
recognition, image retrieval, person re-ID), or do not provide
codes for evaluation. Thus, we compare our approach with
a benchmark representation-transforming based approach
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TABLE 3. Classification error rates obtained on the CIFAR-10 testing set.

Method Error (%)
Partially Coupled Nets [42] 18.77
DenseNet [2] 22.36
MobileNetV2 [51] 22.28
EfficientNet [52] 26.12
RL-GAN 11.89

which is for LR object classification, i.e., Partially Coupled
Nets [42].

Table 3 provides the comparison of our approach with
the Partially Coupled Nets [42], as well as three state-of-
the-art classifiers, i.e., DenseNet [2], MobileNetV2 [51],
EfficientNet [52] in terms of classification error rate on the
CIFAR-10 dataset. It can be observed that our proposed
RL-GAN significantly reduces the classification error rate by
6.88 percentage points.

D. EFFECTIVENESS OF THE RESIDUAL-LEARNING

BASED G

We compare our method with several other feature enhance-
ment solutions, which combine low-level features, or improve
the image resolution by simply increasing the input scales,
as shown in Table 2. In this table, “Skip Connection” indi-
cates that the model is trained by directly combining the
output of the first convolution layer to the end of the ResNet
without the Residual blocks, just by using Adaptive Average
Pooling Layers and 1 x 1 convolutional filter to ensure the
same size as the end of the ResNet. ‘“Train Nearest” repre-
sents the model trained with the interpolated images with NN
algorithm of 256 x 256.

As shown in Table 2, at resolution of 2.39m, our genera-
tor outperforms the “Skip Connection” approach by around
10%. This shows that our method can effectively incorpo-
rate fine-grained details from low-level layers to improve
image classification. Also, at the pixel resolution of 2.39m,
our generator outperforms “Train Nearest” by around 9%.
This shows that our method is more effective than simply
increasing the scale of the input image.

We further visualize some of the generated representations
as shown in FIGURE 7. The representation enhanced by
our RL-GAN for low-resolution images are shown in the
middle column. As seen from these examples, the generated
enhanced representations are very similar to the represen-
tations for high-resolution ships in the fourth column. The
first and the last columns are the low-resolution and their
corresponding high-resolution images. The second and the
fourth columns are their representations generated by the
Feature Extractor. We can observe that the proposed generator
successfully learns to transfer the poor representations of
low-resolution images to enhanced ones similar to those of
high-resolution images, validating the effectiveness of the
proposed RL-GAN.

E. INPUTTING FEATURES FROM LOWER LAYERS TO G
The proposed G leverages fine-grained details of LR images
from the representations of lower-level convolution layers.
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FIGURE 7. Visualization of the representations generated by RL-GAN and
the original images.

TABLE 4. Comparisons of classification accuracy (%) of using features
from different layers.

i-th convolutional layer ~ Accuracy (%)
Ours_conv5 68.71
Ours_conv4 71.28
Ours_conv3 74.43
Ours_conv2 77.52
Ours_convl 80

In particular, we employ the representation from “Convl”
as the inputs for learning G.

To validate the effectiveness of this setting, we con-
duct extra experiments using features extracted from the
“Conv2” and “Conv5” layer for learning G, respectively.
As shown in Table 4, the performance decreases consistently
by employing the representations output from the higher
convolutional layers. The reason is that lower convolutional
layers can capture more details of LR images than higher con-
volutional layers. Therefore, using low-level features from
“Convl” for learning the generator gives the best perfor-
mance.

In general, deep features in standard CNNs evolve from
general to specific along the network, and the transferability
of features and classifiers decreases when the cross-domain
discrepancy increases [53]. In other words, using low-level
features from “Conv1’”’ provides the best performance among
all convolutional layers.

F. EFFECTIVENESS OF EACH LOSS

To analyze the effectiveness of each loss in our proposed
loss function, we conduct an ablation study on the WIDER-
SHIP dataset. Table 5 presents the performance of image
classification at different resolutions with and without each
of the proposed losses.

It can be seen that, without the MSE loss, there is
no explicit supervision to guide the RL-GAN to perform
image representation recovery. Therefore, the performance
of low resolution ship-type recognition drops obviously.
Once the Classification Loss is excluded, the proposed
model cannot learn discriminative representation for low
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TABLE 5. Performance of the proposed RL-GAN trained with and without
MSE Loss (see Eq. 10), Classification Loss (see Eq. 9) and Adversarial Loss
(see Eq. 8) on WIDER-SHIP dataset.

Method 1.19m 239m 4.78m
RL-GAN 81.67 80 66

w/o MSE Loss 79.33 77.67 63.33
w/o Classification Loss ~ 71.67 65.33 55

w/o Adversarial Loss 76 75.67 60.33

resolution ship-type recognition since ship-type labels are
not used during training. Thus, the performance drops sig-
nificantly by over 10%. When the Adversarial Loss is
removed, our model does not encourage the poor-quality
representations of LR images to produce realistic HR
images representations any more, which results in a per-
formance drop of about 5% in terms of classification
accuracy.

Therefore, the experimental results show that the MSE
loss, Classification Loss and Adversarial Loss are crucial to
the whole method.

VIi. CONCLUSION

In this paper, we have proposed a Representation Learning
GAN to generate super image representation which is opti-
mized for LR object recognition. By learning the latent dis-
tribution correlations between LR and HR domains, the HR
feature representation becomes a guide to enhance the dis-
criminative ability of the LR feature representation. Towards
this end, we have proposed a residual-learning based gen-
erator that considers both adversarial and classification loss
so as to narrow the gap between the two representations.
We have also demonstrated that inputting features extracted
from lower layers to the generator is most effective. Exten-
sive experiments have demonstrated the superiority of our
proposed solution over the state of the arts. The proposed
method can be used to process Rols extracted by any small
object detector for more challenging applications.
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