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Minimum-jerk trajectory planning
pertaining to a translational
3-degree-of-freedom parallel
manipulator through piecewise quintic
polynomials interpolation

Song Lu1 , Bingxiao Ding2 and Yangmin Li3

Abstract
This article aims to present a minimum-jerk trajectory planning approach to address the smooth trajectory generation
problem of 3-prismatic-universal-universal translational parallel kinematic manipulator. First, comprehensive kinematics
and dynamics characteristics of this 3-prismatic-universal-universal parallel kinematic manipulator are analyzed by virtue
of the accepted link Jacobian matrices and proverbial virtual work principle. To satisfy indispensable continuity and
smoothness requirements, the discretized piecewise quintic polynomials are employed to interpolate the sequence of
joints’ angular position knots which are transformed from these predefined via-points in Cartesian space. Furthermore,
the trajectory planning problem is directly converted into a constrained nonlinear multi-variables optimization problem
of which objective function is to minimize the maximum of the joints’ angular jerk throughout the whole trajectory.
Finally, two typical application simulations using the reliable sequential quadratic programming algorithm demonstrate
that this proposed minimum-jerk trajectory planning approach is of explicit feasibility and appreciable effectiveness.
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Introduction

The last three decades have witnessed a considerable
development of parallel kinematic manipulators
(PKMs) which can be treated as positive encouraging
candidates for many advanced automation processes
and digitalization applications.1–5 Undoubtedly, the
apparent advantages of PKMs are low moving inertia,
high stiffness, high dexterity, and high payload-to-
weight ratio. These distinct characteristics determine
PKMs’ increasing widespread utilization in the fields of
industrial assembly and practical operations such as
high-speed picking and placing,6 vibration simulator,7

precise microsurgery,8 cardiopulmonary resuscitation9

and so on. When implementing a specific practical

engineering task (assembly, spot welding, palletization,
or three-dimensional printing), for the sake of decreas-
ing vibration deformation and improving positioning
accuracy in the movement, the realistic trajectory
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should possess remarkable continuity, eminent smooth-
ness, and high operation efficiency.10

The trajectory planning issue that establishes a para-
metric function concerning time under several different
unambiguous constraints is attracting prodigious
research interest between academia and industry.11–13

As a particularly critical part of PKMs design and sys-
tem scheme, the accurate definition of trajectory can
directly affect the choice of drive motors and reduction
gears, vibrations, and efforts impacted on the mechani-
cal structure, and tracking accuracy throughout the
planned motion. In other words, the actual trajectory
determines its real-time kinematics and dynamics per-
formance of PKMs.14,15 If the trajectory has a continu-
ous curvature or even has a continuous higher order
derivative of curvature, it is believed to be smooth.16

The brief framework of common trajectory planning is
illustrated in Figure 1, trajectory planner formulates a
specific excellent trajectory that must satisfy the indis-
pensable path constraints, kinematics constraints, and
dynamic constraints. In the existing scientific and tech-
nological literature of robots and manipulators, there
are many concrete considerations regarding to tradi-
tional trajectory planning topic, the most common of
which are minimum execution time,17–19 minimum
energy20–22 (or actuator effort), and minimum jerk (i.e.
the third-order derivative of position curve with
time).23–26 The presence of discontinuity and roughness
on the trajectory has been found to correlate with a
drastically increase of large jerk value reported in the
past several decades.27,28 Limiting the system maximum
jerk value, which can diminish vibration influence moti-
vated by the dominant vibration factor of the axis,
reduce structure wear and resonance frequency emer-
gence, improve tracking precision, and enhance trajec-
tory smoothness and operational stability, is highly
recommended to cope with the trajectory planning
problem.29–31 Minimum-jerk trajectory planning theory
and methodology relating to traditional serial kine-
matic manipulators have been intensively discussed and
investigated by numerous researchers. Piazzi and
Visioli23 developed a concise approach to globally

minimize the maximum of the absolute value of jerk
along a trajectory which was easily expressed through
cubic splines. The execution time was set a priori, and it
was worth noting that the effect of dynamics property
was without taking into account. Macfarlane and
Croft24 put forward a jerk-limited and near-time-
optimal trajectory planning strategy applied on a gen-
eral 6-degree-of-freedom (DOF) manipulator, where
the accompanying point-to-point trajectory was inter-
polated using the piecewise fifth-order polynomial func-
tion. Gasparetto and colleagues15,26 introduced a
minimum time-jerk trajectory planning algorithm of
which objective function was to reach a reasonable
compromise between the overall task execution time
and the total integral value of squared jerk. For the
sake of formulation of minimum-jerk trajectory plan-
ning for surface-mount assembly robots, Gyorfi and
Wu25 utilized the discretized quintic polynomial curve
to obtain an expected trajectory with appealing
smoothness and jerk-limited property. To cope with a
notable constrained velocity-level path planning issue
for traditional mobile robots, Guarino Lo Bianco32

introduced a seven-segment parabolic velocity curve to
fulfill the complicated minimum-jerk trajectory plan-
ning assignment of which objective was to minimize the
maximum of longitudinal jerk. To bring out a
minimum-time trajectory for a two-DOF translational
PKM in Cartesian space, Huang et al.33 optimized the
whole travel time as well as imposing the path jerk lim-
itation as an indispensable constraint condition in order
to achieve satisfactory smooth performance. For an
unordinary high-speed 2-DOF two-dimensional PKM
different from Huang et al.,33 Hu et al.34 proposed an
optimal time trajectory planning method using piece-
wise cubic polynomials in joint space while the inherent
dynamic constraints were not taken into full consider-
ation. In general, jerk-level trajectory planning
approaches can be frequently employed for addressing
the senior complicated trajectory planning problems of
traditional manipulators with satisfying stringent conti-
nuity requirements and sufficient smooth conditions.
Unfortunately, to the best of our knowledge, little
research has been devoted to jerk-based trajectory plan-
ning techniques applied to three-dimensional PKMs
scenarios. It is the increasing demand for formulation
of smooth trajectory of PKMs that facilitates the pro-
found theoretical research, imperative practical applica-
tion, and extensive engineering development of the
jerk-based trajectory planning concept.

Generally, cubic polynomials are often used in
smooth trajectory generation;35 however, they provide
a constant jerk profile, and they are not applicable to
high-level trajectory planning. Higher order polyno-
mials are needed to generate smoother jerk profile. The
lowest order polynomials to guarantee the smoothness
of jerk profile at the sequence of via-points are quintic

Figure 1. Brief framework of general trajectory planning.
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polynomials of which jerk profile are quadratic polyno-
mials and with C2 continuity.23 Also, complete
dynamics model analysis without neglecting the inertial
and gravitational properties of the struts is essential for
trajectory planning. The joints’ actuating torques spe-
cific for the given trajectory should not exceed the max-
imum output torque of driving motors. Due to
significant complexity and strong non-linearity in
PKMs dynamic equations, the principle of virtual work
has high priority over the dynamics analysis approaches
of parallel manipulators. Since the generalized trajec-
tory planning problem is typically a complex con-
strained programming problem with high dimension,
non-linearity and non-convexity properties, as well as
considering the control system exerts directly on active
joints rather than end effector, a dedicated kinematics
inversion process is required to equivalently transform
the prerequisite path expressed in Cartesian space into
a specific corresponding joints’ profile and thereby tra-
jectory planning is usually carried out in joint space. In
addition, it is important to note that trajectory planning
in joint space can prevent the tricky troubles resulting
from kinematic singularities and manipulator
redundancy.14

The practical implication of jerk-based trajectory
planning is that since the jerk peak values are limited
rationally during the thorough motion period, the opti-
mized smooth trajectory would significantly contribute
to reducing structure wear, suppressing dominating
vibration, improving tracking accuracy, and potentially
extend life cycle. To develop a desirable smooth trajec-
tory for PKMs, this article presents a minimum-jerk
trajectory planning approach applied to a 3-prismatic-
universal-universal (3-PUU, the underline represents
active joint) translational PKM. The remainder of this
article is organized as follows. We perform essential
kinematics analysis of the 3-PUU PKM in the second
section, including position analysis, velocity analysis
and acceleration analysis. In the third section, the for-
mulation of complete inverse dynamics model relies on
the virtual work principle, where the inertial property
and gravitational quality of the struts are not ignored.
The forth section describes the detailed process of gen-
erating the minimum-jerk trajectory that minimizes the
maximum value of the absolute jerk value using piece-
wise quintic polynomials. Simulation results to demon-
strate the effectiveness and feasibility of this proposed
minimum-jerk trajectory planning strategy are pro-
vided in the fifth section. Finally, concluding remarks
are shown in the last section.

Kinematics analysis

As shown in Figure 2, the generalized vertical-
distributed 3-PUU PKM is employed a closed-loop

geometric characteristic structure which clearly consists
of a stationary base, a movable platform, and three
kinematic chains with uniform configuration. For every
definite kinematic chain, universal joints are utilized to
seamlessly connect the slider and strut, followed by
association between the strut and moving platform. To
generate translational motion of prismatic joint
directly, the slider and guideway of a linear leadscrew
assembly subsystem are matched and fitted to each
other. Note that the three straight guideways are
equipped into ideal central axisymmetric layout and
perpendicular to stationary base, which allows the
overall structure to withstand deformation caused by
inertial loads. It is worthy pointing out that the moving
platform’s three specific translational DOFs in X, Y,
and Z direction necessitate the satisfaction of the defi-
nitive geometric conditions, that is, in each PUU kine-
matic chain, the axis of the first revolute joint of upper
U joint needs to be parallel to that of the first revolute
joint of lower U joint, and the axis of the second revo-
lute joint of upper U joint needs to be parallel to that
of the second revolute joint of lower U joint. Without
loss of generality, as indicated in Figure 3, the reference
frame O� xyz is located with O at the center of the
equilateral triangle DB1B2B3 attached to stationary
base. Similarly, the moving frame O0 � x0y0z0 is located
with O0 at the center of the equilateral triangle DA1A2A3

attached to moving platform. The x-axis is regulated to

orientate OB1
��!

, and z-axis is normal to DB1B2B3. Since
moving platform is provided with three independent

translational DOFs, r= ½x, y, z�T is used to define the
position vector relative to the reference coordinate sys-
tem O� xyz. Furthermore, observing from the topview
as shown in Figure 4, the moving platform is restricted
in a cylinder geometry with radius R.

Figure 2. 3D model of the vertical-distributed 3-PUU parallel
manipulator.
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Inverse position analysis

Give the position of moving platform, a primary
closed-loop vector equation is intuitively established to
determine the displacement of active joints

r= bi + qie+ di + lwi � ai, (i= 1, 2, 3) ð1Þ

where ai = ½s cos bi, � s sin bi, 0�T , bi = ½S cos bi,
�S sin bi, 0�T , di = ½�d cos bi, d sin bi, 0�T , e=
½0, 0, 1�T �s, S, qi, bi, and l denote the radius of moving
platform, the radius of fixed base, the linear displace-
ment of slider i, the angle of point Bi in the coordinate
O� xyz, and the length of the strut, respectively. e, wi,
di, ai, and bi represent the unit vector along leadscrew,
the unit vector along strut, the vector from leadscrew
to center point of universal joint Ci, the position vector
of point Ai in the coordinate O0 � x0y0z0, and the posi-
tion vector of point Bi in the coordinate O� xyz,
respectively.

As depicted in Figure 5, two independent Euler
angles fi and ui are adopted to accurately explicate the
concrete orientation of each strut with respect to the
reference coordinate system, which can be readily visua-
lized a rotation of fi about the zi-axis resulting in a
(x0i, y0i, z

0
i) system followed by another rotation of ui

about the rotated y0i�axis. Consequently, the rotation
matrix of strut i can be obtained

oRi =
cficui �sfi cfisui

sficui cfi sfisui

�sui 0 cui

2
4

3
5 ð2Þ

where s and c represent sin and cos, respectively.
Equating the third column of oRi to wi yields

wi = ½ cfisui sfisui cui �T ð3Þ

Solving equation (3) for fi and ui leads to

cui =wiz, sui =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

ix +w2
iy

q
, (0 ł u ł p)

sfi =wiy=sui, cfi =wix=sui

(
ð4Þ

Figure 3. Simplified sketch of the 3-PUU PKM.

Figure 4. Topview of the vertical-arranged 3-PUU PKM.

Figure 5. Conversion illustration of the local coordinate
system.
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Taking the Euclidean norm of equation (1) yields

qi = rTe�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rTe)2 � r+ ai � bi � dik k2 + l2

q
ð5Þ

and

wi =
r+ ai � bi � di � qie

l
ð6Þ

Forward position analysis

As a necessary and crucial step in trajectory planning
procedure for parallel manipulator, the forward posi-
tion analysis involves determining the position vector r
of moving platform on the premise of a given set of
inputs qi. For convenience, equation (1) can be further
rearranged and rewritten as

r� (bi + di � ai)� qie= r� r0i � qie= lwi ð7Þ

where

r0i = (S � d � s) cosbi, (� S + d + s) sinbi, 0½ �T

= x0i, y0i, z0i½ �T
ð8Þ

Taking Euclidean norm on both sides of equation
(7) gives

q2
1 � 2q1z+(x� x01)

2 +(y� y01)
2 + z2 � l2 = 0 ð9Þ

q2
2 � 2q2z+(x� x02)

2 +(y� y02)
2 + z2 � l2 = 0 ð10Þ

q2
3 � 2q3z+(x� x03)

2 +(y� y03)
2 + z2 � l2 = 0 ð11Þ

Subtracting equation (9) from equation (10), we
obtain

(q2
2 � q2

1)� 2(q2 � q1)z+(x2
02 � x2

01)� 2(x02 � x01)x

+(y2
02 � y2

01)� 2(y02 � y01)y= 0

ð12Þ

Subtracting equation (11) from equation (10), we
obtain

(q2
2 � q2

3)� 2(q2 � q3)z+(x2
02 � x2

03)� 2(x02 � x03)x

+(y2
02 � y2

03)� 2(y02 � y03)y= 0

ð13Þ

Substituting equation (8) into equation (12) leads to

(q2
2 � q2

1)� 2(q2 � q1)z+(3x�
ffiffiffi
3
p

y)(S � d � s)= 0

ð14Þ

Substituting equation (8) into equation (13) leads to

(q2
2 � q2

3)� 2(q2 � q3)z� 2
ffiffiffi
3
p

y(S � d � s)= 0 ð15Þ

Combining equation (14) with equation (15), and
solving the primary three-variable algebraic equations,
we can easily obtain

x=
q2

1 � 1
2

q2
2 � 1

2
q2

3

� �
� (2q1 � q2 � q3)z

3(S � d � s)
ð16Þ

y=
(q2

2 � q2
3)� 2(q2 � q3)z

2
ffiffiffi
3
p

(S � d � s)
ð17Þ

By incorporating equations (16) and (17) into equa-
tion (10), we acquire a general quadratic equation with
respect to the variable z, namely

G1z2 +G2z+G3 = 0 ð18Þ

where

G1 =
(2q1 � q2 � q3)

2 + 3(q2 � q3)
2

9(S � d � s)2
+ 1

G2 =
�(2q2

1 � q2
2 � q2

3)(2q1 � q2 � q3)� 3(q2
2 � q2

3)(q2 � q3)

9(S � d � s)2

� 2

3
(q1 + q2 + q3)

G3 =
(2q2

1 � q2
2 � q2

3)
2
+ 3(q2

2 � q2
3)

2

36(S � d � s)2
+(S � d � s)2

+
1

3
(q2

1 + q2
2 + q2

3)� l2

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð19Þ

According to the structural characteristics and prac-
tical situation of this 3-PUU physical architecture, the
position of moving platform in z direction can be
deduced as

z=
�G2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

2 � 4G1G3

p
2G1

ð20Þ

Substituting equation (20) into equations (16) and
(17), the value of x and y are derived directly. One
potential advantage is that thanks to its pronounced
configuration and distinctive geometric layout, there
will always exist a unique solution in the forward posi-
tion analysis with respect to this vertical-distributed 3-
PUU PKM, which indicates that the dimensional struc-
ture of this 3-PUU mechanical PKM can be invariably
confirmed and determined under the precondition of
the known input joint value.

Inverse velocity analysis

Taking the derivative of equation (1) with respect to
time, the velocity equations of moving platform are
described as

v= _qie+ lvi 3wi, (i= 1, 2, 3) ð21Þ

Lu et al. 5



where v, _qi, and vi stand for the velocity of moving
platform, velocity of ith slider, and angular velocity of
ith strut, respectively.

Utilizing dot multiplication on both sides of equa-
tion (21) with vector wi leads to the critical mapping
relationship between the velocity of slider and the velo-
city of moving platform, resulting in

_qi =
wT

i

wT
i e

v ð22Þ

Then, equation (22) needs to be rearranged briefly
and written in a succinct matrix form

_q= J�1
q Jx

_X= J _X ð23Þ

J= J1, J2, J3½ �T =
wT

1

wT
1 e

,
wT

2

wT
2 e

,
wT

3

wT
3 e

� �T

ð24Þ

where _q= ½ _q1, _q2, _q3�T denote the vector that incorpo-
rates the velocity of sliders, and _X= ½ _x, _y, _z�T represents
the velocity vector of moving platform. J is the
renowned Jacobian matrix with three rows and three
columns.

Link linear velocity and angular velocity analysis

It is important to point out that strut i cannot spin
around its own longitudinal aixs; thus, wT

i vi = 0.
Furthermore, executing cross-multiplication on both
sides of equation (21) with the vector wi, the angular
velocity of the ith strut in the fixed frame O� xyz can
be achieved

vi =
1

l
~wi(E3 � eJi)v= Jviv ð25Þ

where E3 represents the 3 3 3 identity matrix and ~wi

represents the skew-symmetric matrix of wi; notably

~wi =
0 �wiz wiy

wiz 0 �wix

�wiy wix 0

2
4

3
5 ð26Þ

The velocity of the center of the ith strut expressed in
the reference frame O� xyz is

vi = _qie+vi 3
lwi

2

� 	
ð27Þ

Substituting equation (25) into equation (27), then
taking a rational simplification yields

vi = eJi �
1

2
~w2

i (E3 � eJi)

� 	
v= Jviv ð28Þ

The linear velocity and angular velocity of strut i can
be further rearranged into a general matrix form, that is

vi

vi

� �
=

Jvi

Jvi

� �
v= Jvviv ð29Þ

where Jvvi is stated the link Jacobian matrices
(LJMs).36 Unlike the preliminary concept defined in
Tsai,36 however, the LJMs presented in this article refer
to the straightforward mapping relation between the
velocity of platform and the velocity of the struts,
which is particularly expressed in the reference frame
instead of the local coordinates.

Inverse acceleration analysis

Similarly, taking the necessary derivative of equation
(21) with respect to time, we can achieve

a= €qie+ l _vi 3wi +vi 3 vi 3wið Þ½ � ð30Þ

where a, €qi, and _vi denote the acceleration of moving
platform, acceleration of the ith slider, and angular
acceleration of the ith strut, respectively.

The next step is to perform dot multiplication on
both sides of equation (30) by wi, which results in

€qi =
wT

i

wT
i e

a+
l

wT
i e

ð31Þ

Furthermore, equation (31) can be represented as

€q= J€X+U ð32Þ

U=
l

wT
1 e

,
l

wT
2 e

,
l

wT
3 e

� �T

ð33Þ

where €q= ½€q1, €q2, €q3�T denote the vector that incorpo-
rates the acceleration of sliders and €X= ½€x,€y,€z�T repre-
sents the acceleration vector of moving platform.
Clearly, the nonlinear transition relationship from end-
effector’s acceleration in operational space to driving
joints’ acceleration is achieved.

Link linear acceleration and angular acceleration
analysis

Performing cross-multiplication on both sides of equa-
tion (30) with the vector wi, the angular acceleration of
strut the i can be obtained as

_vi =
1

l
~wi(a� €qie)= Jvia�

~wie

wT
i e

ð34Þ

Taking the time derivative of equation (27), it
leads to

_vi = €qie+ _vi 3
lwi

2

� 	
+vi 3

l

2
vi 3wi

� 	

= €qie�
lwi

2
� l

2
~wi _vi

ð35Þ
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Substituting equations (31) and (34) into equation
(35), and taking a justified simplification lead to the lin-
ear acceleration of strut i, that is

_vi = Jvia+
l

2

~w2
i e

wT
i e

+
2e

wT
i e
� wi

� 	
ð36Þ

Eventually, complete inverse kinematics modeling is
carried out where the link linear acceleration and link
angular acceleration play an indispensable role in
establishing, analyzing, and estimating the thorough
dynamics model.

Dynamics modeling

Except the exhaustive kinematics equations analyzed
above, the investigation of dynamics features is essen-
tial to the smooth trajectory planning of 3-PUU
PKM.37 First and foremost, we propose two prevalent
hypotheses: (1) even though tiny elastic deformations
of lightweight struts are inevitable in practice process,
all components existing in the whole mechanical system
are deemed ideal rigid bodies, which means that they
can withstand the applied forces and do not deform;
(2) the effect of frictional force among the joints and
active components is negligible, and there is no energy
loss caused by friction, consequently, the exclusive var-
iation of virtual work is affected directly by the move-
ment of the input and output forces/torques. Based on
the system complexity and calculation efficiency, we
apply the acquainted virtual work principle to conduct
the subsequent dynamics analysis.

Dynamics analysis of the substructure system

From systemic energy perspective, the entire system can
be reasonably split into four substructure aspects based
on energy coupling principle, including

1. Applied forces of the moving platform. In general,
the applied forces and inertia forces imposed at
the mass center of moving platform are defined
as

Fp =
fp
np

� �
=

fe +mpg� mp _v
ne�oIp _v�v 3 (oIpv)

� �
ð37Þ

The external force fe and moment ne imposed on the
moving platform are assumed nonexistent, meaning
that fe and ne are both set zero. oIp =

oRo0
o0Ip

oRT
o0 is the

inertia matrix of the moving platform which is
expressed in the fixed frame O� xyz. g denotes the
gravitational acceleration. It is worthy to note that
v= 0, _v= 0, and oRo0 =E3, since the fact that this
designed proposed 3-PUU PKM is merely provided
with three translational capacities.

2. Applied forces of the struts. It is clear that the
gravitational force is assumed to be the exclusive
external force of the rigid struts; hence, the gen-
eral applied and inertia forces exerted at the
mass center of the ith strut in the fixed frame
O� xyz is defined as

Fi =
fi
ni

� �
=

mig� mi _vi

�oIi _vi �vi 3 (oIivi)

� �
ð38Þ

where oIi =
oRi

iIi
oRT

i implies the ith strut’s inertia ten-
sor, iIi represents the ith strut’s inertia tensor especially
expressed in the local coordinate system C � xiyizi, and
mi denotes the mass of strut i.

3. Applied forces of the sliders. Apparently, the sli-
ders posses single translational movement; thus,
the applied and inertia forces imposed on the sli-
ders are

fqi =(mqig� mqi€qi)
Te ð39Þ

where mqi stands for the mass of slider i.

4. Applied forces of the motor–coupling–leadscrews.
The particular applied forces and inertia forces
exerted at motor–coupling–screw are

Ni = ti � (IMi + ICi + ILi)€ui = ti � IMCLi
€ui ð40Þ

where IMi, ICi, and ILi are designated as the inertia
moment of the motor, coupling, and leadscrew, respec-
tively. ti represents the motor’s driving torque and €ui

denotes the angular acceleration of the motor–cou-
pling–leadscrew. The straightforward transition rela-
tionship between the motor’s rotation and the slider’s
translation is _ui =(2p=pi) _qi and €ui =(2p=pi)€qi; pi

denotes the pitch of leadscrew.

Dynamics modeling of the whole system

According to the virtual work principle, the energy gen-
erated by these substructure systems can be seamlessly
assembled into a thorough interrelated system, that is

dxT
pFp +

X3

i= 1

dxT
i Fi + dqT fq + duTN= 0 ð41Þ

where dq= ½dq1, dq2, dq3�T , du= ½du1, du2, du3�T ,
du= ½du1, du2, du3�T = diag(2p=p1, 2p=p2, 2p=p3)dq=
Adq, and fq = ½fq1, fq2, fq3�T , N= ½N1,N2,N3�T . Fi and
dxi signify the correlative forces and virtual displace-
ments applied to the ith strut, respectively.

Using the LJM defined in equation (29), the crucial
mapping relationship between dxi and dxp is formu-
lated as follows

Lu et al. 7



dxT
i = dxT

p J
T
vvi ð42Þ

Based on the Jacobian matrix defined in equation
(23), the corresponding transition relationship between
dq and dxp is obtained as

dqT = dxT
p J

T ð43Þ

Substituting equations (40) and (43) into equation
(41) and simplifying, the following is obtained

dxT
p Fp +

X3

i= 1

JT
vviFi + JT fq + JTATN

 !
= 0 ð44Þ

Furthermore, in response to discretional virtual dis-
placement dxT

p , equation (44) keeps absolutely main-
tainable and can be further translated as

Fp +
X3

i= 1

JT
vviFi + JT fq + JTATN= 0 ð45Þ

Substituting equation (40) into equation (45), the
actuating torques can be computed as follows

t =� A�TJ�T Fp +
X3

i= 1

JT
vviFi + JT fq

 !
+ IMCL

€u

ð46Þ

where

t = ½t1, t2, t3�T ð47Þ

IMCL = diag(IMCL1, IMCL2, IMCL3) ð48Þ

Simplifying equation (46), the general formulation of
dynamics equations expressed in the joint space can be
written as

t =D(q)€q+C(q, _q) _q+G(q) ð49Þ

where

D(q)=mpA
�TJ�TJ�1 +A�Tmq + IMCLA

+A�TJ�T
X3

i= 1

(miJ
T
viJviJ

�1 + JTo
viIiJviJ

�1)

ð50Þ

C(q, _q) _q=� mpA
�TJ�TJ�1U+A�TJ�T

X3

i= 1

Hi ð51Þ

Hi = JT
wi(vi 3 (OIivi))+

lmi

2
JT

vi

~w2
i e

wT
i e

+
2e

wT
i e
� wi

� 	

� (miJ
T
viJvi + JT O

wi IiJwi)J
�1U� JT O

wi Ii

~wie

wT
i e

ð52Þ

G(q)=� A�TJ�T

mpg+
X3

i= 1

JT
vvi

mig

0

� �
+ JT mq1g

Te,mq2g
Te,mq3g

Te

 �T( )

ð53Þ

mq = diag(mq1,mq2,mq3) ð54Þ

where D(q)€q stands for the inertial term, C(q, _q) _q
denotes the nonlinear term including centrifugal and
Coriolis forces, and G(q) represents the gravitational
force. The accurate dynamics modeling by the virtual
work principle plays a significantly important role in
undertaking the quantitative analysis and critical
assessment that pertains to systemic dynamics property
between end-effector’s movement and joints’ torque,
while simultaneously providing a vital premise for the
practical trajectory planning.

Parameterization of trajectory planning
based on the minimum-jerk strategy

Rational running trajectory is the foundation of pre-
eminent kinematics property of PKMs, and the quality
of trajectory planning algorithm directly affects the
dynamics performance of PKMs. As a noticeable draw-
back, high jerk value during the entire trajectory can
decrease the motion precision, excite the dominating
vibration, and even break the structure life. Therefore,
the minimum-jerk trajectory planning approach aiming
to minimize the jerk value of motion period is recom-
mended to regulate the driving joints’ motion functions
to make sure all joints pass through the corresponding
joints’ positions simultaneously and smoothly.38,39

Considering the actual control system effects directly
on the active joints, trajectory planning executed in
joint space is more convenient and easier to guarantee
the continuity and smoothness of joints’ angular move-
ment curves than that in operation space. Hence, this
minimum-jerk trajectory planning approach is imple-
mented by the desired joints’ via-positions which are
transformed from the path points in operation space
through inverse kinematics calculation.

Interpolation functions based on piecewise quintic
polynomials

Figure 6 shows a typical geometric description of the
sequence of via-points in Cartesian space (i.e. operation
space). The fundamental objective and mission of tra-
jectory planning, as stated previously, are to confirm a
stringent and reasonable trajectory between the desig-
nated starting point and the specific destination within
the reachable workspace.40 In general, the original tra-
jectory in Cartesian space is continuous and discretized
into (n – 1) segments by the requisite n via-points. First,
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the corresponding kth joint angular position knots are
defined as Qk, i that obtained through inverse kine-
matics mapping of the given geometric path. Without
loss of generality, we allow t1\t2\ � � �\tn�1\tn to be
an ordered time sequence and define hi = ti+ 1 � ti as
the corresponding time interval; thus, the total execu-
tion time is

Pn�1
i= 1 hi. The lowest order polynomials to

guarantee the smoothness of jerk profile at the sequence
of via-points are quintic polynomials of which jerk pro-
file is quadratic polynomials and with C2 continuity.
Thus, to guarantee the demanding continuity and
smoothness property of variation curves of separate
joint’s angular position, velocity, and acceleration, the
sequences of via-points denoted in joint space need to
be interpolated by the discretized piecewise quintic
polynomials. The ith interpolation function Qk, i(t) con-
necting the point i and the point (i + 1) for the kth
joint can be expressed as

Qk, i(t)=
X5

j= 0

uki, jt
j ð55Þ

where t 2 ½ti, ti+ 1�. Consequently, in response to the
aforementioned position profile, implementing the
first-, second-, and third-order derivatives regarding
time can immediately yield the corresponding velocity
_Qk, i(t), acceleration €Qk, i(t), and jerk €Qk, i(t) in the kth
coordinate direction relative to the ith time interval,
that is

_Qk, i(t)=
X4

j= 0

(j+ 1)uki, (j+ 1)t
j ð56Þ

€Qk, i(t)=
X3

j= 0

(j+ 1)(j+ 2)uki, (j+ 2)t
j ð57Þ

Q
...

k, i(t)=
X2

j= 0

(j+ 1)(j+ 2)(j+ 3)uki, (j+ 3)t
j ð58Þ

Obviously, the jerk is a quadratic function of time, it
has a continuous second derivative (‘‘C2 continuity’’)
and cannot produce severe step change. To meet high-
level continuity and smoothness requirements, the posi-
tion, velocity, acceleration and jerk at endpoint of ith
time interval must equal to the position, velocity, accel-
eration, and jerk at starting point of (i+ 1)th time
interval, respectively. Thus, equations (55)–(57) can be
written as a vector-matrix differential equation,
specifically

1 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

1 ti+ 1 t2
i+ 1 t3

i+ 1 t4
i+ 1 t5

i+ 1

0 1 2ti+ 1 3t2
i+ 1 4t3

i+ 1 5t4
i+ 1

0 0 2 6ti+ 1 12t2
i+ 1 20t3

i+ 1

2
666666664

3
777777775

uki, 0

uki, 1

uki, 2

uki, 3

uki, 4

uki, 5

2
666666664

3
777777775

=

Qk, i

_Qk, i

€Qk, i

Qk, i+ 1

_Qk, i+ 1

€Qk, i+ 1

2
6666666664

3
7777777775

ð59Þ

Solving equation (59), the coefficients of equation
(55) are obtained, namely

uki, 0 =Qk, i

uki, 1 = _Qk, i

uki, 2 =
€Qk, i

2

uki, 3 =
20(Qk, i+ 1�Qk, i)�(12 _Qk, i + 8 _Qk, i+ 1)hi�(3€Qk, i�€Qk, i+ 1)h

2
i

2h3
i

uki, 4 =
30(Qk, i�Qk, i+ 1)+ (16 _Qk, i + 14 _Qk, i+ 1)hi�(3€Qk, i + 2€Qk, i+ 1)h

2
i

2h4
i

uki, 5 =
12(Qk, i+ 1�Qk, i)�6( _Qk, i + _Qk, i+ 1)hi�(€Qk, i�€Qk, i+ 1)h

2
i

2h5
i

8>>>>>>>>>><
>>>>>>>>>>:

ð60Þ
Strict and necessary constraints

In particular, the total execution time of our minimum-
jerk trajectory planning strategy is set as a specific
constraint. Arising from the proposed minimum-jerk
trajectory planning algorithm imposed upon the
3-PUU PKM, all strict and necessary constraints con-
sist of (1) meeting the predefined state conditions at the
initial and ultimate time; (2) fulfilling the definite conti-
nuity and smoothness requirements with regard to
position, velocity, acceleration, and jerk for specific rel-
evant via-points; (3) satisfying the explicit kinematics
restraints; (4) abiding by the specific dynamics bounds;

Figure 6. Via-points in Cartesian space.
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and (5) subjecting to the limitation of total execution
time.

1. Initial and ultimate time constraints. Consistent
with the initial and ultimate time prerequisites,
the joints’ angular velocity, acceleration, and
jerk at initial and final time are undoubtedly
guaranteed to be zero simultaneously as follows

Qk, 0 = qk0,Qk, n = qkn

_Qk, 0 = _qk0 = 0, _Qk, n = _qkn = 0
€Qk, 0 = €qk0 = 0, €Qk, n = €qkn = 0

Qk, 0 = qk0 = 0,Qk, n = qkn = 0

8>><
>>: ð61Þ

2. Continuity constraints. Particularly, the main
challenge facing trajectory planner is to achieve
the essential continuity and smoothness require-
ments; therefore, the joints’ angular position,
velocity, acceleration, and jerk at every inter-
knot must satisfy the following continuity con-
straints, namely

Qk, i(ti+ 1)=Qk, i+ 1(ti+ 1)= qki 8k, i
_Qk, i(ti+ 1)= _Qk, i+ 1(ti+ 1) 8k, i
€Qk, i(ti+ 1)= €Qk, i+ 1(ti+ 1) 8k, i
Qk, i(ti+ 1)=Qk, i+ 1(ti+ 1) 8k, i

8>><
>>: ð62Þ

3. Kinematics constraints.Apparently, kinematics con-
straints concern that the joints’ angular velocity,
acceleration, and jerk at every inter-knot should
not exceed the given specific maximum values

j _Qk, ijł VCk 8k, i

j€Qk, ijł ACk 8k, i

jQk, ijł JCk 8k, i

8<
: ð63Þ

where VCk , ACk , and JCk represent the kth joint’s velo-
city bound, acceleration bound, and jerk bound,
respectively.

4. Dynamics constraints. The torque constraint of
actuating joint based on its motor’s driving
capacity has to be taken into account when the
appointed trajectory is reasonably processed,
that is

jtk, ijł tCk 8k, i ð64Þ

where tCk denotes the kth joint’s active torque
limitation.

5. Total execution time constraint. Generally, as an
additional requirement, the total traveling time
allocated to the confirmed operation should be
less than the given execution time in order to
boost the operation efficiency and productivity,
thereby

T =
Xn

i= 1

hi ł TC ð65Þ

where TC is the artificial traveling time bound.

Objective function

For sophisticated industrial operations, the smoother tra-
jectories are always preferred to the rougher ones;
smoother trajectories usually ensure smaller vibration
deformation and higher positioning accuracy. Since limit-
ing the maximum jerk value of the entire trajectory is of
considerable benefits—reducing structure wear, suppres-
sing motivated vibration, enhancing smoothness degree,
and raising tracking accuracy—the maximum absolute
value of each individual joint’s angular jerk function
within every specific segment needs to be minimized.
Hence, the objective function we adopt is given as follows

min maxjQ
...

k, i(t)j, i= 1, . . . , n; k = 1, . . . ,m ð66Þ

where n is the number of total via-points (including the
starting point and the destination) and m is the number
of driving joints. The indispensable coefficients ukij of
interpolation functions for joints’ angular position are
viewed as the independent design variables. Complying
fully with the multiple fundamental constraints, we can
perform the minimum-jerk trajectory planning with a
path parameterized by piecewise quintic polynomials.
The coefficients ukij of joint’s angular position profile
are obtained by _Qk, i, €Qk, i, and hi through equation
(60). For a m-joint n-knot trajectory planning problem
featuring minimum-jerk, the velocity and acceleration
at starting point and endpoint ( _Q1, i, €Q1, i, _Qm, i, €Qm, i)
are first set zero upon requisite constraints, and its
unknown velocity and acceleration at subsequent inter
via-points are primary design factors. Besides, the
(n� 1) time internals are needed to be optimized and
identified. Thus, the number of total design variables is
½m 3 2 3 (n� 1)+ (n� 1)�.

Optimization method

Figure 7 illustrates an overview of the thorough
minimum-jerk trajectory planning procedure aiming at
the 3-PUU PKM. From the perspective of mathe-
matics, the complex trajectory planning matter of
PKM is further converted into a traditional con-
strained nonlinear multivariable optimization problem.
The objective of this particular optimization problem is
to minimize the maximum absolute value of joints’
angular jerk subject to the aforementioned continuity
constraints, kinematics constraints, dynamics con-
straints, and execution time constraints. To solve the
optimal solution of the constrained multivariable objec-
tive function, the minimum-jerk trajectory generation
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strategy presented herein has to resort to the profes-
sional computing software—MATLAB, which is inte-
grated many distinguished and reliable calculation
algorithms including sequential quadratic program-
ming (SQP) algorithm, genetic algorithm (GA), and
particle swarm optimization (PSO) algorithm. Among
highly efficient methods to deal with general con-
strained optimization problems, the SQP approach is
filled with significant advantages of solving large-scale
complex problems and capable of relatively fast con-
vergence rate; thus, we employ familiar SQP algorithm
embedded in the fmincon function to fully address the
minimum-jerk trajectory planning problem.

Numerical simulation

The 3-PUU parallel kinematic manipulator is an auto-
matic operation mechanism that can grasp and

transport objects or operation tools accurately and
flexibly according to the fixed procedures. To intui-
tively observe and evaluate the concrete characteristics
of the presented minimum-jerk trajectory planning
approach, two different but representative examples—
an inverted U-shaped trajectory intensively applied for
pick-and-place operations and a closed spatial circle
trajectory widely used for painting or spraying
operations—are simulated and discussed in this
section.

Case I: pick-and-place operation application

By investigating the handling process of practical pro-
duction line, the most frequently used trajectory of
pick-and-place operation is a bow-shaped trajectory,41

which is approximately considered as an inverted U-
shaped trajectory. As depicted in Figure 8, the red solid

Figure 7. Flowchart of the proposed trajectory planning.
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line in the dexterous workspace (Wt) of 3-PUU PKM
denotes the presupposed inverted U-shaped trajectory
for a flexible pick-and-place application. As illustrated
in Figure 9, we select 10 predefined points (P1 � P10) in
Cartesian space as the key via-points for the inverted
U-shaped trajectory sample. To ensure the joints’
motion trajectories are planned definitely in joint space,
these given via-points need to be converted into the cor-
responding joints’ angular position knots in joint space
through inverse kinematics computation. All indispen-
sable prototype parameters of the 3-PUU PKM are
reported concisely in Table 1. Its orderly sequence of
via-points in Cartesian space and joints’ angular posi-
tion knots in joint space is listed in Table 2. The neces-
sary kinematics and dynamics constraints of the 3-PUU
PKM are recorded in Table 3. The allowable joints’
angular velocity limitation VCk is 0.5m/s, the joints’
angular acceleration limitation ACk is 1.2m/s2, the
joints’ angular jerk limitation JCk is 5m/s3, and
the joints’ torque limitation tCk is 10Nm. In addition,
the total traveling time bound TC is artificially set to 5 s

in this case. Finally, in the major parameter options of
fmincon function, the approved maximum number of
iterations ‘‘MaxIter’’ is set 100, and the authorized max-
imum number of function evaluations ‘‘MaxFunEvals’’
is set 5000.

Conforming to the specifically designed procedure
for minimum-jerk trajectory planning, the total

Figure 8. The presupposed pick-and-place operation
trajectory.

Figure 9. The via-points of pick-and-place operation trajectory.

Table 1. Physical parameters of the 3-PUU PKM.

Symbol Description Value Unit

s Radius of the moving platform 0.070 m
S Radius of the fixed base 0.370 m
l Strut’s length 0.450 m
d Distance from Ci to leadscrew 0.070 m
R Radius of the task workspace 0.080 m
h Height of the task workspace 0.200 m
m Mass of the moving platform 3.500 kg
mi Mass of the strut 0.720 kg
mqi Mass of the slider 1.377 kg
IMi Motor’s inertia moment 1.4e–4 N/m2

ICi Coupling’s inertia moment 1.3e–5 N/m2

ILi Leadscrew’s inertia moment 1.1e–4 N/m2

pi Leadscrew’s pitch 0.010 m
g Gravitational acceleration 9.807 m/s2

PUU: prismatic-universal-universal; PKM: parallel kinematic manipulator.

Table 2. The via-points of the pick-and-place operation
trajectory.

Knots Cartesian space (mm) Joint space (mm)

x y z Joint 1 Joint 2 Joint 3

1 290 90 680 376.68 244.16 336.13
2 290 90 660 356.68 224.16 316.13
3 290 90 640 336.68 204.16 296.13
4 260 60 620 281.18 195.62 256.27
5 220 20 620 246.40 218.29 238.64
6 20 220 620 222.51 250.90 229.91
7 60 260 620 207.69 296.43 229.48
8 90 290 640 221.91 362.79 254.57
9 90 290 660 241.91 382.79 274.57
10 90 290 680 261.91 402.79 294.57

Table 3. Kinematics and dynamics constraints of the 3-PUU
PKM.

Constraints values Joint 1 Joint 2 Joint 3

Kinematics
constraints

VCk (m/s) 0.5 0.5 0.5

ACk (m/s2) 1.2 1.2 1.2
JCk (m/s3) 5.0 5.0 5.0

Dynamics
constraints

jtjmax (N m) 10 10 10

PUU: prismatic-universal-universal; PKM: parallel kinematic manipulator.
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traveling time after massive computation in MATLAB
environment is 4.767 s, as can be seen from Table 4.
The four longest time intervals are h1 (from P1 to P2),
h3 (from P3 to P4), h7 (from P7 to P8), and h9 (from P9

to P10). As summarized in Table 5, the maximum of
the absolute value of joints’ velocity, acceleration, jerk,
and torque are 0.101m/s, 0.279m/s2, 3.102m/s3, and
3.141Nm, respectively, suggesting that none of terms
oversteps the fundamental limitations of kinematics
and dynamics bounds. Besides, the mean of the abso-
lute value of joints’ velocity, acceleration, jerk, and tor-
que are 0.054m/s, 0.095m/s2, 0.516m/s3, and
1.078Nm, respectively. Note that the maximum velo-
city, acceleration, jerk, and torque occur on Joint 2.
Hence, with respect to this inverted U-shaped trajec-
tory, Joint 2 needs to be paid more attention and fur-
ther strengthened than Joints 1 and 3. Figure 10(a)–(e)
shows the associated joints’ position, velocity, accelera-
tion, jerk, and torque profiles corresponding to the
available optimal solution. The red solid line depicted
in Figure 10(f) exhibits the generated valid trajectory of
moving platform by the forward position transforma-
tion analyzed above. It is clear that the generated
Cartesian trajectory strictly goes through all the prede-
fined via-points, approximates the assumed inverted U-
shaped path, and satisfies all the specific constraints.
Especially, there are no fierce step changes in joints’
position, velocity, and acceleration profiles. To sum up,
the minimum-jerk trajectory planning strategy enables
the profiles of joints’ position, velocity, acceleration,
jerk, and torque to be characterized by excellent conti-
nuity and pronounced smoothness relating to the
inverted U-shaped trajectory.

Case II: closed circle application

This section mainly describes the simulation results of
the presented minimum-jerk trajectory planning strat-
egy for a particularly circle trajectory in Cartesian
space. The presupposed closed circle trajectory for
painting operation is a red dash-dotted line displayed
in Figure 11. We choose 11 definite points, P1 � P11, as
the important via-points on the circle trajectory where
the first point P1 coincides exactly with the last point
P11. As listed in Table 6, the sequence of joints’ angular
position knots corresponding for the prescribed points
in Cartesian space are calculated using inverse kine-
matics transformation. The kinematics and dynamics
constraints with regard to the circle trajectory are as
the same as the constraints for the inverted U-shaped
trajectory. Likewise, the limitation of total traveling
time TC is also set 5 s.

The process implementation of Case II, circle trajec-
tory planning, is closely followed with Case I where the
major parameter options of fmincon function remain
constant to resolve the constrained optimization prob-
lem. As can be seen from Table 7, the optimized total
traveling time just equals to the setting time bound
under the satisfied continuity and smoothness require-
ments. The four longest time intervals are h1 (from P1

to P2), h5 (from P5 to P6), h6 (from P6 to P7), and h10

(from P10 to P11). As summarized in Table 8, the maxi-
mum of the absolute value of joints’ angular velocity,
acceleration, jerk, and torque are 0.254m/s, 0.730m/s2,
2.808m/s3, and 8.246Nm, respectively, indicating that
no associated term oversteps the principal limitations
of kinematics and dynamics restrictions. Besides, the
mean of the absolute value of joints’ angular velocity,
acceleration, jerk, and torque are 0.111m/s, 0.241m/s2,
0.709m/s3, and 2.725Nm, respectively. Figure 12(a)–
(e) reveals the simulated joints’ angular position, velo-
city, acceleration, jerk, and torque profiles resulted
from the corresponding ultimate optimal solution.
Utilizing the forward position transformation of input
joints’ angular position functions, the visible trajectory
of moving platform is exhibited in Figure 12(f). It is
important to note that the generated spatial circle tra-
jectory strictly goes through all the predefined via-
points, approximates the predefined closed circle path,
and satisfies the specific restrictive conditions. The pro-
files of joint angular position, velocity, acceleration,
jerk, and torque are characterized with excellent conti-
nuity; there are no fierce step changes in joint angular
position, velocity, and acceleration profiles. To some
extent, the peak and tendency of the angular velocity,
acceleration, jerk, and torque variations of these inde-
pendent joints are relatively close. Contrasting to simu-
lation results of the inverted U-shaped trajectory, no
particular attention needs to be given to Joint 2 for the
closed circle trajectory, suggesting that the choice and

Table 4. Optimized time intervals of the pick-and-place
trajectory.

Intervals (s) h1 h2 h3 h4 h5

0.738 0.238 0.588 0.370 0.388

Intervals (s) h6 h7 h8 h9 T

0.623 0.799 0.267 0.756 4.767

Table 5. Resulting values of the pick-and-place trajectory.

Values Joint 1 Joint 2 Joint 3

Maximum values jVjmax (m/s) 0.101 0.101 0.090
jAjmax (m/s2) 0.181 0.279 0.178
jJjmax (m/s2) 1.010 3.102 0.952
jtjmax (N m) 2.064 3.141 1.996

Mean values jVjmea (m/s) 0.049 0.054 0.037
jAjmea (m/s2) 0.077 0.095 0.077
jJjmea (m/s2) 0.344 0.516 0.348
jtjmea (N m) 0.872 1.078 0.873
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determination of driving motor can be influenced by
the quality of practical trajectory. According to the dis-
cussions reported in Cases I and II, the results of simu-
lation suggest that the established joints’ jerk profiles
are undoubtedly continuous, and the joints’ torque
profiles are clearly smooth. The proposed minimum-
jerk trajectory planning strategy for the 3-PUU PKM
can provide a desirable trajectory with great continuity
and pleasing smooth performance. By virtue of this
minimum-jerk approach for trajectory planning, we
can expect a steady decline in the number of disconti-
nuities and unsmoothness suffered by the inapposite
motion trajectory. Moreover, the proposed minimum-
jerk trajectory planning approach has advantages of
strong reliability, high flexibility, and simple

(a) (b)

(c) (d)

(e) (f)

Figure 10. The resulted profiles related to the pick-and-place operation trajectory: (a) joint position, (b) joint velocity, (c) joint
acceleration, (d) joint jerk, (e) joint torque, and (f) resulted trajectory.

Figure 11. The presupposed circle trajectory in Cartesian
space.
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implementation. Additionally, as a supplementary
statement, it is important to point out that the opti-
mized result computed by fmincon function is sensitive
to the initial solution. The choice of proper initial value
has slightly influence on the final simulation results; in
other words, an inapposite choice may disturb the exe-
cution time, the convergence of iterative algorithm, and
the final simulation results. Thus, the determination of
suitable initial solution is also an important factor
needed to be serious consideration.

Conclusion

Limiting the maximum jerk of manipulator’s trajectory
contributes to suppressing the vibration induced by the
dominating vibratory mode, reducing the structure wear,
and improving trajectory smoothness and tracking

accuracy. This article focuses on taking jerk minimiza-
tion as the most important consideration for trajectory
planning issue of parallel manipulators. In the presence
of specific kinematics constraints, dynamics constraints,
and execution time constraints, this article presents a
minimum-jerk trajectory planning approach for smooth
trajectory generation applied to the translational 3-PUU
PKM. Despite a little computational cost, the relatively
comprehensive smoothness performance of the proposed
minimum-jerk trajectory planning strategy is clearly
described and borne out by two hypothesized represen-
tative examples. The following conclusions are drawn:

1. The complete kinematics characteristics of this
vertical 3-PUU PKM are thoroughly analyzed.
In particular, there exists a reliable unique solu-
tion in the forward position analysis aspect of
the remarkable 3-PUU parallel mechanism
structure. Relying on the LJMs and virtual
work principle, the complicated dynamics model
is formulated without neglecting the inertial and
gravitational effects of the struts.

2. The straightforward objective of the proposed
minimum-jerk trajectory planning is minimizing
the maximum absolute value of joints’ angular
jerk profile relating to satisfy strict and neces-
sary constraints of initial time, final time, conti-
nuity, kinematics, dynamics, and execution
time. The discretized piecewise fifth-order

Table 6. Trajectory via-points of the circle trajectory.

Knots Operation space (mm) Joint space (mm)

x y z Joint 1 Joint 2 Joint 3

1 286 83.66 597.66 288.39 163.71 248.87
2 243 97.74 654.74 310.62 222.28 324.36
3 0 84.85 684.85 307.49 265.09 355.31
4 43 54.74 697.74 292.11 301.92 361.50
5 86 22.34 683.66 257.33 335.11 332.45
6 86 283.66 602.34 184.29 315.81 216.66
7 43 297.74 545.26 147.80 246.31 136.30
8 0 284.85 515.15 137.79 185.61 95.39
9 243 254.74 502.26 148.74 137.79 82.20
10 286 2.34 516.34 195.97 112.72 115.03
11 286 83.66 597.66 288.39 163.71 248.87

Table 7. Optimized time intervals of the circle trajectory.

Intervals (s) h1 h2 h3 h4 h5 h6

1.027 0.229 0.225 0.347 0.583 0.455

Intervals (s) h7 h8 h9 h10 T

0.255 0.212 0.307 1.359 5.0

Table 8. Resulting values of the circle trajectory.

Values Joint 1 Joint 2 Joint 3

Maximum values jVjmax (m/s) 0.178 0.254 0.224
jAjmax (m/s2) 0.496 0.672 0.730
jJjmax (m/s3) 2.529 2.808 2.799
jtjmax (N m) 5.598 7.588 8.246

Mean values jVjmea (m/s) 0.069 0.090 0.111
jAjmea (m/s2) 0.144 0.208 0.241
jJjmea (m/s3) 0.631 0.651 0.709
jtjmea (N m) 1.630 2.351 2.725
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polynomials are utilized to interpolate the
sequence of joints’ angular position knots which
are transformed from a series of predefined via-
points by inverse kinematics mapping.

3. Using SQP algorithm available in MATLAB,
empirical simulation results for the inverted U-
shaped trajectory and closed circle trajectory
demonstrate that the planned trajectory stem-
ming from the minimum-jerk trajectory plan-
ning strategy is of significant continuity and
pronounced smoothness. In conclusion, this effi-
cient and feasible methodology has substantial
contribution for high-level smoothness require-
ments particularly applicable to the general par-
allel manipulators.
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