
remote sensing  

Article

Improving Plane Fitting Accuracy with Rigorous Error
Models of Structured Light-Based RGB-D Sensors

Yaxin Li 1,2,* , Wenbin Li 2, Walid Darwish 3,4 , Shengjun Tang 5, Yuling Hu 2 and Wu Chen 1,2

1 Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
wu.chen@polyu.edu.hk

2 Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong,
China; wb.li@polyu.edu.hk (W.L.); lindsayuling.hu@polyu.edu.hk (Y.H.)

3 Geomatics Engineering Lab, Civil Engineering Department, Faculty of Engineering, Cairo University,
Cairo 12613, Egypt; dawalid@etrovub.be

4 Department of Electronic and Informatics, Faculty of Engineering, Vrije Universiteit Brussel, 1050 Brussels,
Belgium

5 Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and
Services & Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) & Research Institute
for Smart Cities, School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518050, China;
shengjuntang@szu.edu.cn

* Correspondence: yaxin.pu.li@connect.polyu.hk

Received: 12 December 2019; Accepted: 16 January 2020; Published: 18 January 2020
����������
�������

Abstract: Plane fitting is a fundamental operation for point cloud data processing. Most existing
methods for point cloud plane fitting have been developed based on high-quality Lidar data giving
equal weight to the point cloud data. In recent years, using low-quality RGB-Depth (RGB-D) sensors to
generate 3D models has attracted much attention. However, with low-quality point cloud data, equal
weight plane fitting methods are not optimal as the range errors of RGB-D sensors are distance-related.
In this paper, we developed an accurate plane fitting method for a structured light (SL)-based RGB-D
sensor. First, we derived an error model of a point cloud dataset from the SL-based RGB-D sensor
through error propagation from the raw measurement to the point coordinates. A new cost function
based on minimizing the radial distances with the derived rigorous error model was then proposed
for the random sample consensus (RANSAC)-based plane fitting method. The experimental results
demonstrated that our method is robust and practical for different operating ranges and different
working conditions. In the experiments, for the operating ranges from 1.23 meters to 4.31 meters, the
mean plane angle errors were about one degree, and the mean plane distance errors were less than
six centimeters. When the dataset is of a large-depth-measurement scale, the proposed method can
significantly improve the plane fitting accuracy, with a plane angle error of 0.5 degrees and a mean
distance error of 4.7 cm, compared to 3.8 degrees and 16.8 cm, respectively, from the conventional
un-weighted RANSAC method. The experimental results also demonstrate that the proposed method
is applicable for different types of SL-based RGB-D sensor. The rigorous error model of the SL-based
RGB-D sensor is essential for many applications such as in outlier detection and data authorization.
Meanwhile, the precise plane fitting method developed in our research will benefit algorithms based
on high-accuracy plane features such as depth calibration, 3D feature-based simultaneous localization
and mapping (SLAM), and the generation of indoor building information models (BIMs).

Keywords: plane fitting; RGB-D; RANSAC; point cloud

Remote Sens. 2020, 12, 320; doi:10.3390/rs12020320 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-5610-3223
https://orcid.org/0000-0003-0549-6052
http://www.mdpi.com/2072-4292/12/2/320?type=check_update&version=1
http://dx.doi.org/10.3390/rs12020320
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 320 2 of 17

1. Introduction

Point cloud datasets are widely used for 3D model generation [1,2], high definition (HD) map
generation [3–5], and robot/vehicle navigation [6,7]. Instead of directly using millions of points in the
point cloud, 3D modeling is an important step to organize point cloud data [8], and fitting the point
cloud to regular shapes (e.g., plane, cylinder, and sphere) is crucial for point cloud classification and
segmentation [9,10].

Currently, point cloud datasets are mainly generated by a terrestrial laser scanner (TLS) or an
RGB camera. TLS can collect point cloud data with a high accuracy of up to the millimeter-level.
However, the high cost and long field surveying time of TLS restrict the broad applications of this
technology [11]. Instead, by using an RGB camera, the hardware cost and data collection time can
be significantly reduced, but the transformation from color images to a 3D point cloud requires a
substantial computation cost and extra scale control. In addition, the output point cloud generally has
low precision and reliability [12].

The RGB-D sensor is another choice for point cloud collection, which provides both color images
and dense depth maps [13]. According to the principle of range measurements, RGB-D sensors can be
divided into two categories: time-of-flight (ToF)-based and structured light (SL)-based sensors [14].
To date, there are numerous RGB-D sensors on the market such as the Xtion Pro from Asus (2012),
the second-generation Kinect from Microsoft (2013), Structure Sensor (2014), and the RealSense Series
from Intel (2015). Although they were first introduced for the game industry where the accuracy of the
measurements is not crucial, RGB-D sensors have been applied for many high accuracy applications
recently, for example, indoor 3D modeling [15], simultaneous localization and mapping (SLAM) [16],
and augmented reality applications [17], etc., in which the rigorous calibration and error modeling of
RGB-D sensor data become increasingly essential [18].

For the 3D modeling of point cloud data, the extraction of regular shapes (i.e., plane, sphere,
and cylinder) from point coordinates is an important step for the usage of the point cloud. For
example, many studies have tried to develop plane fitting methods for depth calibration [19,20], object
segmentation [9,10], and 3D environment reconstruction [21–23]. In general, the plane estimation
algorithms of the point cloud can be divided into three groups. The first group is based on the classical
least-squares (LS) [24,25], which estimates the plane parameters by minimizing the squared offset
between the plane and the candidate points. This method performs well for a dataset with few outliers,
for example, those collected by the high-performance TLS. However, the performance of this type of
method can be significantly degraded if the data quality is low and has a large portion of outliers, or the
occlusion region is considerably large [20]. The second group is based on feature space transformations
such as principal component analysis (PCA) [26,27] and Hough transform (HT) [14,28]. Nevertheless,
PCA is also sensitive to the outliers in a similar way to LS, while HT requires extensive computation
and rigorous accumulator design. Therefore, these methods are also difficult to apply to low-quality
point cloud data.

The third group is the RANSAC-based fitting methods [29,30], which can provide robust fitting with
noisy datasets. This method is a minimization algorithm, as with LS, but the iterations with candidate
plane generation by randomly picking a few points dramatically overcome the noise-sensitive problem.
Furthermore, M-estimator sample consensus (MLESAC) [31] and progressive sample consensus
(PROSAC) [32] have been developed based on the maximum likelihood estimation, which improves
the robustness of the RANSAC methods. These plane fitting methods based on RANSAC are useful
and practical for high-quality Lidar data. However, there are still some shortcomings in handling
datasets collected by a low-cost RGB-D sensor, since the noises of the measurements are significantly
larger and distance-related.

Recently, many works have been undertaken to address the plane fitting issue of low-quality
point clouds collected by a low-cost RGB-D sensor. Holz et al. [33] proposed smoothing the points
with multilateral filtering and model the camera noise with a distance-related empirical model. The
experimental results demonstrated that this method achieved excellent performance in the extraction
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of planes and the image segmentation with a dataset collected by Kinect. However, this method is
impractical and ineffective because it requires the generation of an individual model for the particular
hardware and applied environment. Fuersattel et al. [34] integrated the fitting of regular shapes with
sensor calibration by applying a precise plane fitting method based on the least-squares and improved
the accuracy significantly with angle errors of less than a degree and distance errors less than 2 cm.
Additionally, their research indicated that the error of the SL-based RGB-D sensor was distance-related,
and that the performance of the plane fitting algorithm will decrease as the operating range increases.
However, they only tested an algorithm with the dataset in a very close operation range (less than 1.7
meters), where there is relatively little noise. The considerable error in the extended operating range
and the vast depth measurement scale in the same frame will be challenging for this method.

In this paper, an improved plane-fitting algorithm, based on the standard RANSAC framework,
was proposed to address this issue. First, we derived a rigorous error model for the SL-based RGB-D
sensor based on its working principle and error propagation law, from which the weighted coordinates
of each point were established. Then, we proposed using the radial distance—that is, the distance in
the ray direction—to calculate the residuals for plane estimation by adopting the error characteristics
of the SL depth sensors. Next, we modified the cost function of the standard RANSAC with residuals
along the radial direction and the weighting information. The experiments and discussions are given
in Section 4, while the conclusions are presented in Section 5.

2. Error Distribution of SL Depth Sensors

In this section, we present the working principle of an SL-based RGB-D sensor and discuss the
factors that contribute to the error of depth measurements.

An SL-based depth sensor consists of an infrared projector and an infrared camera. The depth
for each pixel in the scene is computed from the disparity value, which is the difference between the
predesigned pattern emitted from the infrared projector and the actual pattern recorded by the infrared
camera. The principle of the SL-based depth sensor is illustrated in Figure 1.
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Assume that a pattern P
(
x(p)i

)
is projected in the direction of point x(p)i onto the reference plane

Π0 with a distance Z0, and reflected to the infrared camera at the 2D position x(c)0,i ; we can obtain

x(c)0,i = x(p)i + f ·
w
Z0

, (1)

where w is the distance between the camera and the projector; f indicates the focal length of the infrared
camera; and Z0 represents the distance between the plane Π0 and the sensor.

If the real reflected target is at the point Qi, and the pattern P
(
x(p)i

)
is recorded at x(c)i on the

infrared camera image, the disparity di is then defined as

di = x(c)i − x(c)0,i = x(c)i − f w/Z0, (2)

and the coordinates of the point Qi can be obtained as [18]
Xi =

x(c)i Zi
f

Yi =
y(c)i Zi

f

Zi =
f w

f w
Z0

+di

. (3)

For most SL-based depth sensors, the output is a normalized disparity d′i with values from 0 to
2047, and the disparity di is calculated using

di = m·d′i + n, (4)

where m and n are two coefficients. Therefore, the distance Zi can be rewritten as

Zi = F
(
d′i

)
=

f w
f w
Z0

+ m·d′i + n
=

1
αd′i + β

, (5)

where α = m
f w and β = 1

Z0
+ n

f w , which can be estimated through the calibration of the sensor [18].
The quality of the depth Zi depends on the accuracy of the disparity di. The error function of disparity
can be expressed as:

di = dp
t + εs + εn, (6)

where di is the measurement value of disparity; dp
t denotes the actual value of disparity; and εs and

εn represent the system error and the measurement noise, respectively. All the values in Equation
(6) reference the pixel unit. Inserting Equation (4) into Equation (6), the normalized disparity can be
described as

d′i =
dp

t + εs + εn − n
m

= dn
i + εn

s + εn
n , (7)

where d′i is the measurement of normalized disparity; dn
i =

dp
t−n
m indicates the actual value of normalized

disparity; εn
s = εs

m denotes the normalized system error; and εn
n = εn

m is the normalized measurement
noise.

Based on the Brown model [35] and the work in [18,36], the systematic error εn
s can therefore be

modeled as
εn

s =
εs

m
= P1

(
r2 + 2xi

2
)
+ P2xiyi + xi

(
K1r2 + K2r4 + K3r6

)
, (8)

where P1, P2 are the parameters to model the tangential distortion; K1, K2, K3 represent the parameters
to model the radial distortion; (xi, yi) is the coordinate of the image point; and r2 = x2

i + y2
i .
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Then, the Taylor series is used to present Equation (5), with the linear term as

Zi =
1

β+ αd0
+

α

(β+ αd0)
2

(
d′i − d0

)
, (9)

where d0 is the expansion point. Considering that the measurement noise is in a normal distribution
with a variance σ2

n, the variance σ2
z of Zi can be calculated based on the error propagation law:

σ2
z =

α2

(β+ αd0)
4
σ2

n . (10)

By combining Equation (3) and Equation (10), the variances of measurement point coordinates
(Xi, Yi, Zi) are 

σ2
x =

(
x(c)i

f

)2

σ2
z

σ2
y =

(
y(c)i

f

)2

σ2
z

σ2
z = α2

(β+αd0)
4 σ

2
n

. (11)

3. Modified RANSAC Algorithm

In this section, we present the algorithm used in this research and give a detailed description of
the proposed method.

As Figure 2 shows, the workflows of the RANSAC plane fitting algorithm can be summarized as
follows:

1. Initialize the program with input point cloud P and iteration limit K0;
2. Select n points randomly from point cloud P to generate the candidate plane model Mi;
3. Calculate the mean offset Di between each point in point cloud P and the candidate plane model

Mi based on a cost function;
4. Update the best fitting plane model Mi and the corresponding mean offset D;
5. Repeat steps 1–4 until the iteration number i is larger than the iteration limit Ki or the value of D

is smaller than the threshold DT (in this paper, DT = 0.05 m).

The value of the iteration limit K0 is calculated as [37]

K0 =
log(1− p)

log(1−ωn)
(12)

where p is the desired probability for the algorithm to provide an acceptable result; ω denotes the
probability to choose an inlier each time a point is selected; and n is the number of points to generate
the candidate plane. Considering the quality of the dataset [37], here, we use p = 0.99, n = 3, and
ω = 0.7.

Using seriously corrupted data, the methods based on RANSAC provide not only estimation
results in a shorter time, but also with higher reliability, compared to the methods based on LS and
feature space transformations [38]. However, there are still some problems with handling the dataset
from low-cost RGB-D sensors. First, as Figure 3a shows, in the standard RANSAC-based methods, the
perpendicular distance is commonly used to evaluate the accuracy of the plane fitting result, which
assumes the error distribution of every point in the point cloud is isotropic and comparable [37,38]. This
situation is applicable for a high-quality TLS dataset, because the error is ignorable, especially for plane
fitting. Nevertheless, this would be problematic for low-cost RGB-D sensors, since the datasets are
much noisier, and the error distribution is anisotropic and heterogeneous. Alternatively, the distance
along one given coordinate axis such as the normal direction distance shown in Figure 3b, has been
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widely used in LS-based methods [39]. However, nearly all algorithms based on this criterion strongly
depend on the coordinate system. Second, standard RANSAC ignores the fact that the contributions of
points with different quality should be different for the candidate plane evaluation. Moreover, this fact
happens to be the critical point for the plane estimation of a low-quality dataset, considering that the
noisy points frequently deflect the candidate plane from the correct position.
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As shown in Equation (3), the x and y coordinates of each measured point are calculated based

on the measured depth and the image coordinate
(
x(c)i , y(c)i

)
. This means that if

(
x(c)i , y(c)i

)
is fixed, for

any depth measurement, the 3D point corresponding to
(
x(c)i , y(c)i

)
will always be located on the radial

direction line that starts from the camera origin and passes the image point
(
x(c)i , y(c)i

)
. Therefore, in the

3D space, the measurement error of the SL-based RGB-D sensor is in the radial direction, as illustrated
in Figure 4, in which the red point is the measured point, the black point is the object point, and the
measurement error is the distance between the measured and the object point.
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In this paper, we modified the traditional RANSAC algorithm by replacing the perpendicular
distance with the radial distance. The candidate plane model in the 3D space is expressed as
ax + by + cz + d = 0, where (a, b, c) is the normal unit vector of the plane, with the condition as
a2 + b2 + c2 = 1. d is the perpendicular distance between the coordinate system origin and the plane.
In this way, the problem of plane fitting could be formulated as the estimation of a, b, c, and d. As
Figure 5 shows, the radial direction offset between one arbitrary point P m(xm, ym, zm) and the detected
candidate plane can be written as

Disi = ‖
→

PmP0 +
→

P0Pp‖, (13)

where P0 is the location of the camera center (x0, y0, z0), and Pp illustrates the intersection point
between the radial line and the detected plane. If we set P0 to the original point of the coordinate

system,
→

PmP0 and
→

P0Pp can be calculated as
→

PmP0 = Zi ×

[
x(c)i
fx

y(c)i
fy

1
]

→

P0Pp = d

a
x(c)i

fx
+b

y(c)i
fy

+c

×

[
x(c)i
fx

y(c)i
fy

1
] , (14)

where
(

fy, fy
)

is the focal length of the Infrared (IR) camera and
(
x(c)i , y(c)i

)
is the pixel local of the

measurement point. By integrating Equations (10), (13), and (14), we can obtain the variance σ2
dis of Dis:

σ2
dis = (

x(c)i
fx


2

+

 y(c)i
fy


2

+ 1)
α2

(β+ αd0)
4
σ2

n . (15)
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Figure 5. Illustration of the offset calculation. PmPpp is the offset in the perpendicular direction, PmPpn

is the offset in the camera plane normal direction, and PmPp is the offset in the radial direction.

We then set up the cost function based on the points weighted by Equation (15). For each iteration,
the weighted mean offset Di in the radial direction is expressed as

Di = mean(
∑

i

1
σi

dis
2
× ‖

→

PmP0 +
→

P0Pp‖), (16)

where i is the index of the point; σi
dis

2 denotes the variance of Disi; Pi
m is the location of point i; and Pi

p
indicates the intersection point of the detected plane and the radial line.

Similarly, the cost function using an offset in the perpendicular direction can be written as

Dp
i = mean(

∑
i

‖
→

PppP0 +
→

P0Pm‖), (17)

where Pi
pp is the intersection point of the detected plane and its perpendicular line through point Pi

m.
The cost function using an offset in the direction of the camera plane normal is

Dn
i = mean(

∑
i

‖
→

PpnP0 +
→

P0Pm‖), (18)

where Pi
pn is the intersection point of the detected plane and the line through point Pi

m, which is
parallel to the normal direction of the camera plane. The cost function using an offset without weight
information in the radial direction is

Dr
i = mean(

∑
i

‖
→

PmP0 +
→

P0Pp‖) . (19)

The output plane parameters are then determined by minimizing the value of Di for all iterations,
or under the case that the value of D is smaller than the threshold DT.
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4. Experiments and Results

In this section, we present the design of the experiments and discuss the results. Three series of
experiments have been done to evaluate the performance of the proposed method.

To quantify the accuracy of the planes fitted with different cost functions, the angle error (∆n), the
difference of dr (∆dr), and the mean offset of control points (Dm

c ) compared to the “true plane” are
used as metrics for comparison: 

∆n = cos−1 vGt·vM
|vGt ||vM |

∆dr = dGt
r − dM

r
Dm

c = 1
n
∑
i

∣∣∣PGt
i − PM

i

∣∣∣ (20)

where vGt is the normal unit vector of the ground truth plane that equals
(
agt, bgt, cgt

)
; vM is the normal

unit vector of the estimated plane that equals (am, bm, cm); dGt
r denotes the perpendicular distance

between the origin of the camera coordinate system and the ground truth plane; dM
r represents the

perpendicular distance between the origin of the camera coordinate system and the estimated plane; n
indicates the number of control points; PGt

i illustrates the “true” position of control points; and PM
i is

the position of points in the estimated plane corresponding to the control points.

4.1. Experiment for Different Operating Ranges

The first experiment was designed to test whether the proposed method is practical for different
operating ranges. As shown in Figure 6, the RGB-D sensor used in this experiment was the Structural
Sensor [40], which can be fitted to an iPad, an iPhone, or other mobile instruments. First, the distortion
error of the IR camera was calibrated using the method proposed in [36]. Table 1 gives the calibration
parameters for both radial and tangential distortions.

Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 17 

 

where 𝑃𝑝𝑛
𝑖  is the intersection point of the detected plane and the line through point 𝑃𝑚

𝑖 , which is 

parallel to the normal direction of the camera plane. The cost function using an offset without weight 

information in the radial direction is 

𝐷𝑖
𝑟 =  𝑚𝑒𝑎𝑛(∑ ‖ 𝑃𝑚𝑃0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑃0𝑃𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖)𝑖  . (19) 

The output plane parameters are then determined by minimizing the value of 𝐷𝑖  for all 

iterations, or under the case that the value of 𝐷 is smaller than the threshold 𝐷𝑇. 

4. Experiments and Results 

In this section, we present the design of the experiments and discuss the results. Three series of 

experiments have been done to evaluate the performance of the proposed method.  

To quantify the accuracy of the planes fitted with different cost functions, the angle error (∆𝑛), 

the difference of 𝑑𝑟  (∆𝑑𝑟), and the mean offset of control points (𝐷𝑐
𝑚) compared to the “true plane” 

are used as metrics for comparison: 

  

{
 
 

 
 ∆𝑛 = cos

−1
𝑣𝐺𝑡 ⋅ 𝑣𝑀
|𝑣𝐺𝑡||𝑣𝑀|

 

∆𝑑𝑟 = 𝑑𝑟
𝐺𝑡−𝑑𝑟

𝑀              

𝐷𝑐
𝑚 = 

1

𝑛
∑|𝑃𝑖

𝐺𝑡 − 𝑃𝑖
𝑀|

𝑖

 (20) 

where 𝑣𝐺𝑡 is the normal unit vector of the ground truth plane that equals (𝑎𝑔𝑡 , 𝑏𝑔𝑡 , 𝑐𝑔𝑡); 𝑣𝑀 is the 

normal unit vector of the estimated plane that equals (𝑎𝑚, 𝑏𝑚, 𝑐𝑚); 𝑑𝑟
𝐺𝑡 denotes the perpendicular 

distance between the origin of the camera coordinate system and the ground truth plane; 𝑑𝑟
𝑀 

represents the perpendicular distance between the origin of the camera coordinate system and the 

estimated plane; 𝑛 indicates the number of control points; 𝑃𝑖
𝐺𝑡  illustrates the “true” position of 

control points; and 𝑃𝑖
𝑀 is the position of points in the estimated plane corresponding to the control 

points. 

4.1. Experiment for Different Operating Ranges 

The first experiment was designed to test whether the proposed method is practical for different 

operating ranges. As shown in Figure 6, the RGB-D sensor used in this experiment was the Structural 

Sensor [40], which can be fitted to an iPad, an iPhone, or other mobile instruments. First, the distortion 

error of the IR camera was calibrated using the method proposed in [36]. Table 1 gives the calibration 

parameters for both radial and tangential distortions.  

 

 

Figure 6. The main elements of hardware used in this paper, which includes one RGB-D camera and 

one iPad [40]. 

Table 1. Parameters for system error calibration. 

P1 P2 K1 K2 K3 

1.182  10-7 −6.864  10-13 4.217  10-5 1.410  10-5 −4.616  10-11 

Figure 6. The main elements of hardware used in this paper, which includes one RGB-D camera and
one iPad [40].

Table 1. Parameters for system error calibration.

P1 P2 K1 K2 K3

1.182 × 10−7
−6.864 × 10−13 4.217 × 10−5 1.410 × 10−5

−4.616 × 10−11

The effect of the calibration is demonstrated in Figure 7, where the projected point clouds of a plane
wall for both uncalibrated and calibrated systems are plotted. The improvement in the calibrated depth
can be clearly seen as the wall should be a straight line after projection to the floor. Additionally, the
quantitative analysis of the depth calibration in the different operating ranges and different areas of the
frame is shown in Figure 8. The illustration of the center area and edge area is shown in Figure 9. The
accuracy of the depth measurement improved significantly with the calibration operation, especially
for the far range and edge area.
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The test field and the equipment setup for the data collection are shown in Figure 10. The
identifiable control points with known coordinates were distributed on the wall plane with the ground
truth obtained by the total station. In our test, the dataset was captured at three different ranges—close
range (1.23 m), middle range (2.47 m), and far range (4.31 m)—while the camera was arranged
substantially parallel to the wall plane. Then, different cost functions, as discussed in Section 3, were
used to fit the wall plane. The “true plane” parameters were obtained from the surveyed coordinates
of the control points.
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For each operating range, we captured 20 datasets for evaluation. Table 2 shows the mean values
of the metrics and the standard deviation for the different cost functions and operating ranges. The
performances of the perpendicular-based and normal-based method were similar because their values
are approximate when the camera plane is parallel to the observed wall plane. For the close range and
middle range, when the error of a point in the edge area is not very large, the radial-based method is
practical to refine the plane fitting result in terms of both angle and distance, but it is not helpful for
the far range because this type of error is distance-related. However, our proposed method, using the
radial offset and the weighted cost function, demonstrated higher robustness and is practicable for all
three test datasets. In particular, this method reduced the angle error by about one degree. The reason
for this is that the weighted cost function mitigates the influence of noisy points. Considering that the
noise and error of the depth measurement increases with the operating range, this experiment also
demonstrated that the proposed method is effective and practical for datasets with different levels of
noise and error.

Table 2. Mean value of metrics for the different operating ranges. LS: least-squares.

Ranges Distance Type ∆n (deg) ∆dr (cm) Dm
c (cm)

Close
(1.23 m)

LS 1.5 ± 0.01 1.9 ± 0.02 2.1 ± 0.02
Perpendicular 2.3 ± 1.35 0.9 ± 0.65 1.6 ± 0.82

Normal 2.2 ± 1.57 0.8 ± 0.67 1.5 ± 0.91
Radial 1.8 ± 0.99 0.7 ± 0.54 1.3 ± 0.62

Radial Weighted 0.9 ± 0.05 0.6 ± 0.16 0.8 ± 0.04

Middle
(2.47 m)

LS 2.9 ± 0.05 2.6 ± 0.13 2.9 ± 0.14
Perpendicular 2.7 ± 0.95 1.6 ± 1.14 3.7 ± 1.23

Normal 2.6 ± 1.02 1.8 ± 1.09 3.6 ± 1.13
Radial 2.4 ± 0.96 1.3 ± 1.07 3.2 ± 1.04

Radial Weighted 1.1 ± 0.20 1.2 ± 0.04 2.7 ± 0.24

Far
(4.31 m)

LS 3.7 ± 0.21 13.3 ± 0.66 14.3 ± 0.70
Perpendicular 3.6 ± 1.69 8.9 ± 3.18 10.9 ± 4.09

Normal 2.5 ± 1.39 7.4 ± 2.82 9.6 ± 2.93
Radial 2.6 ± 1.35 6.5 ± 2.44 8.6 ± 2.62

Radial Weighted 0.9 ± 0.46 5.8 ± 0.64 6.6 ± 0.69
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4.2. Experiment for Large Depth Measurement Scales

The second experiment was designed to test the performance of the proposed method with the
dataset in a large depth measurement scale. As above-mentioned, the error of the SL-based RGB-D
sensor will increase exponentially with the ranging distance. The points close to the equipment and in
the center area of the depth image always exhibit small errors, while the points far from the equipment
and in the edge area of the depth image always display a significant error (Figure 11). This issue is
challenging for the unweighted method because the error distribution of the dataset is asymmetrical.
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Figure 11. Test field and equipment setup for the second experiment.

As Figure 11 shows, the basic setup of this experiment was like the first experiment. Notably, a
flat wall with a height of 2.4 m and a width of 6.4 m was used as the test area, while the coordinates of
the control points were surveyed using a total station with an accuracy at the millimeter-level. Then,
different cost functions, as discussed in Section 3, were used to fit the wall plane. There were 62 control
points on the wall (Figure 12a), and the depth measurements of the control points were in the range of
3.5 m to 7.5 m (Figure 12b).
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The conventional plane fitting method minimizing the sum of perpendicular distance was used
as the baseline during the comparison. For each cost function, 20 datasets were collected, and the
mean values of metrics as well as the standard deviation are given in Table 3. We observed that the
cost function with weighted radial distance reduced the plane fitting errors dramatically to 0.5 degrees
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of angle error and 4.7 cm of range error, compared to 2 to 4 degrees of angle error and 12 to 16 cm of
range error when the unweighted cost functions were used.

Table 3. Mean value of metrics for the second experiment.

∆n (deg) ∆dr (cm) Dm
c (cm)

LS 3.3 ± 0.5 20.3 ± 0.7 27.4 ± 0.3
Perpendicular 3.7 ± 1.1 16.8 ± 3.8 25.7 ± 7.8

Normal 2.6 ± 1.0 12.4 ± 3.1 20.8 ± 5.6
Radial 2.2 ± 0.7 13.8 ± 1.6 23.0 ± 2.4

Radial Weighted 0.5 ± 0.2 4.8 ± 0.7 7.2 ± 2.2

Figure 13 shows the 3D views of the fitted planes with different cost functions. It is clear that the
plane, by minimizing the weighted radial residual (red area) proposed in this study, was one closer to
the true plane (green area).Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 17 
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The errors of the control points after plane fitting calibration based on different methods are
illustrated in Figure 14. Compared with Figure 6b, which gives the range of control points, the errors
for the raw data and unweighted cost functions are range-related. The longer the operating range, the
larger the error. With the help of the weighted plane fitting method, the range errors were controlled to
an accuracy of better than 0.1 m for all of the distance ranges (3.5 m to 7.5 m).

4.3. Experiment with Kinect V2

The third experiment was designed to evaluate the applicability of the proposed method for
different types of SL-based RGB-D sensor. In this experiment, we used the Kinect v2 to collect the
sample data under a similar test condition to the second experiment. The test results are shown in
Table 4. When compared to the unweighted perpendicular-based method, the proposed method
improved the accuracy of the plane fitting significantly, with the angle error improving from 2.7
degrees to 0.9 degrees and the distance error from 15.5 cm to 7.1 cm. This experiment indicates that the
proposed method is practical for different types of SL-based RGB-D sensors.
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Table 4. Mean values of the metrics for the third experiment.

∆n (deg) ∆dr (cm) Dm
c (cm)

LS 4.8 ± 0.2 22.2 ± 0.3 29.6 ± 0.4
Perpendicular 2.7 ± 0.7 15.5 ± 2.2 25.4 ± 3.7

Normal 1.7 ± 1.1 12.1 ± 2.9 20.2 ± 3.0
Radial 1.5 ± 0.7 10.8 ± 2.0 15.6 ± 3.5

Radial Weighted 0.9 ± 0.4 7.1 ± 0.7 9.6 ± 0.9

5. Conclusions

Fitting point cloud data to regular shapes (i.e., plane, sphere, and cylinder) is a fundamental step
for point cloud classification, segmentation, and calibration. For low-cost RGB-D sensors, since the
depth measurements are range-related, any unweighted fitting methods will introduce significant
errors in the fitted shapes.

In this paper, we derived a rigorous error model for a point cloud dataset generated by a low-cost
SL-based RGB-D sensor. Based on this error model, we proposed a novel RANSAC-based plane fitting
method by replacing the cost function of the perpendicular offset to the weighted radial offset. The
experimental results showed that our proposed method is robust and practical for different operating
ranges, different working conditions, and different types of SL-based RGB-D sensors. For operating
ranges between 1.23 meters and 4.31 meters, the proposed method can obtain a plane fitting result
with an angle error of about one degree and a distance error less than 6 cm. Meanwhile, the proposed
method improved the angle accuracy from 3.8 degrees to 0.5 degrees and the distance error from 16.8
centimeters to 4.7 centimeters, compared to the unweighted perpendicular offset cost function, with a
dataset in a large depth measurement scale.

Further research is still required to apply the proposed error model to the fitting algorithm of more
complex shapes (e.g., sphere, cylinder, and curved surfaces). We will also use this point weighting
method to identify the confidence of the point matching results of the RGB-D-based SLAM system to
improve the robustness and accuracy of the SLAM system. These shape data and precise 3D point
clouds will be used to establish an automatic indoor BIM generation system.
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