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ABSTRACT
The potential of several predictive models including multiple model-artificial neural network (MM-
ANN), multivariate adaptive regression spline (MARS), support vector machine (SVM), multi-gene
genetic programming (MGGP), and ‘M5Tree’ were assessed to simulate the pan evaporation in
monthly scale (EPm) at two stations (e.g. Ranichauri and Pantnagar) in India. Monthly climatologi-
cal information were used for simulating the pan evaporation. The utmost effective input-variables
for the MM-ANN, MGGP, MARS, SVM, and M5Tree were determined using the Gamma test (GT). The
predictive models were compared to each other using several statistical criteria (e.g. mean abso-
lute percentage error (MAPE), Willmott’s Index of agreement (WI), root mean squared error (RMSE),
Nash-Sutcliffe efficiency (NSE), and Legate and McCabe’s Index (LM)) and visual inspection. The
results showed that the MM-ANN-1 and MGGP-1 models (NSE, WI, LM, RMSE, MAPE are 0.954, 0.988,
0.801, 0.536mm/month, 9.988% at Pantnagar station, and 0.911, 0.975, 0.724, and 0.364mm/month,
12.297% at Ranichauri station, respectively) with input variables equal to six were more successful
than the other techniques during testing period to simulate the monthly pan evaporation at both
Ranichauri and Pantnagar stations. Thus, the results of proposed MM-ANN-1 and MGGP-1 models
will help to the local stakeholders in terms of water resources management.
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1. Introduction

Evaporation plays themain role in environmental studies
and water resources management. Therefore, the precise
simulation of EPm is necessary for hydrological simu-
lating, river flow forecasting, forestry, lake-ecosystems,
agronomy and irrigation sciences (Burt, Mutziger, Allen,
& Howell, 2005). The most effective meteorological fac-
tors on evaporation rate are relative humidity, air tem-
perature, vapor pressure deficit, atmospheric pressure,
vapor pressure, wind speed, and sunshine hours (Yaseen
et al., 2019). Evaporation is generally measured using
two methods: (i) direct methods such as Class A pan-
evaporimeter and (ii) indirect methods include empirical
equations (Ghorbani, Deo, Yaseen, Kashani, & Moham-
madi, 2017). Doorenbos and Pruitt (1977) said that the
Class A pan-evaporimeter performance was affected by
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the turbidity of the water, watering of birds or other
animals, human and instrumentation errors, and main-
tenance problems. Numerous studies reported the deter-
mination of the pan evaporation applying some empirical
and semi-empirical formulations based on various mete-
orological information (Griffiths, 1966; Penman, 1948;
Priestley & Taylor, 1972). However, there are limitations
to the applications of these methods because of using
different climatic factors. Therefore, alternative meth-
ods, which require less meteorological data are needed
to predict the evaporation (Kisi, 2015; Kisi, Genc, Dinc,
& Zounemat-Kermani, 2016).

AImodels has shown promising progress on the evap-
oration estimation (Tao et al., 2018). Several versions
of AI models are explored for pan evaporation simula-
tion including; ANN based models, Fuzzy based models,
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support vector machine (SVM), evolutionary comput-
ing, data mining and complementary wavelet-AI models
(Adnan, Malik, Kumar, Parmar, & Kisi, 2019; Guven &
Kisi, 2013; Kisi & Heddam, 2019; Qasem et al., 2019;
Qutbudin et al., 2019; Rezaie-Balf, Kisi, & Chua, 2019;
Sebbar, Heddam, & Djemili, 2019; Yaseen, El-shafie,
Jaafar, Afan, & Sayl, 2015). Tabari, Talaee, and Abghari
(2012) predicted daily pan-evaporation using CANFIS
and MLPNN techniques in Iran. The research findings
demonstrated that the MLPNN model provided a bet-
ter accuracy than the CANFIS model. Kisi (2015) used
least square SVM (LSSVM), M5Tree, andMARS for esti-
mating pan evaporation in Turkey. They found that the
MARS provided a significant superiority compared to
othermodels. Deo, Samui, and Kim (2016) developed the
ELM, MARS, and relevance vector machine (RVM) to
predict evaporative using maximum and minimum tem-
peratures, atmospheric vapor pressure, precipitation and
solar radiation in Australia. The results indicated that
the RVM model has high ability compared to the other
techniques. Malik and Kumar (2015) hired the CANFIS,
MLR, and ANN models for predicting the pan evapora-
tion over different stations in India and the ANNmodels
are more successful compared to other ones. Keshtegar,
Piri, and Kisi (2016) used M5Tree, conjugate gradient
(CG), and ANFIS models to simulate of evaporation.
Results produced that the CG model is more satisfac-
tory than the M5Tree and ANFIS techniques. Wang,
Kisi, Zounemat-Kermani, and Li (2017) estimated pan
evaporation using the FG, ANFIS-GP, and M5Tree mod-
els in China. Results proved the high ability of the FG
model in pan evaporation estimation. Wang, Kisi, Hu,
et al. (2017) predicted pan evaporation using MLPNN,
GRNN, ANFIS with grid partition (ANFIS-GP), MARS,
MLR, FG, LSSVM, and SS models in China. The results
showed that the AI models provided the most accuracy
than the SS and MLR techniques. Wang, Niu, Kisi, Li,
and Yu (2017) evaluated the LSSVR, MARS, MLR, FG,
and M5Tree models for simulating EPm in daily scale
in China. Results demonstrated that the LSSVR and FG
models show the highest accuracy to the other applied
models in pan evaporation estimation.

Furthermore, the current research the correlated input
variables are identified using a nonlinear method called
Gama Test (GT). In recent decade, various researches
about applying Gamma test have been done in numer-
ous cases (Malik & Kumar, 2018; Remesan, Shamim, &
Han, 2008; Singh, Malik, Kumar, & Kisi, 2018). Moghad-
damnia, Ghafari Gousheh, Piri, Amin, and Han (2009)
simulated evaporation using the ANN and ANFIS mod-
els while applying GT to select suitable input variables
in different area of Iran. Results showed the ANFIS
and ANN models have high capability in the estimation

of EPm values. Goyal, Bharti, Quilty, Adamowski, and
Pandey (2014) identified suitable input variables using
GT for FL, ANN, ANFIS, and least square-SVM tech-
niques to estimate EPm in daily scale in India, and the SS
andHargreaves-Samani (HGS) equationswere compared
with the results obtained byAImodels. The study showed
the superior accuracy of the SCT over SS and HGS tech-
niques. Malik, Kumar, and Kisi (2018) simulated daily
EPm using RBNN, MLR, Griffiths, Stephens-Stewart,
Priestley-Taylor, Christiansen, Penman, SOMNN, and
Jensen-Burman-Allenmodels in India. The input combi-
nations of MLR, RBNN, and SOMNN were determined
using the GT. The results of the research indicated that
the most accuracy was observed in the RBNNmodel.

The current research is conducted to accomplish the
following aims:

(i) An appropriate input combination is identified
using GT before the construction of the proposed
and comparable predictive models.

(ii) Potential of the proposed model is investigated
using climate information of Ranichauri and Pant-
nagar stations located in Indian central Himalayas.

(iii) A comprehensive evaluation is performed on the
obtained performance of the proposed predictive
models.

2. Material andmethods

2.1. Description of case study

The sources of the weather information used in this study
are two stations (i.e. Ranichauri and Pantnagar) in India.
The coordinates of the Pantnagar and Ranichauri sta-
tions are (79° 38′ 0′′ E, 29° 0′ 0′′ N) and (78° 24′ 35′′
E, 30° 18′ 40′′ N), respectively. These coordinates are
depicted in Figure 1. The Pantnagar and Ranichauri sta-
tions are located at altitude of 243.8 and 2000m above
sea level, respectively. The recordedmeteorological infor-
mation was collected from the Crop Research Centres
in Uttarakhand, India are the monthly minimum (Tmin)
andmaximum temperatures (Tmax), thewind speed (Sw),
the hours of sunshine (Hss), the monthly pan evapo-
ration (EPm), and the morning and afternoon relative
humidity (RH1 and RH2). The EPm in monthly scale
were obtained from Crop Research Centre (CRC) obser-
vatory. Figure 2(a and b) depict the box–whisker plots of
the meteorological information collected over 27 years
at Pantnagar station (January 1990 to December 2016),
and at Ranichauri station for over 13 years (January 2000
to December 2012), respectively. These plots provide
information such as the minimum, quartile-wise, and
maximum values of meteorological data. The collected
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Figure 1. Location of the studied meteorological stations.

data was partitioned into two different sets of varying
strengths, (i) the training dataset, which was selected
from January to December years 1990–2010 at the Pant-
nagar station, and years 2000–2009 at the Ranichauri
station; and (ii) testing dataset, which was selected from
January to December years 2011–2016 at the Pantnagar
station and years 2010–2012 at the Ranichauri station.
The correlation statistic between the predictive and tar-
get variables for both stations are presented in Table 1.
This table shows that the input variables (i.e. RH1, RH2,
Sw, Tmin, Tmax, and Hss) have better cross-correlations
(significant in statistics) with the output variable EPm at
5% confidence level for Pantnagar station. Besides, the
input variables (i.e. RH1, Hss, Tmin, and Tmax) have better
cross-correlation (significant in statistics) with the out-
put variable EPm at 95% confidence level for Ranichauri

station. It was also observed from Table 1, that there was
no significant cross-correlation between Tmin and Hss
variables for Pantnagar station, and Tmin, Sw; Tmin, Hss;
Tmax, RH1; Tmax, RH2; Tmax, Sw; RH2, EPm; and Sw and
EPm variables for Ranichauri stations.

2.2. Gamma test (GT)

Gamma test which includes continuous nonlinear mod-
els calculates the minimum standard error (SE) for a
dataset. A data sample would be characterized as follow-
ing formulas (Tsui, Jones, & De Oliveira, 2002);

{x1(i), . . . , xm(i), yi} = {(xi, yi)|1 ≤ i ≤ M} (1)

where, the x = (x1, . . . , xm) is the vector of inputs; yi is
the target;M and m are the number patterns and inputs,
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Figure 2. Box-Whisker plot of monthly meteorological data at (a) Pantnagar station, and (b) Ranichauri station.

respectively. The GT extracts the kth (k = 1 . . . p) near-
est neighbor lists (p is a user defined parameters) xN[i,k]
(i = 1 . . . M) of the input vector (xi). Finally, the GT cal-
culates the following four statistics (Remesan, Shamim,
Han, & Mathew, 2009):

�M(k) = 1
M

M∑
i=1

|xN[i,k] − xi|2 (k = 1 . . . p) (2)

where, | . . . | indicates the Euclidean distance. Equation
(3) indicates the gamma function of the output as
(Moghaddamnia et al., 2009):

γM(k) = 1
2M

M∑
i=1

|yN[i,k] − yi|2 (k = 1 . . . p) (3)

where, yN[i,k] is the output of the kthnearest neighbor of xi.
To calculate the gamma (�), a linear function is obtained

using the p points {�M(k), γM(k)} as follows (Piri et al.,
2009):

y = Aδ + � (4)

where, A = gradient, � = intercept (δ = 0), and y =
output vector. Small values of the � (near to 0) shows
that the input parameter has been selected more log-
ically. The standard error (SE) of � is computed to
measure the gamma value reliability. Small values of
the SE shows that the gamma value is more reliable.
Vratio reveals the predictability of model, and defined as
(Malik et al., 2018):

Vratio = �

σ 2(y)
(5)

where � is the gamma function and σ 2(y) shows the
output variance. The smaller Vratio indicates the pre-
dictability of the model output.
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Table 1. Inter-correlation between climatic variables at Pantnagar and Ranichauri stations.

Variables Tmin Tmax RH1 RH2 Sw Hss EPm

Pantnagar
Tmin 1.0
Tmax 0.8392* 1.0
RH1 −0.4024* −0.7483* 1.0
RH2 0.2899* −0.2468* 0.6552* 1.0
Sw 0.4864* 0.5258* −0.5822* −0.1625* 1.0
Hss 0.0251 0.4830* −0.6238* −0.7690* 0.1462* 1.0
EPm 0.6324* 0.8583* −0.8947* −0.4213* 0.6813* 0.5138* 1.0

Ranichauri
Tmin 1.0
Tmax 0.9110* 1.0
RH1 0.2745* −0.0699 1.0
RH2 0.4502* 0.0951 0.9546* 1.0
Sw −0.1348 −0.0534 −0.2983* −0.3158* 1.0
Hss −0.1104 0.2581* −0.7854* −0.8030* 0.3435* 1.0
EPm 0.7430* 0.8597* −0.2811* −0.1243 0.0675 0.3507* 1.0

*Statistically significant correlation at 5% level of significance.

Figure 3. The structure of the MM-ANNmodel.

It will be possible to create a high-quality mathemat-
ical model (e.g. MM-ANN, MARS, MGGP, SVM, and
M5Tree) if the mentioned four factors i.e. A, SE, �, and
Vratio are small. In this research, the best predictive vari-
ables were picked using the obtained lowest values of �

and V ratio (Malik, Kumar, Ghorbani, et al., 2019; Piri
et al., 2009) for both stations.

2.3. Multiplemodel-artificial neural networks
(MM-ANN)

In this research, the multiple model-artificial neural net-
works (MM-ANN), which is a hybrid model was used as
to simulate the evaporation process. This hybrid model
includes two levels of modeling learning. Level 1 man-
ages the primary learning process, and the main inputs
(meteorological variables) and output (pan evaporation)
variables are used for training the candidate AI models,

this is in one land. On the other hand, the Level 2 mod-
eling process is initiated based on the Level one result. In
thismanner, a kind of binary learning process ofmachine
learning modeling strategy is initiated. The outputs of
level 1 learning process are utilized as input attributes
while the original output (i.e. pan evaporation) is used as
outputs in Level 2 (See Figure 3). The established model-
ing strategy in the current research evidenced its poten-
tial inmultiple hydrological engineering application such
as soil cation exchange capacity, streamflow prediction,
inflow detection (Ghorbani, Khatibi, Karimi, Yaseen, &
Zounemat-Kermani, 2018; Kashani, Ghorbani, Shahabi,
Naganna, & Diop, 2020; Khatibi, Ghorbani, Jani, & Ser-
vati, 2018; Khatibi, Ghorbani, & Pourhosseini, 2017). Yet,
for the evaporation process to be investigated. This is
due to the fact; the evaporation process is highly stochas-
tic and non-linear characterized and thus such a binary
‘multiple model learning’ is needed here.
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2.4. Multivariate adaptive regression spline (MARS)

The MARS model represents a linear model that can
auto-simulate parametric interactions and nonlinearities
(Friedman, 1991). This model has a backward and for-
ward stepwise plan, where the plan that will ensure an
over-trained and complex model after series of splits but
with a lower accuracy is chosen at the forward step-
wise plan (De Andrés, Lorca, de Cos Juez, & Sánchez-
Lasheras, 2011). However, the previously chosen non-
obligatory variables are removed at the backward step-
wise plan. This function uses two functions (e.g. a knot
– a value of a variable) that represents the meeting point
within range of inputs to map X to Y (Adamowski, Chan,
Prasher, & Sharda, 2012). Two functions [(x-t)+ and
(t-x)+] are deployed in MARS. Here, ‘+’ represents only
the positive as follows (Deo, Kisi, & Singh, 2017; Kisi,
2015):

(x − t)+ =
{
x − t, if x > t
0, otherwise (6)

(t − x)+ =
{
t − x, if x < t
0, otherwise (7)

The MARS formula is written as following equation:

f̂ (x) =
k∑
i
ciBi(x) (8)

where ci is the constant coefficients, and Bi(x) indicates a
weighted sum of function. To run the MARS model, the
Salford Predictive Modeler 8 software was utilized.

2.5. Multi-gene genetic programming (MGGP)

TheMGGP is the advanced stage of classical genetic pro-
gramming (GP), which improves the fitness of classical
GP by linearly combining low depth GP trees (Searson,
2015). Several types of research about different genotype
GP have been reported in various fields by (Danandeh
Mehr & Nourani, 2017; Guven, 2009; Shoaib, Sham-
seldin, Melville, & Khan, 2015; Zorn & Shamseldin,
2015). Figure 4 represents the tree structure while the
function is as follows (DanandehMehr, Kahya, & Olyaie,
2013):

F(X1,X2) = ((3.5X1 ÷ Cos(X2) + exp(Cos(X1)) (9)

The major inputs of GP include (i) training/validation
pattern; (ii) function for fitness (iii) leaves and inner
nodes for identifying the structure; and (iv) the syntax
tree formation parameters (Danandeh Mehr & Nourani,
2017). For simple problems, the arithmetic parameters
including plus (+), minus (-), divide (÷), and multiply

Figure 4. GP tree structure of expression ((3.5X1 ÷ Cos(X2) +
exp(Cos(X1)).

(x) have been used whereas for more complex prob-
lems, other operators including exp, cos, sin, and tan are
applied (Searson, 2015). For example, a pseudo-linear
MGGP chromosome predicts the predictand ŷ using sev-
eral input variables as shown in Figure 5. The mathemat-
ical expression can be expressed as (Danandeh Mehr &
Kahya, 2017; DanandehMehr, Kahya, & Yerdelen, 2014):

ŷ = b0 + b1T1 + b2T2, . . . . . . ,+bGTG (10)

where ŷ is the estimated value; Ti is the ith gene output;
b0 is the noise; and b1, b2, . . . , bG are the gene weights.
The more detailed information about MGGP is given
by (Danandeh Mehr & Kahya, 2017; Danandeh Mehr &
Nourani, 2017).

In this study MGGP framework topology was devel-
oped using 500 population size, 300 generations, muta-
tion probability rate of 0.5, crossover probability rate of
0.4, reproduction probability rate of 0.1, 5 genes (trees),
4 depth of tree, and function set (divide, minus, plus, sin,
cos, sqrt. log, exp.) in MATLAB software.

2.6. Support vectormachine (SVM)

The SVM is mainly useful in regression and classification
tasks. The model performs using the concepts of
structural risk minimization (SRM) and traditional
empirical risk minimization (ERM). Both concepts
are normally applied by conventional neural networks
(CNN). All the input space operations in the potentially
low-dimensional feature space are performed by the ker-
nel function in SVM. The more information about the
SVM and its applications can be found in some studies
such as reference evapotranspiration modeling (Kişi &
Cimen, 2009), pan evaporation simulation (Goyal et al.,
2014), and drought modeling (Deo et al., 2017). In this
research, the SVM model was conducted by considering
a gamma regularization parameter value of 0.0064 and
polynomial kernel function with 3rd degree.
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Figure 5. Multi-gene genetic programming (symbolic regression).

2.7. M5treemodel

The M5Tree determines a relationship between predic-
tive and output variables by obtaining the parameter
subspaces based on the decision tree (Sharafati, Khos-
ravi, et al., 2019). There are two stages in the structure
of the M5Tree model (Salih et al., 2020): (i) dividing the
data into the subsets and form decision trees by reducing
standard deviation (SDR); and (ii) fitting a linear func-
tion to the actual dataset. The SDR values are obtained
by Equation (11) (Rahimikhoob, 2014):

SDR = sd(T) −
∑ |Ti|

|T| sd(Ti) (11)

where, Ti is the subset of dataset having the ith outcome
of the potential set; T is a dataset that reach the node; and
sd shows the standard deviation.

Themore information about theM5Treemodel can be
found in different studies such as reference evapotranspi-
ration modeling (Rahimikhoob, 2014), pan evaporation
modeling (Wang, Kisi, Zounemat-Kermani, et al., 2017),
drought forecasting (Deo et al., 2017), and sediment
modeling (Goyal, 2014). In this research, theM5Tree was
run using the Weka 3.9.2 software.

2.8. Model performance evaluation indicators

The potential of the MM-ANN, MARS, MGGP, M5Tree,
and SVM techniques for simulating the EP were assessed
using Nash-Sutcliffe Efficiency (NSE), Willmott’s Index
of agreement (WI), Legate and McCabe’s Index (LM),
Root Mean Squared Error (RMSE), (Sharafati, Tafaro-
jnoruz, Shourian, & Yaseen, 2019; Sharafati, Yasa, &
Azamathulla, 2018; Tikhamarine, Malik, Kumar, Souag-
Gamane, &Kisi, 2019), andMeanAbsolute Percent Error
(MAPE), StandardDeviation (SD) andCorrelationCoef-
ficient (CC) (Malik, Kumar, & Singh, 2019; Singh, Pal, &
Singh, 2010). Thementioned performance criteria can be
expressed as:

NSE =
⎡
⎣1 −

∑N
i=1 (EPobs,im − EPsim,i

m )
2

∑N
i=1 (EPobs,im − EPobs,im )

2

⎤
⎦

(−∞ < NSE ≤ 1) (12)

WI =

⎡
⎢⎢⎢⎢⎢⎣
1 −

∑N
i=1 (EPobs,im − EPsim,i

m )
2

∑N
i=1(|EPsim,i

m − EPobs,im |
+|EPobs,im − EPobs,im |)2

⎤
⎥⎥⎥⎥⎥⎦

(0 < WI ≤ 1)

(13)

LM =
⎡
⎣1 −

∑N
i=1 |EPobs,im − EPsim,i

m |∑N
i=1 |EPobs,im − EPobs,im |

⎤
⎦ (0 < LM ≤ 1)

(14)

RMSE =
√√√√ 1

N

N∑
i=1

(EPobs,im − EPsim,i
m )

2

(0 ≤ RMSE < ∞) (15)

MAPE =
∑N

i=1

∣∣∣EPobs,im −EPsim,i
m

EPobs,im

∣∣∣
N

× 100

(0 ≤ MAPE < ∞) (16)

CC =

∑N
i=1(EP

obs,i
m − EPobs,im )

(EPsim,i
m − EPsim,i

m )√√√√√
∑N

i=1 (EPobs,im − EPobs,im )
2

∑N
i=1 (EPsim,i

m − EPsim,i
m )

2

(−1 ≤ CC ≤ 1)

(17)

SD =

√√√√∑N
i=1 (EPsim,i

m − EPsim,i
m )

2

N − 1
(0 ≤ CC ≤ ∞)

(18)
where,N is the number of samples, EPsim,i

m and EPobs,im are
the simulated and observed EPm in ith dataset, andEPsim,i

m

and EPobs,im are mean of simulated and observed EPm val-
ues, respectively. Themodel with larger value ofWI,NSE,
LM, and CC, and a smaller value of RMSE, MAPE, and
SD during testing period was selected better model for
monthly pan evaporation simulation understudy loca-
tion (Malik, Kumar, & Kisi, 2017).
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3. Results and discussion

3.1. Selecting the GT based effective input variables

Among several learning process components, input vari-
ables selection is an essential one formodelingAImodels.
This is owing to the fact AI models behave differently in
different cases based on the attributes of the simulated
matrix. Hence, in the current study different input com-
binations were constructed incorporating various clima-
tological variables and their positive influence on the pan
evaporation at the inspected Ranichauri and Pantnagar
meteorological stations (See Table 2). The input com-
binations were configured using the gamma test where
the highly influential variables are determined. The sta-
tistical results of GT were reported in Table 3 for both
stations. According to the results tabulated in Table 3
and with a fixed mask example (111111), it appears that
the minimum value of � = 0.070 and Vratio = 0.062
at Ranichauri station. Whereas, the minimum value of
� = 0.515 and Vratio = 0.068 at Pantnagar station. The
mask example demonstrated the incorporation of the six
input variables to predict the monthly scale pan evapo-
ration. Hence, the following input variables were utilized
for the prediction process (i.e. Tmax, Tmin, RH1, RH2,Hss,
and Sw).

Table 2. Final structure of MM-ANN, MARS, MGGP, SVM and
M5Tree models at Pantnagar and Ranichauri stations.

Model Output-input combinations

MM-ANN-1, MARS-1, MGGP-1,
SVM-1, M5Tree-1

EPm = f (Tmin, Tmax, RH1, RH2, Sw, Hss)

MM-ANN-2, MARS-2, MGGP-2,
SVM-2, M5Tree-2

EPm = f (Tmin, Tmax, Hss)

MM-ANN-3, MARS-3, MGGP-3,
SVM-3, M5Tree-3

EPm = f (Tmax, RH1, Sw)

MM-ANN-4, MARS-4, MGGP-4,
SVM-4, M5Tree-4

EPm = f (Tmax, Sw)

MM-ANN-5, MARS-5, MGGP-5,
SVM-5, M5Tree-5

EPm = f (Tmax)

Table 3. GT statistics of monthly EPm datasets for Pantnagar and
Ranichauri stations.

Gamma test statistic

Model No. � A SE Vratio Mask

Pantnagar
1 0.515 0.009 0.034 0.068 111111
2 0.660 0.052 0.096 0.087 110001
3 0.620 0.003 0.047 0.082 011010
4 0.586 0.097 0.032 0.077 010010
5 0.788 0.117 0.040 0.104 010000

Ranichauri
1 0.070 0.021 0.022 0.062 111111
2 0.142 0.021 0.018 0.125 110001
3 0.085 0.006 0.036 0.075 011010
4 0.136 0.028 0.005 0.120 010010
5 0.149 0.039 0.010 0.132 010000

3.2. Simulation of EPm at Pantnagar station

The monthly pan evaporation was estimated using MM-
ANN-1,MARS-1,MGGP-1, SVM-1 andM5Tree-1mod-
els based on NSE, WI, LM, RMSE and MAPE for
both training and testing stages at Pantnagar station.
The values of NSE, WI, LM, RMSE and MAPE criteria
during the training and testing periods for MM-ANN-
1, MARS-1, MGGP-1, SVM-1 and M5Tree-1 models
are presented in Table 4. As evaluated for Pantna-
gar station from Table 4, the MM-ANN-1, MARS-
1, MGGP-1, SVM-1 and M5Tree-1 models provided
NSE = 0.939, 0.931, 0.922, 0.944 and 0.924,WI = 0.984,
0.982, 0.979, 0.985 and 0.980, LM = 0.771, 0.757,
0.741, 0.784 and 0.738, RMSE = 0.693, 0.738, 0.787,
0.666 and 0.775mm/ month, and MAPE = 12.399%,
13.486%, 14.340%, 11.848%, and 14.777% during train-
ing period. In addition, the MM-ANN-1, MARS-
1, MGGP-1, SVM-1 and M5Tree-1 models provided
NSE = 0.954, 0.938, 0.932, 0.924 and 0.923,WI = 0.988,
0.985, 0.984, 0.982 and 0.981, LM = 0.801, 0.754, 0.744,
0.718 and 0.707, RMSE = 0.536, 0.621, 0.651, 0.687
and 0.691mm/ month, and MAPE = 9.988%, 12.637%,
13.211%, 14.074%, and 16.389% during testing period,
respectively. Table 4 exposed theMM-ANN-1model per-
formed the best simulation during the testing periods.
Therefore, MM-ANN-1 model followed the best statisti-
cal criteria (i.e. minimum RMSE and MAPE values, and
maximum NSE, WI and LM values) in testing stage and
selected bestmodel among othermodels.MARS-1model
followed the MM-ANN-1 as the second rank closely.

The temporal variation between simulated and
observedmonthly EPm data, and their scatter plots (right
side) for the MM-ANN-1, MARS-1, MGGP-1, SVM-1,
and M5Tree-1 models was plotted in Figure 6 (a through
e) for the testing period. In scatter plots, the regression
line provided the coefficient of determination (R2) as
0.955 for the MM-ANN-1 model, 0.959 for the MARS-
1 model, 0.956 for MGGP-1 model, 0.946 for SVM-1
model, and 0.962 for M5Tree-1 model during the test-
ing stage, respectively. The fitted regression line (RL) and
the perfect line of fit (1:1) were close to each other for all
techniques. The RLwas located above the best fit (1:1) for
MARS-1, MGGP-1, SVM-1, and M5Tree-1 models. This
means that at Pantnagar station, the five models over-
predict the monthly pan evaporation values. Also, the
regression line was located under the 1:1 line for MM-
ANN-1 models, which means the model under-predict
the pan evaporation values at Pantnagar station.

According to Figure 7, all model symbols were very
close to each other. In detail, SVM-1 was located as
the furthest from the observed point. This introduces
SVM-1 as the worst model. MM-ANN-1 was the closest



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 331

Table 4. Values of the NSE, WI, LM, RMSE and MAPE criteria for the developed models during training and testing periods at Pantnagar
and Ranichauri stations.

Training period Testing period

Model Model Structure* NSE WI LM RMSE (mm/ month) MAPE (%) NSE WI LM RMSE (mm/ month) MAPE (%)

Pantnagar
MM-ANN-1 4-7-1 0.939 0.984 0.771 0.693 12.399 0.954 0.988 0.801 0.536 9.988
MARS-1 X 0.931 0.982 0.757 0.738 13.486 0.938 0.985 0.754 0.621 12.637
MGGP-1 X 0.922 0.979 0.741 0.787 14.340 0.932 0.984 0.744 0.651 13.211
SVM-1 C: -; ε: -; γ : - 0.944 0.985 0.784 0.666 11.848 0.924 0.982 0.718 0.687 14.074
M5Tree-1 X 0.924 0.980 0.738 0.775 14.777 0.923 0.981 0.707 0.691 16.389

Ranichauri
MM-ANN-1 4-13-1 0.914 0.978 0.730 0.296 9.647 0.909 0.975 0.736 0.368 10.633
MARS-1 X 0.927 0.981 0.766 0.272 8.028 0.881 0.963 0.678 0.421 12.757
MGGP-1 X 0.887 0.969 0.677 0.339 12.631 0.911 0.975 0.724 0.364 12.297
SVM-1 C: -; ε: -; γ : - 0.913 0.977 0.738 0.297 9.146 0.811 0.955 0.598 0.529 18.096
M5Tree-1 X 0.905 0.974 0.724 0.310 9.595 0.693 0.929 0.483 0.675 23.727

*C: Magnitude of penalty term, ε: width/deviation of the error margin, γ : Gaussian radial basis function parameter.

model to the observed point based on the standard devi-
ation, correlation, and RMSE. The MM-ANN-1 model
presented identical peaks and resembled the observed
values (Figure 6(a)). This proves the superiority of the
MM-ANN-1 model over the others. The density plots of
the simulated EPm by AI models against the observed
(OBS) values are presented in Figure 8.However, the den-
sity plot suggested a slightly different distribution of the
simulated values.

3.3. Simulation of EPm at Ranichauri station

The MM-ANN-1, MARS-1, MGGP-1, SVM-1 and
M5Tree-1 models were trained using (January, 2000 to
December, 2009) and tested using (2010 to Decem-
ber, 2012) datasets. The adequacy of these models was
assessed using the NSE, WI, LM, RMSE and MAPE val-
ues in the both training and testing phases. Table 4 rep-
resents the NSE, WI, LM, RMSE and MAPE values for
MM-ANN-1, MARS-1, MGGP-1, SVM-1 and M5Tree-
1 models. As assessing Ranichauri station, NSE = 0.914,
WI = 0.978, LM = 0.730, RMSE = 0.296mm/ month
and MAPE = 9.647% for MM-ANN-1 model; NSE =
0.927, WI = 0.981, LM = 0.766, RMSE = 0.272mm/
month andMAPE = 8.028% forMARS-1model; NSE =
0.887, WI = 0.969, LM = 0.677, RMSE = 0.339mm/
month and MAPE = 12.631% for MGGP-1 model;
NSE = 0.913,WI = 0.977, LM = 0.738, RMSE = 0.297
mm/ month and MAPE = 9.146% for SVM-1 model,
and NSE = 0.905, WI = 0.974, LM = 0.724, RMSE =
0.310mm/ month and MAPE = 9.595% for M5Tree-
1 model were obtained during the training period.
In addition, NSE = 0.909, WI = 0.975, LM = 0.736,
RMSE = 0.368mm/ month and MAPE = 10.633% for
MM-ANN-1 model; NSE = 0.881, WI = 0.963, LM =
0.678, RMSE =0.421mm/month andMAPE=12.757%
for MARS-1 model; NSE = 0.911, WI = 0.975, LM =

0.724, RMSE =0.364mm/month andMAPE=12.297%
for MGGP-1 model; NSE = 0.811, WI = 0.955, LM =
0.598, RMSE =0.529mm/month andMAPE=18.096%
for SVM-1 model, and NSE = 0.693, WI = 0.929,
LM = 0.483, RMSE = 0.675mm/ month and MAPE =
23.727% for M5Tree-1 model were obtained during the
testing stage. Table 4 revealed that the MARS-1 model
produced the best performances and results in the train-
ing stage while failed in the testing stage. The MGGP-1
model tracked the best statistical criteria (i.e. minimum
RMSE and MAPE values, and maximum NSE, WI and
LM values) over the testing stage and indicated the best
performance compared to other models. MM-ANN-1
model follows the MGGP-1 as the second-best model.

The scatter plots and temporal variations graphs of the
observed against the simulated EPm of the MM-ANN-
1, MARS-1, MGGP-1, SVM-1, and M5Tree-1 models
over the testing phase were presented in Figure 9 (a
through e). The RL in scatter plots marked R2 as 0.910
for the MM-ANN-1, 0.910 for the MARS-1, 0.916 for
the MGGP-1 model, 0.850 for SVM-1 model, and 0.852
for M5Tree-1 model over the testing period. The dif-
ferent conditions have been yielded between RL and
1:1 line for all the models. For the SVM-1 model
(Figure 9(d)), the RL was exactly over the 1:1 line, it
over-predicted the EPm values. For the M5Tree-1 model
(Figure 9(e)), the regression line was exactly below the
best fit line (1:1), it under-predicted the EPm values. In
the case of MM-ANN-1, MARS-1 and MGGP-1 models
(Figure 9(a–c)), the regression line divided the best fit line
(1:1). It can be explained that the models over-predicted
the smaller values (<2.5mm/month for MM-ANN-
1, <3.0mm/month for MGGP-1, <2.5mm/month for
MARS-1) and under-predict the higher EPm values at
Ranichauri station.

According to Figure 10, the highest correlation coeffi-
cient (CC)was observed in theMARS-1. But the standard
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Figure 6. Line (left) and scatter (right) plots between observed and simulated monthly pan evaporation values by (a) MM-ANN-1, (b)
MARS-1, (c)MGGP-1, (d) SVM-1, and (e)M5Tree-1 models during testing period at Pantnagar station.
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Figure 7. Taylor diagrams comparing the models’ fit statistics at Pantnagar station.

Figure 8. Density plots of MM-ANN, MARS-1, MGGP-1, SVM-1 and M5Tree-1 models at Pantnagar station.

deviation showed much less than the observed values.
The SVM-1 and M5Tree-1 model is far from being com-
peting on the best performance, MGGP-1 can be con-
sidered as a high performed model with lowest RMSE
and high correlation although it has a standard deviation
lower than the observed values. Finally, MGGP-1 was the
closest model to the observed values based on the stan-
dard deviation, correlation, and RMSE. This was giving

superiority to MGGP-1 over the others. Considering
the density plot (Figure 11), the MGGP-1 model, which
identified as the closest model in the Taylor diagram
yielded a similar box from the observed values.

The findings of the current research demonstrated
that the MM-ANN at Pantnagar station and MGGP
model at Ranichauri station achieved better perfor-
mances in simulating EPm values. The MM-ANN-1 and
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Figure 9. Line (left) and scatter (right) plots between observed and simulated monthly pan evaporation values by (a) MM-ANN-1, (b)
MARS-1, (c)MGGP-1, (d) SVM-1, and (e)M5Tree-1 models during testing period at Ranichauri station.

MGGP-1 models were selected as the best ones based
on minimum RMSE and MAPE values, and maximum
NSE, WI, and LM values at the testing period. Vari-
ous researchers reported that the soft computing models
provide better performances during the testing period,

and the best performing procedure was selected (Abdul-
lah, Malek, Abdullah, Kisi, & Yap, 2015; Guven & Kisi,
2013). Malik, Kumar, and Kisi (2017) estimated EPm
using SOMNN, CANFIS, MLPNN, RBNN, Griffith’s
(G), and Stephens-Stewart (SS) models at Ranichauri
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Figure 10. Taylor diagrams comparing the models’ fit statistics at Ranichauri station.

Figure 11. Density plots of MM-ANN, MARS-1, MGGP-1, SVM-1 and M5Tree-1 models at Ranichauri station.

and Pantnagar stations. They published that the spe-
cific heuristic approaches (i.e. MLPNN and CANFIS
models) outperformed the other models. It can be clear
that the previous investigations confirmed the multi-
ple model strategies for modeling nonlinear time series
phenomena. The findings of this research were also in
close agreement with the study done by (Malik, Kumar,
& Kisi, 2017). Future research can be devoted to the

incorporation of other casual related climate variables
such as vapor pressure deficit, atmospheric pressure or
others.

4. Conclusion

The evaporation process of the hydrological cycle is char-
acterized by highly complex and stochastic phenomena
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in nature. In the current research, the ability of multi-
ple model strategies (MM-ANN, MARS, MGGP, SVM,
and M5Tree) was evaluated in simulating monthly pan
evaporation at two meteorological stations, Ranichauri
and Pantnagar in India. The best input variables com-
bination was selected using GT. The results of applied
models were examined using some performance crite-
ria and visual presentations. In general, we derived five
conclusions from the current research as follows:

• Six appropriate variables (RH1, RH2, Sw, Hss, and
Tmin, Tmax,) were selected by GT as the optimistic
input combination for simulating the pan evaporation
in monthly scale at both studied stations. The nature
of the EPm process in this region is highly stochastic
and more climatic information is needed for building
the prediction matrix of the proposed AI models.

• At the Pantnagar station, theMM-ANN-1model indi-
cated the better performance compared to theMARS-
1, MGGP-1, SVM-1 and M5Tree-1 models. However,
the feasibility of the MGGP-1 model demonstrated
batter results at Ranichauri station. This is normal for
the case where AI models behave differently in dif-
ferent cases based on the actual internal mechanism
between the predictand and predictors.

• MARSmodel performed as the second accuratemodel
following the MM-ANN at Pantnagar station, while
theMM-ANNwas following theMGGPmodel capac-
ity in mimicking the EPm trend at Ranichauri station.

• Overall, the attained results of the proposed MM-
ANN and MGGP models demonstrated an optimistic
intelligence approaches for this particular region
where they would contribute to the water resources
engineering practice, and management.
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