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.e traditional vibrational standing-wave modes of beams and strings show static overall contour with finite number of fixed
nodes..e travelling wavemodes are investigated in this study of axially moving string and beam although the solutions have been
obtained in the literature. .e travelling wave modes show time-varying contour instead of static contour. In the model of an
axially moving string, only backward travelling wave modes are found and verified by experiments. Although there are n − 1 fixed
nodes in the nth order mode, similar to the vibration of traditional static strings, the presence of travelling wave phenomenon is
still spotted between any two adjacent nodes. In contrast to the stationary nodes of string modes, the occurrence of galloping
nodes of axially moving beams is discovered: the nodes oscillate periodically during modal motions. Both forward and backward
travelling wave phenomena are detected for the axially moving beam case. It is found that the ranges of forward travelling wave
modes increase with the axially moving speed. It is also concluded that backward travelling wave modes can transform to the
forward travelling wave modes as the transport speed surpasses the buckling critical speed.

1. Introduction

Axially moving string and beam can be found in many
engineering devices, such as robot manipulators, magnetic
belts, and power transmission chains, which have been
widely applied in various industries. Due to the initial
disturbance and eccentricity of structures, vibration always
accompanies with the motion of axially moving structures,
which leads to the damage of such systems. Hence, a better
understanding of the working mechanism of axially moving
continua plays a significant role in the process of vibration
control and isolation. Although the investigation of axially
moving continua has been initiated for a long time, many
scholars have focused on studying the frequencies, critical
velocities, and stabilities. .e phenomenon and rules of
complex modes in travelling manner have never been in-
vestigated in detail for axially moving continua, which are
apparently the base of the vibration analysis of such gyro-
scopic systems.

As a classical gyroscopic system, the investigation of
axially moving string has been conducted to analyze the
natural frequencies and responses. In an early effort, a
comprehensive review for axially moving strings was pre-
sented [1, 2]. Many studies have focused on the classical
vibration of axially moving continua including free and
forced responses [2–4]. For string model problems, the
vibration modes can be computed by Laplace transform
methods [5]. Park et al. analyzed the deploying and
retracting axially moving beam and derived the dynamic
responses of the longitudinal and transverse vibrations [6].
Modal analysis is one of the classical methods to derive the
response of gyroscopic systems [7–10]. Using the Galerkin
truncation method to discretize the gyroscopic system is an
effective method to truncate the partial differential equations
into a set of ordinary differential equations [11–13].

Wave propagation, described by the dispersive equation,
is usually related to infinitely long structures. Miranker
decomposed the general solution of a tape into travelling
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wave form by extending the boundary condition periodically
[14]. .e transverse vibration of a tensioned string is a
classical example, which can be solved by the method of
d’Alembert [15–18]. But the d’Alembert technique for the
finite string is very difficult as claimed by Swope and Ames
[19]. If boundary conditions are supplemented, the natural
frequencies and mode shapes arise. .e natural frequencies
and modes are corresponding to the eigenvalues and ei-
genvectors of the mathematical model. If the axially moving
velocity is considered, the gyroscopic effect should be
studied, which makes the eigenvectors complex instead of
real for static structures. Swope and Ames derived and
solved the linear mathematical model for the vibration of
axially moving strings [19]. It is found that the natural
frequency of each mode is closely related to the transport
speed. .e axially moving beam may suffer from buckling
instability and flutter instability when the transport speed
increases to a sufficiently high speed [20, 21]. .e stability of
the axially moving beam was investigated by many re-
searchers, and the effects of axial speed and the system
parameters were presented [22–24]. Ding et al. applied the
discrete Fourier transform to analyze the natural frequencies
of supercritical axially moving Timoshenko beams..ey also
reported that the natural frequencies are highly sensitive to
the bending stiffness [25]. .e bending stiffness plays an
important role in the wave propagation of the transverse
vibration excited by the point load moving in a beam model
[26]. Based on the modal analysis, further investigations,
such as vibration suppressions, become possible [27–30].

In the previous literature, there are only limited results
focusing on the gyroscopic modes. Recently, the complex
modes of an axially moving beam have received more at-
tentions [31–33]. Furthermore, the travelling wave phe-
nomenon of axially moving continua with gyroscopic modes
has been studied [34–36]. However, the phenomena and
patterns of complex modes are still not clear. Further in-
vestigations of the travelling wave modes of gyroscopic
systems are still in demand.

From the perspective of complex modes, we apply the
Galerkin truncation and modal analysis methods to in-
vestigate the modal motions of the axially moving string and
beam. .e relationship of travelling wave modes with the
transport speed, tension, and bending stiffness is revealed.
.e interesting modal motions of gyroscopic systems are
presented for both moving string and beam models.

2. Problem Formulation

2.1. Axially Moving String Model. Consider the transverse
vibration of an axially moving string between two fixed
eyelets and assume that the string is a uniform and flexible
one with the transverse displacement U(X, T), linear density
ρ, and tension P, where L represents the distance between the
two eyelets and V is the transport speed. According to
Newton’s second law, the motion of the axially moving
string is governed by the following linear and hyperbolic
second-order partial differential equation:

ρ UTT + 2VUXT + V
2
UXX􏼐 􏼑 − PUXX � 0, (1)

where the subscripts denote the differentiation with respect
to the corresponding variable. By introducing the following
notations,

x �
X

L
,

u �
U

L
,

t � T

���
P

ρL2

􏽳

,

v � V

��
ρ
P

􏽲

,

(2)

one can obtain the dimensionless form of equation (1) as

utt + 2vuxt − 1 − v
2

􏼐 􏼑uxx � 0. (3)

For fixed supports, the boundary conditions are

u(0, t) � 0, u(1, t) � 0. (4)

2.2. Axially Moving Euler–Bernoulli Beam Model. .e gov-
erning fourth-order partial differential equation of trans-
verse motion for an axially moving, tensioned
Euler–Bernoulli beam is given by

ρ UTT + 2VUXT + V
2
UXX􏼐 􏼑 − PUXX + EIUXXXX � 0.

(5)

Herein, EI stands for the bending stiffness, without
which the equation governing the moving beam recovers to
that governing the moving string..e remaining parameters
share the same meaning as those presented in equation (1).
.e dimensionless form of equation (5) can be written in the
form

utt + 2vuxt − μ2 − v
2

􏼐 􏼑uxx + uxxxx � 0, (6)

by using the following notations:

x �
X

L
,

u �
U

L
,

t � T

���
EI

ρL4

􏽳

,

v � V

���

ρL2

EI

􏽳

,

μ2 �
PL2

EI
.

(7)
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Similarly, the boundary conditions of the beam model
are

u(0, t) � u(1, t) � 0,

uxx(0, t) � uxx(1, t) � 0,
(8)

for simply supported conditions and

u(0, t) � u(1, t) � 0,

ux(0, t) � ux(1, t) � 0,
(9)

for fixed conditions.
Although many dynamic investigations have appeared

after Mote’s work [3] for both string and beammodels, there
are rare studies on the feature of mode shapes or modal
motions under various transport speeds. In Sections 3 and 4,
we will study the interesting modal motions of such gyro-
scopic systems and the effects of transport speed and
bending stiffness on mode shapes.

3. Travelling Wave Modes of Axially Moving
String Model

.epurpose of this section is to discuss the contour of modal
motions of the axially moving string model. .e mode
functions can be derived by the analytical method [37, 38],
and the exact solutions of the string model in real mode form
has been obtained [39, 40]. .e solutions to equation (3) are
assumed as

u(x, t) � φ(x)e
iωt

. (10)

Substituting equation (10) into equation (3) and using
the boundary conditions equation (4), one obtains the an-
alytical solution

u(x, t) � Ce
ikπvx sin(kπx)e

ikπ 1− v2( )t
, (11)

from which the natural frequencies can be extracted as

ωk � kπ 1 − v
2

􏼐 􏼑, k � 1, 2, . . . , (12)

where C is a complex value constant and k denotes the order
of the natural frequency. .e mode functions can also be
derived by equation (11) as eikπvx sin(kπx), which is complex
instead of a real function of x. When the axially moving
velocity v is set zero, the frequencies and real-value sine
mode functions will be obtained as a static vibrating string
problem. .e complex modes cannot be described by a
particular shape as the real modes can be plotted. It can be
found that the exact physical meaning of the complex modes
is travelling wave modal motions, which are mathematically
related to the periodic switch of the real and imaginary parts
of the complex modes.

.e solutions to equation (3) can also be obtained by
using the Galerkin truncation method, and the validation
of the approximate method has been examined by the
author [35]. Taking the advantage of orthogonality, one
expresses the trial functions in terms of trigonometric
polynomials as

u(x, t) � 􏽘
n

k− 1
Ak sin kπx⎛⎝ ⎞⎠e

iωjt
. (13)

Obviously, equation (13) satisfies the boundary condi-
tions in equation (4). Here, ωj is the jth order mode natural
frequency of the axially moving string and i� (− 1)1/2.
Substituting equation (13) into equation (3) and making use
of the Galerkin procedure leads to

Ds
nAn � 0, (14)

where Ds
n is a coefficient matrix and An is a vector that

consists of the amplitudes of trial functions in equation (13).
.ey are presented as
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Figure 1: First four-order mode natural frequencies derived from analytical solutions.
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Figure 2: Continued.
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An �

A1

A2

⋮

An

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ds
n �

1
2
α1 a12 · · · an1

a12
1
2
α2 · · · an2

⋮ ⋮ ⋱ ⋮

an1 an2 · · ·
1
2
αn
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

,

(15)

where αk � (1 − v2)(kπ)2 − ω2
j and akl � 4iωjvkl∕(k2 − l2),

(k − l is odd, otherwise akl � 0). According to the theory of
matrix, if equation (14) has nontrivial solutions, the
determinant of the coefficient matrix is zero. Here,Ds

n is a
summation of one symmetric matrix and one skew
symmetric matrix, which is a feature of gyroscopic
systems [41].

.e relationship between the natural frequencies and the
axially moving speed is presented in Figure 1. .e natural
frequencies decrease with the axial speed, until all the natural
frequencies vanish at the same critical point. .e value of
the critical speed can be derived by letting the natural

frequencies in equation (12) equal to zero, leading to v2 � 1.
Beyond the critical point, the axially moving string behaves
as instable [21].

According to the wave theory, the wave velocity is de-
fined asW� λf, in which λ is the wavelength and f is the wave
frequency. Similarly, each order travelling wave mode ve-
locity can be calculated in the following equation:

Wk � λkfk, (16)

where λk denotes the kth order mode travelling wavelength,
fk �ωk/2π is the frequency, and ωk is the circular frequency
as previously stated. It should be noted that here the modal
motions show the phenomenon of travelling wave, and such
travelling wave is not the traditional one with continuous
wave frequencies and continuous wavelengths. .e travel-
ling wave modes are “quantized” here, which stem from the
static modes.

Since λk � 2/k, where k is the wavenumber, one obtains
dimensionless wave velocity

Wk � 1 − v
2
. (17)

Obviously, the speeds of all the travelling wave modes in
different orders share the same value for a given transport
speed v which is a nature of an axially moving string. .e
invariance of wave speed to different orders can be explained
by dispersion character of the system. .e solutions to the
axially moving string can be expressed as

u(x, t) � ae
i(kx− ωt)

. (18)
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Figure 2: First four-order modes of an axially moving string. Every single curve plotted by the colored levels from shallow to deep denotes
the modal motion in different time. .e red arrows denote the wave direction. (a) v � 0.1, (b) v � 0.5, and (c) v � 0.9.
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Substituting equation (18) into equation (3) yields to the
dispersion relation

ω � (v ± 1)k. (19)

.e phase speed ω/k� v± 1 is independent of the
wavenumber k, and the wave transmission of the axially
moving string is nondispersive.

Now, we inspect the travelling wave feature of the
modal motions by considering a flexible string moving
along its longitudinal direction dragged by an axial tension.
Taking the first four-order modes at the transport speeds
v � 0.1, v � 0.5, and v � 0.9, the travelling wave modes are

depicted in Figure 2. Since they are not static, the series of
snapshots are plotted by the color levels from shallow to
deep to display the trajectory of the periodic motion. It can
be found that there are only backward travelling wave
modes detected between any adjacent stationary nodes in
each order. .e modes of the axially moving string present
remarkable features as travelling waves between any nodes.
However, the nodes are fixed and time independent. It will
be found later that the axially moving beam model shows
galloping nodes instead of fixed nodes in the next section.
Such analytical results of the axially moving string are
confirmed by the visible moving string experiment as
shown in Figure 3. .e quantitative comparison has not

V
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W
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W

Figure 3: Snapshots recorded by a high-speed camera for an axially moving string..e red point is one node..e last picture is a compound
one drawn from preceding snapshots.V denotes the transport speed andW denotes the backward travelling wave speed..eir directions are
opposite.
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been given because the pulley-belt impacts give rise to
coarse vibrations.

From the explicit expression of solution (11), the sta-
tionary nodes can also be easily found by the sine function
which leads to fixed zero points independent of time. For
the nth order mode, there are n − 1 points from 0 to 1 on the
x-axis, similar to the static case. It means that there are n − 1
stationary nodes in the nth order mode, distributed

uniformly on the points xk � k/n, k � 1, 2, . . ., n − 1. .e
property of stationary nodes at those points stands in a
stark contrast to that of the backward travelling wave
between those points. Comparing different transport
speeds in Figure 2, faster transport speed makes the
travelling wave pattern between two nodes more drastic.
All of the travelling waves of the first four-order modes are
backward, i.e., the direction of the travelling waves is
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Figure 4: Real and imaginary parts of frequencies vs. axially moving speed. (a) μ� 10 and (b) μ� 20.

Table 1: Effect of tension parameter (μ) on critical speeds.

Stable region I Buckling instability
critical speed

Instable region
due to divergence

Second stability
critical speed

Stable
region II

Flutter instability
critical speed

Instable region
due to flutter

μ� 10 10.48 11.81 12.18
μ� 20 20.25 20.96 21.28
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Figure 5: Continued.
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Figure 5: First four-order modes of an axially moving beam with different transport speeds and tensions. Every single curve plotted by
the colored levels from shallow to deep denotes the modal motion in different time. .e red arrows are the wave direction. Plots of (a),
(b), (d), and (e) belong to the case in the stable region I and (c) and (f ) belong to the case in the stable region II. (a) μ� 20, v � 5, (b) μ� 20,
v � 10, (c) μ� 20, v � 21.2, (d) μ� 10, v � 5, (e) μ� 10, v � 10, and (f ) μ� 10, v � 12.

10 Shock and Vibration



opposite to the transport speed of the string. It will be
found that the modal motions of an axially moving beam
are different, which can be affected by bending stiffness and
buckling instability. In the next section, we discuss the
features of travelling wave modes for the beam model.

4. Travelling Wave Modes of an Axially Moving
Euler–Bernoulli Beam Model

Similar to the operations to the string model, the beam
model of equation (6) can also be discretized by the Galerkin
procedure. .e solutions to equation (6) have the same form
as equation (13), and substituting the assumed solutions into
equation (6), one can obtain similar equations as

Db
nAn � 0. (20)

Here, the elements αk in matrix Db
n turn into

αk
′� (kπ)4 + (μ2 − v2)(kπ)2 − ω2

j and the remaining elements
are the same as stated in equation (15). .e first four-order
modes are investigated for different values of parameter μ
that stands for the dimensionless tension. .e relationship
between the natural frequency and the transport speed for
μ� 10 and μ� 20 is shown in Figure 4. One of the eigen-
values is usually described by a complex ω�Re(ω) + iIm(ω),
where the real part Re(ω) stands for the natural frequency
and the imaginary part Im(ω) is related to the variety of the
amplitude. .ere are usually three cases accounting for the
stability for such a conservative system. Case 1: if the
imaginary parts of all the eigenvalues are zero, the system is
stable. Case 2: if the real parts of one or more eigenvalues are
zero and the corresponding eigenvalues have positive
imaginary parts, the divergence occurs and the system is
unstable. Case 3: if one or more of the eigenvalues have both
positive real part and positive imaginary part, the system will
undergo flutter and lead to instability. Clearly, with the
increasing speed, the stable system becomes unstable due to
divergence and regains stability, and further loses stability by
flutter.

By inserting ωj � 0 in the nontrivial solutions condition
|Db

n| � 0, one can obtain numerically the critical speeds as
presented in Table 1.

Consider the smallest three critical speeds, which cor-
respond to the points of buckling instability, second stability,
and flutter instability, respectively. .ese three critical
speeds divide the whole velocity range into four regions:
stable region I, instable region due to divergence, stable
region II, and instable region due to flutter. .e first four-
order travelling wave modes will be investigated in the two
stable regions with different tensions.

In Figure 5, for each order mode, the stationary nodes
become to oscillate [35]. .e centers of the galloping nodes
in the beammodel coincide exactly with the stationary nodes
in the string model. .e nth order mode of the string model
has n − 1 stationary nodes, while the nth order mode of the
beam model has n − 1 galloping nodes. .e galloping nodes
are related to the interaction between the forward travelling
wave and the backward travelling wave around the equi-
librium position as in the case of stable region I. .e

intensity of galloping of the nodes is dependent on the
transport speed and the bending stiffness EI, i.e., the do-
mains of the galloping node contours increase with the
transport speed and the bending stiffness. For the case of
stable region II, the galloping phenomena of nodes become
even more intensive and the nodes are hard to recognize due
to the strong forward travelling wave.

By varying the parameter μ from 20 to 10 in Figure 5, one
can see that the range of domains increases as the bending
stiffness increases.

As shown in Figures 2 and 5, the forward travelling wave
modes in the axially moving beam are accompanied by the
bending stiffness. Comparing Figures 1 and 4 and studying
equation (7), it is found that the beam system can degenerate
to the string one if let EI⟶ 0, and μ⟶∞.

Due to the bending stiffness of axially moving beams,
there exist transverse vibration modes coupled by the for-
ward and backward travelling wave modes. .e domains of
galloping nodes composed by the forward travelling wave
modes increase with both transport speed and bending
stiffness. .e forward travelling wave mode moves within
the domain limit. .e range of these domains also increases
with the transport speed but decreases with the tension. In
the first-order mode, with the increasing of the transport
speed, the domain occupies the whole x-axis when the
transport speed surpasses the buckling instability critical
speed. Finally, the systemmode changes from the backward
travelling wave mode to the forward travelling wave mode.

Similar to the string model, substituting equation (18)
into equation (6) yields to the dispersion relation of the
axially moving beam:

ω � kv ± k

������

μ2 + k2
􏽱

, (21)

where the phase speed ω/k is not independent of the
wavenumber k, i.e., the wave transmission of the axially
moving beam is dispersive. .is is different from the axially
moving string whose travelling wave speed is a constant.

.e first-order mode shows backward travelling wave for
the first-stable region (Figures 5(a), 5(b), 5(d) and 5(e)) and
becomes forward travelling wave for the second-stable re-
gion (Figures 5(c) and 5(f)).

5. Conclusions

We consider the first four-order modes of transverse vi-
bration in the axially moving beam and string by the
Galerkin truncation method and the modal analysis method.
Although the solutions to the axially moving strings are
known for years, the modal analysis is still in demand. In this
study, the travelling wave mode properties are discovered
and the mechanism of travelling wave modes in the axially
moving string and beam is given. In this work, the three
important findings are as follows:

(1) In the axially moving string model, there are no
forward travelling wave modes, but backward trav-
elling wave modes occur in each order mode. .e
speed of backward travelling wave modes in different
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orders is the same when the transport speed and the
tension are both given. .ere are n − 1 stationary
nodes in the nth order mode, and the backward
travelling wave modes move between two adjacent
stationary nodes.

(2) In the axially moving beam model, both forward and
backward travelling wave modes can exist. .e
forward travelling wave modes in each order mode
are generated by the bending stiffness of the axially
moving beam.

(3) In each order mode, the nodes in the string model
are stationary and the nodes in the beam model are
galloping. .ere are n − 1 domains composed by the
forward travelling wave modes in the nth order mode
of axially moving beams. With the increasing of the
transport speed, the forward travelling wave modes
conquer the backward travelling wave modes after
the transport speed surpasses the buckling critical
speed. .e backward travelling wave modes trans-
form to the forward travelling wave modes.
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