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Abstract

The latency of cloud computing is high for the reason that it is far from terminal users. Edge computing can transfer
computing from the center to the network edge. However, the problem of load balancing among different edge
nodes still needs to be solved. In this paper, we propose a load balancing strategy by task allocation in edge
computing based on intermediary nodes. The intermediary node is used to monitor the global information to obtain
the real-time attributes of the edge nodes and complete the classification evaluation. First, edge nodes can be
classified to three categories (light-load, normal-load, and heavy-load), according to their inherent attributes and real-
time attributes. Then, we propose a task assignment model and allocate new tasks to the relatively lightest load node.
Experiments show that our method can balance load among edge nodes and reduce the completion time of tasks.
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1 Introduction
The Internet of Things (IoT) can connect a large num-
ber of smart devices across regions and it has become
part of many advanced application infrastructures. It also
generates large amounts of data, which will keep on grow-
ing in the coming years[1, 2]. However, the limitations
of its devices make it very complicated to solve current
paradigms such as big data or deep learning [3]. In the last
few years, the integration of the IoT with disruptive tech-
nologies such as cloud computing has provided the capa-
bilities needed in the IoT to address these paradigms[4].
The advent of cloud computing technology has provided
us with a light-weight resolution for building various com-
plex business applications[5]. However, cloud computing
centers are usually located far away from mobile users,
and data delays between users and remote cloudsmight be
long and unpredictable. And users accessing the remote
cloud can result in high access latency, which can seriously
affect network performance[6].
Edge computing is slowly moving cloud computing

applications, data and services from centralized nodes to
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the edge of the network[7]. And it is located between
terminal devices and traditional cloud computing data
centers for handling low latency and real-time tasks [8].
This service is seen as a cloud close to the end user to
provide computing and services with less latency[9].
Although edge computing can greatly reduce latency,

the unreasonable assignment of tasks leads to the unbal-
anced load of each node [10]. And because of the diversity
and heterogeneity of edge computing nodes, the gen-
eral load balancing algorithm can not be directly applied
to edge computing. Therefore, edge computing load bal-
ancing has become a very important research topic in
academia.
There are two main types of load balancing strategies:

static and dynamic. Static load balancing algorithms do
not consider the previous state of the node, while dis-
tributing the load and it works well when nodes have
a small variation in the load. So it is not suitable for
edge environment. Load balancing strategy by task allo-
cation in edge computing based on intermediary nodes is
a dynamic load balancing technique, which considers the
previous state of a node while distributing the load[11].
In this paper, we propose a network architecture for

edge computing based on the intermediary node to better
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obtain the state information of the node. The intermedi-
ary node classifies and evaluates the status of the node
by using the intrinsic attribute values and the real-time
attribute values. And return the node information with
the relatively lightest result. Then we propose a task allo-
cation model that the relatively lightest nodes and the task
arrival node are used as the target node to allocate new
tasks, while the other nodes are not assigned tasks tem-
porarily, so as to achieve dynamic balancing of the system.
The main contribution of this paper can be summarized
as follows:

1. We studied the load balancing strategy in the edge
computing environment and implemented dynamic
load balancing through task allocation. We propose
an edge computing network architecture based on
intermediary nodes. Compared with the traditional
architecture, this architecture adds intermediary
nodes in the edge computing layer and cloud
computing layer to better control the global
information of the edge nodes.

2. For the system with unbalanced initial state, we use
naive Bayes algorithm to classify the state of nodes.
And standardize the original data in order to avoid
highlighting the role of higher-value indicators in the
comprehensive analysis when the levels between the
indicators vary greatly. And we take the nodes with
relatively light classification state and the nodes of
task arrival as the target nodes to allocate new tasks,
while the other nodes are not assigned tasks
temporarily, so as to achieve dynamic balancing.

3. A mathematical framework is cast to investigate the
load balancing problem between edge nodes. The
purpose of load balancing is achieved by the method
of task assignment and estimating the task
completion time based on the transmission rate
between edge nodes, the computation speed, and the
current tasks calculation time.

The rest of the paper is organized as follows. Section 2
reviews the related work in edge computing and load
balancing. Section 3 describes the load balancing strat-
egy, including the selection of target nodes and the task
allocation model. The simulation results and analysis are
presented inSection 4. Finally, Section 5 draws a conclusion.

2 Related work
Edge computing optimizes cloud computing systems by
performing data processing at the edge of the network
closest to the data source using the concept of caching
and data compression. Due to the proximity to the end
users, low latency, and other advantages, the research
on edge computing has attracted great attention with a
large quantity of literature. In this section, we review the
research progress of edge computing and load balancing.

In the work of He et al. [12], an improved constrained
particle swarm optimization algorithm based on software-
defined network (SDN) is proposed in the framework
of software-defined cloud-fog network. This algorithm
improves the performance of the algorithm by using the
opposite property of the mutated particles and reducing
the inertia weight linearly. Chen et al. [13], proposed a task
allocation model to solve the load balancing at the server
level. Calculate the completion time of the large aggrega-
tion tasks on each server by treating the tasks offloaded by
other servers as one large aggregation task. They formu-
late a load balancing optimization problem for minimiz-
ing deadline misses and total runtime for connected car
systems in fog computing.
In the work of Wang et al. [14], a distributed city-wide

traffic management system is constructed. And design an
offloading algorithm for real-time traffic management in
fog-based internet of vehicle (IoV) systems, with the pur-
pose ofminimizing the average response time of the traffic
management server (TMS) for messages. Ning et al. [15],
investigated a joint computation offloading, power alloca-
tion, and channel assignment (COPACA) scheme for 5G-
enabled traffic management systems, with the purpose of
maximizing the achievable sum rate. In the work of Ning
et al. [16], in order to satisfy heterogeneous requirements
of communication, computation and storage in IoVs, they
constructed an energy-efficient scheduling framework for
MEC-enabled IoVs to minimize the energy consump-
tion of road side units (RSUs) under task latency con-
straints. Ning et al. [17] , proposed a deep learning based
data transmission scheme by exploring trirelationships
among vehicles at the edge of networks (i.e., edge of
vehicles) by jointly considering the social and physical
characteristics. In the work of Ning et al. [18] a deep
reinforcement learning (DRL) method is integrated with
vehicular edge computing to solve the computation ofoad-
ing problem, where we jointly study the optimization
of task scheduling and resource allocation in vehicular
networks.
Our team has done a lot of work on edge computing

and fog computing. For example, the resource schedul-
ing method for fog computing is studied [19], the data
processing delay optimization in mobile edge computing
[20], and the resource scheduling in edge computing[21],
etc. In this paper, We focus on the load balancing prob-
lem of edge computing. In our research, for the system
with unbalanced initial state, we propose a load balanc-
ing strategy by task allocation in edge computing based on
intermediary nodes. First, the state of nodes is classified
and evaluated according to their inherent and real-time
attributes. Then, according to the classification results,
the target nodes are selected. Finally, the new task assign-
ment is completed according to the task assignment
model proposed by us.
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3 Load balancing strategy
In this paper, we will study the load balancing technology
under the edge computing architecture based on inter-
mediary nodes. The network model of this architecture is
shown in Fig. 1.
In this architecture, we store the intrinsic attributes of

the node to the intermediary node before applying the
load balancing strategy.When a new task arrives at a node,
this node sends a request signal to the intermediary node.
The intermediary node is responsible for forwarding the
signal to the edge node and the edge node that received
the signal returns its real-time properties values. After
receiving the real-time attribute, the intermediary node
starts classification of the edge node.

3.1 Selection of target nodes
3.1.1 Selection of load attributes
There are many factors affecting load balancing, including
memory, CPU, disk and network bandwidth. However, it
is incomplete to judge the load state of nodes by ignoring
one or several factors. In our research, we will evaluate
the state of nodes by combining the intrinsic and real-time
attributes of nodes. Intrinsic and real-time properties are
defined as follows [22]:

Definition 1 Intrinsic attributes. Static properties of the
nodes, including physical memory, CPU main frequency

multiplied by the number of cores, disk size, and network
bandwidth.

Definition 2 Real-time attributes. Dynamic attributes
of nodes, that is, attribute values monitored by the inter-
mediary node in real time, including memory usage, disk
usage, CPU utilization, and bandwidth utilization.

When the levels between the indicators vary greatly,
if we directly use the original index value for analysis it
will highlight the role of higher-value indicators in the
comprehensive analysis and relatively weaken the role of
lower-value indicators [22]. So we perform dimensionless
processing of the intrinsic attributes, and each attribute
value of node i is represented as:

Definition 3 The values of load attribute [23]. The com-
bination of intrinsic and real-time attributes of edge node
i is used as a criterion for classifying load states of nodes.
Expressed as L = (L1, L2, L3, L4), and each attribute value
of node i is represented as:

The property values of memory: L1 = σ1R1
i +

σ2
(
1 − R2

i
)
, where R1

i is the size of physical memory after
dimensionless processing, and R1

i = Ri−min(Ri)
max(Ri)−min(Ri) , Ri

represents the memory size of node i. R2
i is the memory

utilization of node i. And σ1 + σ2 = 1.

Fig. 1 Network architecture of edge computing based on mediation nodes



Li et al. EURASIP Journal onWireless Communications and Networking          (2020) 2020:3 Page 4 of 10

The property values of CPU: L2 = ε1C1
i + ε2

(
1 − C2

i
)
,

where C1
i the product of the CPU main frequency and

core number after dimensionless processing, and C1
i =

Ci−min(Ci)
max(Ci)−min(Ci)

, Ci represents the product of the CPU
main frequency and core number of nodes i.C2

i is the CPU
utilization of node i. And ε1 + ε2 = 1.
The property values of disks: L3 = δ1D1

i + δ2
(
1 − D2

i
)
,

where D1
i is the size of disks after dimensionless process-

ing, and D1
i = Di−min(Di)

max(Di)−min(Di)
, Di represents the disks

size of nodes i. D2
i is the disks utilization of node i. And

δ1 + δ2 = 1.
The property values of bandwidth: L4 = ω1B1

i +
ω2

(
1 − B2

i
)
, where B1

i is the size of bandwidth after
dimensionless processing, and B1

i = Bi−min(Bi)
max(Di)−min(Bi) , Bi

represents the bandwidth size of nodes i. B2
i is the band-

width utilization of node i. And ω1 + ω2 = 1.

Definition 4 Sample classification set: T = {Tj|j =
1, 2, 3}, T1 represents the light-load state, T2 represents the
normal-load state, and T3 represents the heavy-load state.

3.1.2 Classification of node states
In this section, we use the load attribute value as a basis to
classify the state of the node by the Naive Bayes algorithm.
Based on Bayesian theory, this classification method is a
pattern recognition method with known prior probabil-
ity and conditional probability [24]. According to Bayesian
theorem, when each attribute is independent of each
other, its classification result is the most accurate. The
selected attributes of us are actually independent between
each other and thus meet the condition of it. Let the
sample space be U and the prior probability of training
sample classification Tj be Pr(Tj)(j = 1, 2, 3). Its value is
equal to the total number of samples belonging to class Tj
divided by the total number of training samples |U|. For
an unknown sample nx, the conditional probability that it
belongs to the Tj class is Pr(nx|Tj). According to Bayesian
theorem, the posterior probability that it belongs to the Tj
class is Pr(Tj|nx):

Pr(Tj|nx) = Pr(nx|Tj)Pr(Tj)

Pr(nx)
. (1)

Let the load attribute value L(nx) = (
Lnx1 , Lnx2 , Lnx3 , Lnx4

)

of unknown sample nx , where Lnxk represents the kth
attribute value of sample nx , because we assume that
Lnxk (k = 1, 2, 3, 4) is independent of each other, the condi-
tional probability of belonging to Tj is as follows:

Pr(nx|Tj)=Pr((Lnx1 , Lnx2 , Lnx3 , Lnx4 )|Tj)=
4∏

k=1
Pr(Lnxk |Tj). (2)

where Pr(Lnxk |Tj) denotes the probability when the kth
load attribute value of sample nx belong to Tj classifica-
tion. From (1) and (2), the posterior probability of Tj is
obtained as follows:

Pr(Tj|nx) = Pr(Tj) ∗ ∏4
k=1 Pr(L

nx
k |Tj)

Pr(nx)
. (3)

According to the Naive Bayes classification method, the
posterior probability multiplied by the prior probability
maximum term is the class of the unknown sample nx ,
and it is represented by the following formula:

argmax{Pr(Tj|nx)Pr(Tj)}(j = 1, 2, 3). (4)

From the Eqs. (3) and (4), the classification decision
function of sample nx is:

argmax{Pr(Tj)
2 ∗

4∏

k=1
Pr(Lnxk |Tj)}(j = 1, 2, 3). (5)

Therefore, the state of the sample can be represented by
Eq. (6).

TVx =

⎧
⎪⎨

⎪⎩

light − load, argmax
{
Pr

(
Tj

)2 ∗ ∏4
k=1 Pr

(
Lnxk |Tj

)} = 1

normal − load, argmax
{
Pr

(
Tj

)2 ∗ ∏4
k=1 Pr

(
Lnxk |Tj

)} = 2

heavy − load, argmax
{
Pr

(
Tj

)2 ∗ ∏4
k=1 Pr

(
Lnxk |Tj

)} = 3

(6)

According to the Eq. (6), when the predicted result of
an unknown node state is 1, it represents that the current
state of the node is light load state, and if the predicted
result is 2, it indicates that the current state of the node is
normal load state, otherwise it is heavy load state.
The intermediary node divides the edge nodes into

three categories according to the above method, and
returns the information of node with relatively light node
status (the smallest classification result). This kind node is
designated as the target node.

3.2 Task allocation model
When one or more tasks arrive at node ni simultaneously,
these tasks are merged into an aggregated task U. And
according to the information of the target node, the aggre-
gated task is decomposed into several subtasks uj = αjU
which are handled by different target nodes and the node
which tasks arrived.
(1) The transmission time of task
The transmission time is the size of the subtasks divided

by the data transmission rate from edge node ni to target
node nj or cloud server d, that is:

t1 = αjU
Bni,nj

. (7)

t2 = αdU
Bni,d

. (8)
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Among them, Bni,nj is the data transfer rate of the edge
node ni to the target node nj, and Bni,nj = ∞ when ni =
nj[11]. Bni,d is the data transfer rate of the edge node ni to
the cloud server d.
(2) The computation time of subtasks

t3 = αjU
fnj

+ τni,nj
Nnj
fnj

. (9)

t4 = αdU
fd

+ τni,d
Nd
fd

. (10)

Where, αjU
fnj

is the calculation time of the subtask at the
target node nj, and fnj is the computation speed of the tar-

get node nj. τni,nj
Nnj
fnj

is the current tasks calculation time
of the target node nj. And τni,nj = �αj�, it denotes whether
there is a task assignment relationship between the edge
nodes ni and nj. τni,nj = 1 denote that the relationship
exists; τni,nj = 0 indicates that the relationship does not
exist [6]. Nnj is the current task size of the target node nj.
Similarly, we can get an explanation of the computation
time t4 of subtasks in cloud servers.
(3) The transmission time of the computing result. In

most cases, the computing result is a small packet such
as a control signal; thus, the transmission time of the
computing result can be ignored [25].

• The completion time of subtasks between edge nodes

T1(αj)=max(t1+t3) = max
(

αjU
Bni,nj

+ αjU
fnj

+ τni,nj
Nnj
fnj

)

.

(11)

• The completion time of subtasks on cloud server

T2(αd) = (t2 + t4) = αdU
Bni,d

+ αdU
fd

+ τni,d
Nd
fd

. (12)

• Total completion time of aggregate task U

T(αj,αd) =

max
{

αjU
Bni,nj

+ αjU
fnj

+τni,nj
Nnj
fnj

,
αdU
Bni,d

+ αdU
fd

+ τni,d
Nd
fd

}

.

(13)

In order to minimize the completion time, it is neces-
sary to determine the optimal {αj,αd} set. In summary, the
problem is modeled as follows:

min
{

max
{

αjU
Bni,nj

+ αjU
fnj

+ τni,nj
Nnj
fnj

,
αdU
Bni,d

+ αdU
fd

+τni,d
Nd
fd

}}

s.t.
k∑

j=1
(αj + αd) = 1

(14)

In this task model, the subtask assigned to each edge
node satisfies uj = αjU . Therefore, the proportion of tasks
allocated to target node and cloud can form a k+1 dimen-
sional vector α = (α1,α2, ...,αk ,αk+1)

ô [12]. Assuming
that the edge node n1 receives the current task, the total
completion time T can be described as

T(α) = max
(

α1U
Bn1,n1

+ α1U
fn1

+ τn1,n1
Nn1
fn1

, . . . ,
αkU
Bn1,nk

+ αkU
fnk

+ τn1,nk
Nnk
fnk

, αdU
Bn1,d

+ αdU
fd + τn1,d

Nd
fd

)

Therefore, the mapping of the computing task is solved
in the case where the aggregation task U is known, that is,
the proportion of tasks assigned to each target node, the
solution of vector α. In order to avoid overloading a node
after being assigned a large number of tasks, we make the
subtask u less than or equal to the average load of the sys-

tem, that is uj ≤
(
U+∑k

j=1 Nj
)

m . Assuming that the total
number of edge nodes is m, the problem can be reduced
to the following optimization problems:

α = arg
U∈I

min{T(α)}
s.t. 0 ≤ αj ≤ 1

0 ≤ αj ≤ 1

αjU ≤
(
U + ∑k

j=1Nj
)

m
k∑

j=1
(αj + αd) = 1 (15)

The search space I for the optimization problem is:
I �

∏k
j=1

[
αjmin,αjmax

] = ∏k
j=1 [0, 1]

Particle swarm optimization (PSO) has the advantages
of easy description and understanding, strong search abil-
ity and simple programming. Therefore, for the above
optimization problem, we choose PSO algorithm for intel-
ligent optimization. Due to the limitation of population
diversity, the PSO algorithm appears premature conver-
gence, so we adopt the Modified Particle Swarm Opti-
mization (MPSO) Algorithmwhich introduces the reverse
flight of mutation particles [26]. This algorithm can effec-
tively avoid falling into local optimum in the iterative
process.
When solving optimization problems, particles in the

swarm
{
XL
i
}N
i=1 move in search space I to find the best

position X, i.e., α. N is the size of the particle swarm and
the number of iterations is L. The position and velocity
vectors of the ith particle in the evolutionary L generation
are expressed as follows:

⎧
⎨

⎩

XL
i =

[
xLi1, x

L
i2, . . . , x

L
ik+1

]

vLi =
[
vLi1, v

L
i2, . . . , v

L
ik+1

] (16)



Li et al. EURASIP Journal onWireless Communications and Networking          (2020) 2020:3 Page 6 of 10

where, vLi ∈ M,M �
∏k+1

i=1 [−vimax, vimax] , vimax =
1
2

(
αjmax,−αjmax

)

This is an optimization problem with constraints.
Therefore, the penalty function method is used to deal
with the constraints [27], and the fitness function is
defined as follows:

F(X) =
⎧
⎨

⎩

f (X) X ∈ F

f (X) + r
2k+3∑

i=1
fi(X) + ϕ (X, L) X ∈ I − F (17)

Where, r represents the penalty factor, fi(X) denotes the
constraint violation measure of the infeasible particles on
the jth constraint. Moreover, ϕ(X, L) denotes additional
heuristics value for infeasible particles in the Lth gener-
ation of the algorithm[27]. fi(X) expressed by Eq. (19).

fi=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max (0,−X(D)) , 1 ≤ i ≤ k + 1

max
(
0,X(D) − U+∑m

j=1 Nj
U∗m

)
, k + 2 ≤ i ≤ 2k + 2

∣
∣
∣
∑k+1

D=1 X(D) − 1
∣
∣
∣ , i = 2k + 3

(18)

ϕ(X, L) expressed by Eq. (20).

ϕ (X, L) = P(L) − min
X∈I−F

r
2k+3∑

i=1
fi(X) (19)

P(L) = max
(
P (L − 1) , min

X∈F
f (X)

)
(20)

f (X) represents the fitness value of the Lth generation
feasible particle. P(L) records the feasible particles with
the maximum fitness value obtained by the evolution of
the algorithm to the Lth generation. And the value is
dynamically updated according to Eq. (21) during the exe-
cution of the algorithm. When the algorithm is executed,
the update formulas of particle velocity and position are
follows as:

vL+1
i = ωvLi + c1rand ()

(
PLi − XL

i
) + c2rand ()

(
gL − XL

i
)

(21)

XL+1
i = XL

i + vL+1
i (22)

In the Eq. (22), ω is inertia weight. rand() is a ran-
dom number evenly distributed in the interval [ 0, 1]; c1
and c2 are two accelerating factors. Defining the individ-
ual historical optimal position PLi of the ith particle is the
position with the best fitness value experienced by the ith
particle; The global historical optimal location gL is the
location with the best adaptive value experienced by all
particles in the particle swarm during the evolution.

In addition, the updated formula of inertia weight is as
follows:

ω = ωmin − ωmin − ωmax
Lmax

L (23)

In order to avoid falling into the local optimal risk, we
introduce the reverse of the flight of mutation particles
[26], the position and velocity formulas are updated as
follows:

vL+1
i = −vLi (24)

XL+1
i = XL

i − vL+1
i (25)

The basic parameters of the MPSO algorithm are the
population size N is equal to 50, the maximum number of
iterations Lmax is 1000, the acceleration factors c1 and c2
are equal to 1.0, and ω ∈[ 0.4, 0.9]; ωmin = 0.4; ωmax = 0.9.

4 Results and discussion
4.1 Experiment setup
In this experiment, we represent the task arrival node as
n1. When nj �= n1, the data transmission rate Bn1,nj from
node n1 to target node nj is randomly selected from the
integer between 80 and 100Mbps. Otherwise Bn1,nj =
∞. Data transmission rates Bn1,d between edge nodes
and cloud nodes are randomly selected between 20 and
30Mbps integers[28]. The details are shown in Table 1.

4.2 Simulation results and analysis
4.2.1 Effect of number of target nodes on completion time
In this part, we set the total number of normal-load and
heavy-load nodes to be 4, the total number of nodes m
to be 10, 12, and 14, respectively, and compared the com-
pletion time. As shown in Fig. 2, When the task is small,
the difference in completion time is not significant. When
the task is large, because Bn1,nj = ∞ when nj = n1 ,
the task assignment to itself will exceed the average task
amount of the system, but we limit the size of the subtasks,
so the difference of task completion time is significantly
increased.

Table 1 Simulation parameters

Parameter name Parameter value

Aggregated task U 0.1 ∼ 1Gb.

Data transmission rate between edge nodes
Bn1,nj , n1 �= nj

[ 85, 100]Mbps

Data transmission rate between edge node and cloud
service Bn1,d

[ 20, 30]Mbps

Computing speed of edge nodes fnj [ 0.5, 2] Gbps

Computing speed of cloud service fd 10Gbps
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Fig. 2 The effect of the number of target nodes on the completion time

4.2.2 Impact of system architecture on completion time
Without loss of generality, in the environment ofM = 12,
we analyzed the impact of cloud server on task completion
time. The results are shown in Fig. 3,
E-CC denotes the participation of cloud servers, and

EC denotes the absence of cloud servers. When there
are a few tasks, the impact on task completion time is
small. However, when the amount of tasks is large, due
to the fast computing speed of cloud computing, the

task completion time of the system with cloud servers is
obviously better than that of the system without cloud
servers.

4.2.3 The effect of total number of nodes on task
distribution

In this part, we analyze the distribution of tasks at the
edge nodes when the number of nodes is different. And
we evaluate the distribution of tasks by load distribution

Fig. 3 Impact of cloud server on completion time
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Fig. 4 The effect of total number of nodes on task distribution

Fig. 5 a Effects of different strategies on task completion time. b Effects of different strategies on standard deviation of load distribution
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standard deviation (SD)[29], SD =
√∑m

j=1(Loadnj−Loadavg)2
m ,

where Loadnj = Nj + uj, Loadavg =
∑m

j=1 Nj+uj
m .

The smaller the standard deviation, the more balanced
the task distribution. The result is shown in Fig. 4.
In the case that the heavy-load and normal-load nodes

are not assigned new tasks for the time being, the standard
deviation of load distribution decreases with the increase
of new tasks. That is, with the increase of new tasks, the
system gradually tends to a relatively balanced state.
When the new task is small, the more nodes there are,

the smaller the average task is, and the more balanced the
load distribution is. When the new task is large, due to
the number of target nodes is small, it will allocate more
tasks and get closer to the average load. Therefore, the
more uniform the load distribution, the smaller the load
distribution standard deviation.

4.2.4 Comparison of task completion time and load
distribution under different strategies

We compare the tasks completion time and the load distri-
bution of our strategy with single node and SDCFN [12].
As shown in Fig. 5.
In Fig. 5, n1 denotes that the U is independently com-

pleted by node n1, Constraint denotes the results of our

load balancing add the αjU ≤
(
U+∑k

j=1 Nj
)

m constraint.
Unrestraint denotes the results of our load balancing with-
out constraint. From the Fig. 5a, we can find that the
completion time of n1 are larger than our strategy. And
due to SDCFN strategy does not consider the completion
time of the current tasks of the nodes, the completion
time is longer when U < 0.97G. When U > 0.97G, due
to the small number of nodes available for our strategy,
its completion time is relatively long. When the task is
small, whether to add this constraint has little influence
on completion time. When the task is large, because the
transmission rate of n1 is ∞, the task it undertakes will
be constrained after adding the constraint, so its comple-
tion time is longer. From the Fig. 5b, we can find that
the load distribution standard deviation of n1 and SDCFN
strategy are larger than our strategy. When the task is
small, whether to add this constraint has little influence
on load distribution standard deviation. When the task is
large, the standard deviation of load distribution standard
deviation decreases with the increase of tasks after added
the constraint. If we do not add this constraint, since the
transmission rate of n1 is ∞, the task assigned to itself by
n1 will exceed the average load, thus causing the standard
deviation of the load distribution of the system to increase.

5 Conclusion
In this paper, we propose an edge computing network
architecture based on the intermediary node. This archi-
tecture not only can obtain the state information of the

node better , but also can reduce the pressure of edge
nodes. On this basis, a task allocation strategy is proposed
to balance the load and reduce the task completion time.
In this model, the light-load node and the task arrival node
are used as the target node to allocate new tasks, while
the other nodes are not assigned tasks temporarily, so as
to achieve dynamic balancing. Experiments show that this
strategy can not only balance the load between nodes, but
also reduce the completion time of tasks. When the task is
small, our strategy is significantly better than other meth-
ods. Finally, we give two alternative strategies. The first
is, for tasks with high task completion time requirements,
we can adopt the strategy of unconstrained to minimize
the completion time. The second is, for the tasks which
requirements for completion time are not too high, we
can adopt a constrained strategy to better balance the load
between nodes and improve quality of service.
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