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ABSTRACT Mobile edge computing is a new cloud computing paradigm that utilizes small-sized edge
clouds to provide real-time services to users. These mobile edge clouds (MECs) are located near users,
thereby enabling users to seamlessly access applications that are running on MECs and to easily access
MECs. Terminal devices can transfer tasks to MEC servers nearby to improve the quality of computing.
In this paper, we study multi-user computation offloading problem for mobile-edge computing in a mul-
tichannel wireless interference environment. Then, we analyze the overhead of each mobile devices, and
we propose strategies for task scheduling and offloading in a multi-user MEC system. For reducing the
energy consumption, we propose a server partitioning algorithm that is based on clustering. We formulate
the task offloading decision problem as a multi-user game, which always has a Nash equilibrium. The
simulation results demonstrate that our scheme outperforms the traditional offloading strategy in terms of
energy consumption.

INDEX TERMS Mobile edge computing, offloading decision, node clustering, optimal strategy, Nash
equilibrium.

I. INTRODUCTION
The growing popularity of mobile devices, such as smart
phones, tablet computers and wearable devices, is accelerat-
ing the advent of the Internet of things (IoT) and triggering
a revolution of mobile applications [1]. The IoT as attracted
substantial research attention; it is considered part of the
Internet of the future and will comprise billions of intelli-
gent communicating ‘things’ [2]. With the ever-increasing
popularity of mobile computing technology, a wide range
of computational resources and services are migrating to the
mobile infrastructure and devices [3]. As an important com-
ponent of strategic emerging industries, the IoT has promoted
the transformation of production, life and social management
methods into intelligent, refined and networked methods.
If your paper is intended for a conference, please contact
your conference editor concerning acceptable word processor
formats for your particular conference.

The Internet of things is increasingly being applied in every
field, and the number of devices that are connected to the

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaokang Wang.

global Internet continues to grow [4], [5]. The growing pop-
ularity of smart mobile devices has driven the development
of mobile cloud computing (Mcc), and the emergence of
Mcc has reduced the cost of developing mobile applications
[6], [7]. Therefore, cloud computing has become the overall
method of choice for centralized information storage and
management, and mobile devices have become the main des-
tinations of information [8], [9]. Through the interconnection
of cloud computing and mobile devices, resources such as
online applications and network infrastructure can be shared
through the Internet.

As functions of cloud computing increasingly move to the
edge of the network, a new trend of computing has emerged:
It is estimated that tens of billions of edge computing devices
will be deployed on the edge of the network [10]. In this
new environment, we must manage, process, and store the
large amounts of data that are generated at the edge of the
network [11].

By collecting large amounts of free computing power and
storage space on the edge of the network, it is possible to
generate sufficient capacity for performing computationally
intensive and delay-sensitive tasks on mobile devices [12].
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This mode is called mobile edge computing (MEC). Facili-
tated by MEC, mobile devices can offload their tasks to the
MEC servers on the edge of the network rather than utilizing
the servers in the core network. This MEC paradigm can
provide low latency, high bandwidth and computing agility
in the computation offloading process [13], [14]. MEC is
a novel paradigm that extends cloud computing capabilities
and services to the edge of the network. Due to its dense
geographical distribution, proximity to users, support for high
mobility, and open platforms, MEC can support applications
and services with reduced latency and improved QOS [15].
Thus, it is becoming an important enabler of user-centric IoT
applications and services that demand real-time operations.

II. RELATED WORK
In edge computing, tasks can be regarded as resource con-
sumers, including traditional computing tasks and noncom-
puting tasks. The time and overhead of these subtasks depend
on the resources onwhich they are completed [16]. Therefore,
in the fog computing environment, to satisfy the user’s rapid
response (performance) requirements while reducing the cost
to the user, it is necessary to reasonably schedule tasks on
various resources. In the past few years, in parallel to the ETSI
MEC ISG initiative and to the Open Fog Consortium, MEC
has emerged as a promising research area [17]. In this section,
we present related works to the problem of MEC resource
dimensioning.

Wang and Yuan et al. [18] describe the problem of energy-
aware edge server placement as a multiobjective optimiza-
tion problem and devise a particle-swarm-optimization-based
energy-aware edge server placement algorithm for identify-
ing the optimal solution. Zeng et al. [19] expressed the task
scheduling problem as a mixed-integer nonlinear program-
ming problem, overcame its high computational complex-
ity, and proposed a computationally effective solution. Song
and Gao et al. [20] used cloud atomization technology to
transform physical nodes into virtual machine nodes. Based
on graph partitioning theory, a load balancing algorithm
for fog computing that uses dynamic graph partitioning is
proposed, which dynamically balances the load, effectively
allocates resources, and reduces the overhead that is caused
by new nodes. Mebrek et al. [21] used the energy and the
quality of service (QoS) as two important indicators of fog
performance. They express the problem as a constrained
optimization problem and use the evolutionary algorithm
(EA) to effectively solve the scheduling problem. Chen et al.
[22] describe multi-user multitask unloading as an NP-hard
problem and use the separable semi-deterministic relaxation
problem to identify the lower bound of the system overhead
and to realize the optimal performance of the system under
multiparameter conditions. Qi et al. [23] considers the user’s
job size, service invocation time, and service quality level,
and a set of experiments are designed, deployed, and tested
to validate the feasibility of our proposed approach in terms
of cost optimization. The experiment results demonstrate that
the CS-COM method outperforms other related methods.

To improve the energy efficiency in the cloud environment,
they also designed a QoS-aware VM scheduling method for
energy conservation, namely, QVMS [24]. Chen and Liang
et al. [25] consider a general multi-user mobile cloud com-
puting system in which the mobile users share the commu-
nication resources while offloading tasks to the cloud. They
describe the optimization problem as a nonconvex quadratic
constrained quadratic program. Via the separable semidefi-
nite relaxation and recovery of the binary unloading decision
and the optimal allocation of communication resources, an
effective approximate solution is proposed. Xu et al. [26]
study the cloudlet placement problem in a large-scalewireless
metropolitan area network. They consider placing multiple
cloudlets of various computing capacities at strategic loca-
tions to reduce the latency. They show that the problem is NP-
hard and propose a fast and scalable heuristic solution. Zhu
et al. [27] considers a much more complex scenario in which
multiple moving MDs share multiple heterogeneous MEC
servers. A problem, namely, the minimum energy consump-
tion problem, in a deadline-awareMEC system is formulated,
and two approximation algorithms are proposed. The exper-
imental results demonstrate that these two algorithms realize
superior performance in terms of energy consumption.

III. THE DESCRIPTION OF MEC
Mobile edge computing (MEC) can be defined as an imple-
mentation of edge computing that introduces computational
and storage capacities into the edge of a radio access network,
thereby reducing the latency by moving the cloud and the ser-
vice platform to the edge of the network. [28]. As illustrated
in Fig. 1, the MEC server node is the core part of the mobile
edge computing network and the main implementation node
for themobile edge computing. In themobile edge computing
system, the edge server is connected to the core network
through a wired link, and the edge server can be a mobile
device. The IoT device provides a computing task migration
service, in contrast to mobile cloud computing [29]. At this
time, most of the computing tasks can be processed at the
edge nodes without entering the cloud core network; hence,
the computing and communication loads of the cloud core
network can be significantly reduced. Redundant computing
resources at the edge of the network can also be fully utilized,
and mobile devices and IoT devices can realize lower com-
putational task completion delays.

IV. GRAPH-BASED ENERGY-CLUSTERING ALGORITHM
An edge computing network consists of edge devices that are
deployed around the Internet of things. Tasks and resources
often change dynamically because the physical nodes in the
edge calculation often join or exit nodes. Therefore, to solve
the task allocation and scheduling problems in edge com-
puting, we must also consider the dynamic changes of the
resources and tasks [30]. MCC resources are abstracted into
services with specified functions and parameters. Due to
the differences among the heterogeneous resources, in the
process of task scheduling, suitable resources should be
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FIGURE 1. MEC deployment architecture diagram.

selected for each task according to the global optimization
objectives.

As illustrated in Figure 1, the mobile edge computing
network consists of three layers of architecture: a data center
level, an edge server level and a user device level. We focus
on the edge server level and the user device level.

Now, we introduce the system model of the mobile edge
computing system. We assume that there are mobile devices
in which each user has a computationally intensive task to
complete. Each device can connect directly to its neighbors
via wifi. We use a tuple 〈resi,Ei,Ni〉 to represent a mobile
device node, in which resi is the computing resource of node
i, Ei is the energy of node i, Ni is the number of neighboring
nodes of node i, and the neighboring nodes can communicate
with node i. We use a tuple 〈Bi,Ki,Li〉 to represent task I ,
for I ∈ N , in which Bi is the input data size (in bits), Ki
is the amount of computation that is required for the task,
and Li is the maximum acceptable delay for the task, where
for a real-time task, we set Li = 0, for delay-insensitive
jobs, we set Li = ∞, and otherwise we set it to the actual
maximum delay. Important notations that are used in this
paper are summarized in Table 1.

In this paper, the network topology diagram that is com-
posed of the physical nodes of the edge computing network
are abstracted into an undirected weighted connected graph,
where

V = {v1, v2, v3, . . . , vi, . . . , vn} (1)

is a vertex set, in which vi is a mobile device and n is the
number of devices;

E =
{
eij|i, j ∈ [1, 2 · · · n]

}
(2)

TABLE 1. Notations.

FIGURE 2. Graph of nodes in the area.

is an edge set, in which eij is the communication link between
edge nodes vj and vj; and τij is the weighted sum of the
communications between nodes vi and vj.
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FIGURE 3. Adjacencies of the nodes Ga = (C, Ea).

FIGURE 4. Interaction graph Gint = (C, Eint ).

We studied Bouet’s [31] MEC-based deployment algo-
rithm. From a network system standpoint, we consider a
mobile device deployment, as presented in Figure 2. The first
graph represents the region where the node is located, and
the second graph represents the discretized distribution of the
nodes after space partitioning. Now, we will use the node set
as the starting point for node partitioning.

Figure 3 presents the adjacencies of the nodes. For
instance, in a square grid, a node (a grid cell) has up to 8 adja-
cent nodes. A node can communicate with the other eight
nodes. In a collection, nodes can self-loop. Figure 4 presents
the interactions (the communications or the traffic) between
the nodes in the area.

We assume that the considered area has been discretized
into N cells. Let G denote the set of the N cells. C is a
partition of the setG. The objective is to cluster the area cells.
A cluster has the largest resource limit resmax and it also has a
maximum capacity in terms of the traffic or communications
per unit of time that can be processed at itsMEC server, which
is denoted as Mmax.

(1) First, we identify the edge with the highest weight and
determine the amount of resources for each node. The highest
weight between node i and node j is less than the cluster
maximumweightMmax, and the sum of the resources of node
i and node j is less than the cluster maximum resource resmax.
(2) Then, we cluster node i and node j, and we update the

graphs Ga and Gint with a new node Cij that represents their
clustering. The neighboring nodes of the formed cluster Cij
are the neighboring nodes of node i and node j. The weight of
the link between the new node and its neighbor is determined
by the sum of the link weights between the former node i and

its neighbors and between the former node j and its neighbors.
The weight τc,ij of the new cluster corresponds to the sum of
the two former self-loops plus the weight between node i and
node j.

τc,ij = τij + τji + τii + τjj

τc,ij ≤ Mmax

By construction, the number of nodes (clusters) is
reduced in each iteration. These iterations are conducted
until there are no more changes, namely, until the local
minimum of the mobile device cluster interaction is
attained.

In the above system model, the cluster nodes select clus-
ter heads via clustering, and the cluster heads represent the
cluster nodes for sending and receiving information. A node
can utilize many strategies for executing jobs. In this paper,
we mainly consider the job execution quality ai, the device
energy bi, and the device cost ci, and their respective weights
are expressed in binary form. The node cluster selects the job
strategy to be executed according to its own performance.
For example, when the performance of the node cluster is
described as ai = 1, bi = 0, and ci = 0, then this node cluster
selects jobs that require high-quality completion. If a node
cluster’s performance is described by ai = 0, bi = 1, and
ci = 0, then this node cluster selects a job with less energy
consumption; for the same reason, if a node’s performance
is described by ai = 0, bi = 0, and ci = 1, then this
node chooses to have its own job performed by other nodes.
A multitarget strategy can be implemented by setting various
values of i.
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V. SYSTEM MODEL AND PROBLEM DESCRIPTION
A. SYSTEM MODEL
1) LOCAL COMPUTING MODEL
Each mobile device i can execute its own task locally. Sup-
pose that the computational capability of a mobile device is
Fi. The communication delay T nm mainly consists of the trans-
mission delay of tasks that are transmitted through wireless
network and the execution time Tmi of computing tasks at
nodes. When a task is executed at a local layer, the execution
time Tmi is expressed as

Tmi =
Ki
Fi

(3)

The energy consumption of task i at the local device is

Emi = cnTmi (4)

where cn is the CPU power of the local mobile device. There-
fore, the transmission delay can be expressed as

T nm =
Ki

w log(1+ pmgmn
ω0

)
(5)

The total time delay must be less than the maximum
acceptable delay for the task: Tmi + T

n
i ≤ Li.

If the task must be transmitted to another device for execu-
tion, the device chooses a channel, and the energy consump-
tion during transmission is Emn

trans
= rnm × Ki, while the total

energy consumption is

Emni = Etrans + Eni (6)

where Etrans is the energy that is consumed by the transmis-
sion task process and Eni is the energy that is consumed by
the other device in executing the task. xij is equal to 1 if the
task is transferred to another device for processing.

Therefore, the total overhead is

min
n∑
i=1

 n∑
j=1

αl
[
Emi xij + E

mn
i (1− xij)

]

+ λl
[
Tmi xij + T

n
i (1− xij)

]
s.t i ∈ (1, n), j ∈ (1, n)

Tmi + T
n
i ≤ Li (7)

Hence, the total overhead of local execution on mobile
devices can be expressed as Z ln = αlEn + λlTn where
αl and λl are two weighting factors that correspond to the
weights of the time consumption and the consumption in the
decision-making process, respectively. To meet the specified
demands of mobile devices, mobile devices can choose their
weight factors. In the decision-making process, if a mobile
device is in a low-battery state, to conserve more energy, it
would choose a larger value of λl and put more weight on
energy consumption. If a mobile device is running a delay-
sensitive application, to reduce the time delay, the device
would choose a larger value of αl and put more weight on

the execution time. In practice, suitable weights that capture
a user’s valuations on computational energy and time can be
determined by applying the multiattribute utility approach in
multiple-criteria decision-making theory [32].

αl +λl = 1
0 ≤ αl ≤ 1
0 ≤ λl ≤ 1

(8)

2) MEC COMPUTING MODEL

ϕij =

{
0 Task excute at local mobile device
1 Task excute at MEC device

(9)

If ϕij = 1, tasks must be uninstalled from the MEC device
for execution, and the total energy consumption Eedgen can be
divided into the transmission energy consumptionEcn,trans and
the calculation energy consumption Ecn,com:

Eedgen = Eedgen,trans + E
edge
n,com (10)

Eedgen,trans = Pi • T ei,trans,∀i ∈ N (11)

P is the unit energy consumption when the mobile device
accesses the channel, and Ecn,com is the energy that is con-
sumed in task execution at the MEC layer.

Eedgen,com = T ei,com • εe (12)

Fc is the computing power of the edge cloud server, and
εe is the energy consumption of the edge cloud server per
unit time. The communication delay mainly consists of the
transmission delay T ei,trans and the execution time T ei,com of
the computing tasks.

T ei,trans =
Ki
rn

(13)

T ei,com =
Ki
Fc

(14)

Therefore, the total overhead of MEC is

min
n∑
i=1

αc

[
Eedgen,trans + E

edge
n,com

]
+ λc

[
T en,trans + T

e
n,com

]
(15)

Hence, the total overhead of MEC server execution can be
expressed as

Z cn = αcE
edge
n + λcT edgen (16)

B. NASH EQUILIBRIUM
Based on the computation and communication models in
Section 5.1, we conclude that if too many mobile devices
choose the same channel for task unloading, the interference
among them will become highly severe, thereby resulting
in a lower data rate between each mobile device and the
base station and a higher time cost in uploading task data.
Spending toomuch time on uploading tasks can lead to higher
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energy consumption of the mobile devices. In this case, per-
forming the tasks locally without task offloading would be
more beneficial.

When mobile device m considers offloading its task to
mobile device n, all task scheduling decisions of these devices
in φn (φn ≥ 0) affect device i. Therefore, the task scheduling
decision

φ−n = {φ1, φ2, . . . , φn−1, φn+1, . . . φN } (17)

represents the unloading decisions of other users except
user i. If the unloading decision of user n is specified,
the multi-user task unloading decision can be expressed as

0 =
(
N , {φn}n∈N , {Zn}n∈N

)
(18)

The objective of our decision-making process in this paper
is to minimize the overhead of the task scheduling and
unloading process. The objective function can be expressed
as:

min
φn∈{0,1}

Zi (φn, φ−n) , ∀n ∈ N (19)

Zn(φ∗n , φ
∗
−n) ≤ Zn(φn, φ

∗
−n), ∀φn ∈ An, n ∈ N (20)

From the literature [33], it is concluded that there is a
Nash equilibrium in the multi-user computing task unloading
decision game, and the Nash equilibrium can be attained via
finitely many iterations.

1n (t)
{
φ̃ : φ̃=arg min

φ∈An
Zn (φn, φ−n) and Zn

(
φ∗, φ−n (t)

)
< Zn (φn (t) , φ−n (t))

}
(21)

If the calculated1n (t) is not empty, the mobile device has
not reached the Nash equilibrium state.
We consider a node cluster of N participants, where each

participant schedules tasks according to a strategy. When
other participants utilize optimal strategies, the participants
will not change their own strategies any further. When all
participants stop changing their strategies, the system as a
whole reaches a state of equilibrium. The Nash equilibrium is
closely related to the strategies that are adopted by the nodes.
Each cluster node determines ai, bi, and ci according to

its own scheduling policy. If the scheduling strategy for each
cluster is feasible for the system as a whole, then the status
quo is maintained. Following the execution of a job, changes
are made in the system. If the strategies are not feasible for the
whole system, the function is adjusted to adjust the strategy
of the partial node cluster so that the system transitions to a
new equilibrium state. The system can support the scheduling
policy of each node cluster if the following conditions are
satisfied.
We define a threshold for the opportunistic consumption

of a mobile device, and only mobile devices for which the
opportunistic consumptions are less than the threshold could
provide the resource, which aims at avoiding resource con-
sumptionwhen there are not sufficient resources in themobile
device. The threshold is set as res(i) = 20.

FIGURE 5. The overhead of reaching Nash equilibrium.

The total cost of the unloading and uninstallation decisions
must satisfy the following restrictions:

Zn (φn, φ−n) =

{
Z ln φn = 0

Zofn φn = 1
(22)

1) Each mobile device obtains its own parameter values,
each mobile device makes the computing decision, and
each mobile device in the decision slot receives the
parameters of its neighboring mobile devices. At each
time t, each device customizes the decision according
to formulas (7) and (15).

2) Formula (22) is used to determine whether the Nash
equilibrium has been reached.

3) If all the costs reach the minimum value at this time,
terminate the iteration process; otherwise, at the next
time, namely, t + 1, return to (1) and continue the
iteration process.

VI. EVALUATION AND ANALYSIS
In this section, we use the MATLAB software simulation
method to evaluate the performance of the proposed unload-
ing strategy. We set up 100 mobile devices in the network,
and each device has a task to be processed. Finally, we divide
the devices into 10 clusters for the game.

In this simulation, the parameter of the task is set as Bi =
5MB, the calculated value of the task is Ki ∼ U (30, 60)MI ,
and the time delay constraint is Lmax ∼ U (5, 10)s. The
computing power of the mobile devices is Fn = 5MI/s,
with (αl, λl) = (0.5, 0.5). The computing power of the MEC
devices is Fc = 10MI/s. The parameter of theWi-Fi wireless
channel is set as r = 10MB/S.
According to Figure 5, by increasing the number of iter-

ations, a stable state can realized; Hence, the algorithm can
reach the Nash equilibrium state within a limited time.

In this paper, we propose a scheme of energy consumption.
We compare the energy consumption of our method with
those of local computing without task scheduling and edge
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FIGURE 6. The consumption of task owner.

FIGURE 7. The overhead for mobile device.

cloud computing of all tasks [34]. The experimental results
are presented in Figure 6.

The experimental results demonstrate that as the number
of tasks increases, the local computing task scheduling of our
proposed scheme consumes less energy than local computing
without task scheduling and edge cloud computing of all
tasks. When I ≤ 3 hours, our proposed solution and all
tasks of the edge layer calculation do not differ substantially
in terms of energy consumption. When I > 3, due to the
increased workload, all transmissions to the edge layer will
consume a large amount of transmission energy, while the
local device is idle. At this time, the game-theory-based
scheduling scheme performs better.

From Figure 7, we can see that the local computing with-
out task scheduling has the largest overhead. All the other
schemes reduce the overall overhead of the system relative to
it, indicating that offloading tasks to the cloud for execution
can bring obvious benefits to users. We can also see from the
figure, when the number of tasks is small, there is a little
difference of the total overhead between our schemes and

FIGURE 8. The overhead for cluster.

the edge cloud computing. Due to the fast processing speed
of the edge cloud, the time delay is small, but the energy
consumption is large. However, our schemes has a large time
delay and low energy consumption.When the number of tasks
is low, the total cost of the two solutions is basically the same.
When the number of tasks increases gradually, all tasks may
be queued and the communication load is too high when they
are offloaded to the edge cloud. This leads to high latency, and
the energy consumption of uploading tasks to the edge layer
is also increasing at the same time. Our schemes has higher
performance.

Figure 8 shows the overhead of the cluster. As the number
of device clusters increases, we can see that the total overhead
is gradually decreasing. The device cluster reduces the con-
nection between the task and each mobile device during the
scheduling process. The cluster head represents the cluster
interacting with neighbor clusters and clouds, which effec-
tively reduces the transmission energy consumption of each
mobile device. In this paper, we select different values for
the weight parameters α. The experimental results show that
when α is gradually larger, the proportion of energy consump-
tion in total overhead increases, and in our method, it is more
suitable for calculating tasks with low delay requirements.

Figure 9 shows the energy consumption relationship
between clusters and the number of tasks. As can be seen
from the figure, given a certain number of tasks, when the
number of clusters is 1 and 5, the energy consumption is
greater than other Numbers. Therefore, in the process of clus-
tering, we need to select appropriate parameters to achieve the
optimal clustering effect.

VII. CONCLUSION
This paper analyzes the task scheduling problem based on
self-organized edge computing, and proposes a graph-based
server region clustering algorithm. The game scheduling
based task scheduling mechanism mainly considers energy
consumption and aims to minimize mobile devices. In this
paper, the communication model and the computational
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FIGURE 9. The energy consumption.

model are proposed firstly. The graph-based server clustering
algorithm is proposed, and the algorithm is applied to the edge
computing. Then the task unloading problem is analyzed,
which effectively reduces the edge computing task scheduling
energy consumption.

For the future work, we are considering extending the task
scheduling model with task priority, in which case, the tasks
with high priority should be performed first. Second, our
analysis ignores the e possibility of task dropping.
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