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ABSTRACT Video surveillance is gaining popularity in numerous applications, including facility man-
agement, traffic monitoring, crowd analysis, and urban security. Despite the increasing demand for closed-
circuit television (CCTV) and related infrastructure in public spaces, there remains a notable lack of readily-
deployable automated surveillance systems. In this study, we present a low-cost and efficient approach that
integrates the use of computational object recognition to perform fully-automated identification, tracking,
and counting of human traffic on camera video streams. Two software implementations are explored and
the performance of these schemes is compared. Validation against controlled and non-controlled real-world
environments is also demonstrated. The implementation provides automated video analytics for medium
crowd density monitoring and tracking, eliminating labor-intensive tasks traditionally requiring human
operation, with results indicating great reliability in real-life scenarios.

INDEX TERMS Crowd monitoring, counting, traffic monitoring, data analytics, background subtraction,

security.

I. INTRODUCTION

Video surveillance is an integral component of modern urban
security, and when coupled with computational analytics, can
have greatly expanded functionality including facial recog-
nition, motion detection, traffic and crowd monitoring, and
automated hazard alarms [1]-[7]. The continued advance-
ment in computational tools and machine learning has in
principle enabled automation of a wide variety of practical
analyses on image and video inputs [8]-[14]; more advanced
machine intelligence systems are also increasingly capable
of fulfilling traditionally human-controlled tasks that require
real-time complex decisions, for instance initiating mitiga-
tion measures for severe traffic congestion or the dispatch-
ing of emergency services [15]-[18]. In general, automated
surveillance eliminates the need for round-the-clock manual
monitoring, thereby reducing manpower requirements [19].

The associate editor coordinating the review of this manuscript and
approving it for publication was Dongxiao Yu.
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This stands to yield operational cost reductions and produc-
tivity improvements.

Nonetheless, amidst the progressing state-of-the-art, inte-
gration of automated analytics in commercial video surveil-
lance for crowd monitoring and counting is an area that
can be further explored [19]; and there is at present lim-
ited literature on demonstrated effective low-cost systems
for deployment. In security and management sectors, there
remains a great reliance on traditional manual monitoring
of CCTYV footage [20], [21], and human patrols to conduct
crowd monitoring and tracking. Utilizing computer vision
and real-time automated analytics in replacement of manual
labour not only reduces operational costs but also eliminates
human errors and lapses [22]-[24] —we seek to develop a
viable deployment-ready implementation in this study.

In this paper, we examine several viable approaches to
automated crowd monitoring and tracking in indoor and
outdoor scenarios, ultimately selecting a statistical back-
ground subtraction (BGS) scheme and a convolutional neural
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network-based single shot detector (SSD). These methods are
easily deployable in the real world. A software solution is
developed for use in general public spaces, and we validate
the performance of the platform through indoor controlled
tests in a shopping mall, and outdoor non-controlled tests
in a public transport hub with considerable human traffic.
It is noted that the implementation of this video analytics
system can also be applied to a broader range of scenarios—
for instance, in factories to detect personnel in restricted
places or in dangerous proximity to machinery, or in high-rise
buildings to detect crowd densities that exceed safe thresholds
for timely evacuation in case of emergencies. Time-oriented
data collected from such deployments can also be logged and
transmitted to a dashboard for data-informed planning and
predictive analytics [25].

The structure of the paper is as follows—a technical review
is first provided (Section II), followed by a discussion on
the methodology employed and the development of the soft-
ware solution (Section III), and finally validation test results
(Section IV) and concluding remarks (Section V).

Il. TECHNICAL REVIEW

We first provide an overview of object recognition frame-
works, the challenges associated with achieving satisfactory
performance, and the application of these frameworks in auto-
mated video analytics. A fundamental operational require-
ment of automated video surveillance analytics is the ability
to identify and track different objects within the recorded
footage, hence the need for object recognition; in the current
context of crowd analysis, recognition of human subjects is
critically relevant.

While visual recognition and classification of objects is
intuitive to human perception, robust computational imple-
mentation is challenging [26]. Varying exposure to outdoor
conditions, changing illumination levels and direction, inter-
mittent and sustained visual obstruction, and unpredictable
movement of tracked subjects must all be overcome for
reliable operation of recognition systems, oftentimes with
limitations on available computational power [27]-[30]. The
resolution and clarity of available video footage is also typ-
ically non-ideal, limiting the effectiveness of pre-processing
techniques aimed at compensating for variance in image con-
ditions. In our context of recognition and tracking of human
subjects, additional complexities arise from the wide range of
possible dynamical behaviour—for instance, two persons in
physical contact may be detected as a single entity, and the
shape profile of a person may change drastically because of
carried items or differing attire.

Advanced machine vision systems are already being devel-
oped for security- and safety-critical applications, such
as driverless vehicles and autonomous drones [31]-[35].
These systems typically employ convolutional neural net-
work (CNN)-based solutions that are trained on massive
datasets of numerous modalities, including infrared and vis-
ible video input, lidar data, sound pick-ups from micro-
phones, and navigational data from GPS or inertial guidance.
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Existing studies have shown excellent performance in the
identification of key markers, such as lane boundaries, traf-
fic signs, and pedestrians on systems intended for driver-
less vehicles [36]-[39] under a wide range of lighting and
driving conditions. CNN-based image recognition has also
been applied very successfully to facial identification tasks
[40]-[44], achieving large reductions in error rate when
compared to non-CNN methods. These types of CNN-based
methods are presently employed for automated user iden-
tification and tagging systems in prominent social media
platforms [45].

In general, CNN-based systems are hugely robust to
changing background conditions and object appearances,
but are typically computational expensive to train and run.
In comparison to explicit rule-based or statistical methods,
the employed CNN architectures are also more akin to black
boxes and offer limited tractability—troubleshooting and tun-
ing the systems for specific environments can therefore be
challenging. There is also recent evidence attributing the effi-
cacy of neural network deep-learning solutions to fine-tuning
rather than a fundamental architectural advantage, suggesting
that a properly tuned classical method may be able to achieve
similar performance in certain scenarios [46]-[50].

Indeed, non-CNN methods have been deployed to perform
similar tasks. A real-time system for pedestrian tracking using
gray-scale images from stationary cameras has been demon-
strated [51], with satisfactory robustness to visual occlu-
sions and ambiguities in perceived subject shape profiles.
The implementation relied on Gaussian-mixture foreground
masking followed by contour detection through a princi-
ple component analysis (PCA) model. Numerous studies on
pedestrian and traffic tracking, motion detection and analy-
sis, and object classification using non-CNN methods have
also been presented to date [30], [52]-[55], suggesting good
viability in these approaches. Non-CNN methods may hence
be preferred in some scenarios.

lll. METHODOLOGY

The software package developed in this study comprises
a video processing back-end encompassing human subject
recognition and tracking, and a front-end graphical interface
for operators. The software implementation is broadly dis-
cussed in Section III-A, with object recognition methods in
Sections III-B 1-1II-B2, and lastly tracking and counting tech-
niques in Sections IT1I-C-III-D. A block diagram summarizing
the video tracking and counting process is given in Figure 1.

A. SOFTWARE IMPLEMENTATION

Our software package is implemented on Python with the
Open Source Computer Vision (OpenCV) library. OpenCV
supports machine deep-learning frameworks, and provides
image manipulation, object identification, and motion track-
ing tools that are greatly relevant for the development of soft-
ware in our context [56], [57]. Our specific implementation
assumes a pre-existing video surveillance system that writes
to a centralized storage pool, from which footage may be
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FIGURE 1. Block diagram depicting data flow in the adopted video analytics pipeline. The input undergoes either BGS or

SSD, yielding human personnel identification and count.

pulled in real-time for analysis; as such all functionalities
are developed and tested in a stream-based format. The soft-
ware implementation accommodates video streams of general
frame size and rate, but we use footage of 720p at 30 fps for
illustrative purposes in this paper, unless otherwise stated.

B. OBJECT RECOGNITION

We examine two categories of object recognition methods
in detail—background subtraction and CNN-based image
classifiers. A comparison of the performance between cho-
sen variants of these two methods in controlled and non-
controlled test environments is later presented in Section IV.

1) BACKGROUND SUBTRACTION

A widely used method for detecting moving objects from
a stationary camera placement is background subtraction
(BGS) [58]. In general, the operation of such a method relies
on a known background frame with no present objects. This
background reference is then subtracted from each frame
of the video footage, or subset of frames to reduce com-
putational cost, therefore yielding frames containing only
foreground objects. Appropriate contour detection or region
segmentation models can then be applied to isolate distinct
objects in these frames. An example illustrating the operation
of BGS is presented in Figure 2. BGS-based methods are
presently applied in commercial video surveillance systems
for malls and public spaces.

Simplistic implementations of BGS typically suffer from
limited reliability, due mostly to changing background condi-
tions. In an outdoor environment, volatile weather, illumina-
tion changes, and reflections from surfaces on moving objects
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can all diminish the ability of the reference frame subtraction
to separate background and foreground elements. A number
of methods to overcome these problems have been utilized
to date. Pre-processing of footage frames to remove glare
and illumination changes can be utilized; major changes in
background and ambient conditions can be detected through
regression against a history of frames, and the background
reference either adjusted or recaptured at opportune times;
a comprehensive set of background references can also be
captured a priori against possible ambient conditions, selec-
tions of which are subtracted from footage frames on a trial
basis until a sufficiently clean output is produced. Movement
patterns of detected objects across numerous frames can
also be used as an additional filter against false positives—
for instance, human subjects must realistically be in con-
tact, or otherwise close proximity, with the ground at all
times.

An early variant of a BGS-based object recognition frame-
work is the Mixture of Gaussians (MOG) method introduced
in 2001, utilizing a Gaussian mixture background/foreground
segmentation algorithm [59], [60]. An improved version,
named MOG?2, was later presented, with a significant
improvement being an automatic selection scheme for the
number of Gaussian kernels used for each pixel, in place
of the constant number of distribution kernels in the orig-
inal MOG [61], [62]. As a result, MOG2 provides better
adaptability to changing illumination conditions in scenes.
A more recent algorithm is the GMG [63], named after its
founders, which combines statistical background image esti-
mation and per-pixel Bayesian segmentation. GMG uses the
first few hundred frames of the input footage to construct
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FIGURE 2. Illustration of the functioning of BGS. (a) An empty scene as
the background mask; (b) a scene with human subjects in the foreground;
and (c) the scene after background subtraction, separating the human
subjects.

a background model, which is then used for backgound
subtraction.

We note that GMG is limited in suitability for outdoor
scenes with constant motion of objects, as there is often
no dedicated time periods available for background capture.
Deploying GMG in the intended use case of automated
crowd analysis in busy public spaces is therefore not viable.
On the other hand, there is evidence in existing literature that
MOG?2 provides good results in practice [64], [65], and is
also sufficiently computationally cheap to deploy in large-
scale video analysis applications. Our own pilot programme
also suggests that MOG?2 consistently produces better human
subject identification and segmentation results than MOG and
GMG in indoor use cases (example in Figure 3). We therefore
employ MOG?2 in our BGS-based implementation.

A three-step processing pipeline is utilized for incoming
video frames. First, a brightness and colour-correction filter
is applied to adjust for under- or over-exposure, or changing
daylight conditions. Noise reduction is also used to improve
image quality. Next, a background subtraction mask is com-
puted and applied through MOG?2. Lastly, contours on the
masked image are identified through contrast segmentation,
to extract the bounding boxes and positions of the human
subjects. This process is computationally cheap, but face
potential limitations—detection accuracy is compromised if
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FIGURE 3. Frame comparison of the MOG, MOG2 and GMG background
subtraction schemes, showing a cleaner result from MOG2.
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FIGURE 4. Pilot study results comparing the performance of YOLO and
SSD object recognition schemes, suggesting vastly cheaper computation
using SSD.

BGS is not completely successful due to background fluc-
tuations, and differentiation between human and non-human
subjects may not be ideal.

2) CONVOLUTIONAL NEURAL NETWORKS

We consider CNN-based recognition frameworks You-Only-
Look-Once (YOLO) [66], a state of the art real-time object
detection system shown to be capable of identifying and
classifying objects effectively, and the Single Shot Detector
(SSD) [67], also a highly-established method. Both of these
frameworks run the full incoming frames through a CNN in a
region-wise manner to yield bounding boxes and class proba-
bilities on identified objects. These CNNs are pre-trained on
large imagery datasets. A pilot programme had been carried
out to compare the computational running cost of YOLO and
SSD on preliminary hardware (Figure 4), revealing that SSD
is considerably faster in processing incoming frames, and
is therefore more viable in achieving real-time stream-based
automated video analysis with. We choose SSD as the pre-
ferred CNN-based solution. We utilize MobileNet supported
on the deep neural network (DNN) module of OpenCV for
SSD implementation. MobileNet provides pre-trained CNNs
for image classification, and can robustly handle frames of
different aspect ratios and sizes.
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FIGURE 5. Recognition of a moving human subject through SSD.

Specifically, the model utilized in this paper is an imple-
mentation of Google’s MobileNet SSD [68], which was ini-
tially trained on the Common Objects in Context (COCO)
dataset [69]. The model was further refined on PASCAL
VOCO0712 [68]. A sample snapshot of the execution of this
implementation on real-world footage is presented in Fig-
ure 5, on which a moving human subject with headwear is
identified with > 99% confidence.

C. TEMPORAL TRACKING

Analyzing incoming video streams frame-wise does not guar-
antee temporal continuity in the identified subjects, and there-
fore cannot immediately support counting functions. In order
to support reliable counting of moving subjects, a temporally-
consistent labelling of subjects must be achieved between
frames, such that distinct objects are not misidentified as
being identical (leading to under-counting), and identical
objects are not misidentified as being distinct (leading to
over-counting). In essence, objects undergoing movement has
to be continuously tracked across all frames in which they
appear.

We implement this by comparing the centroids of iden-
tified bounding boxes for each frame against those of the
previous, and labelling pairs as identical on a nearest-distance
basis. Centroids in the previous frame that have no matching
counterpart in the current are deemed to have left the scene,
and centroids in the current frame that have no match in the
previous are deemed as new subjects that have entered. This
is illustrated in Figure 6. To cope with subject occlusions and
intermittent image quality issues, a loss-of-visibility thresh-
old of nj, = 18 frames is set, such that if a subject disappears
from view within the scene and reappears within nj, frames
in a location deemed to be matching by the nearest-distance
scheme, a new subject identification will not be assigned and
the reappeared subject will be considered identical to the
previous. A movement rate threshold can also be set (say,
to the typical human running speed), such that subjects that
move faster than expected between frames are identified as
distinct.

D. SUBJECT COUNTING

The counting of identified subjects can be set to be scene-
wise—subjects are counted the moment they enter the scene
captured by the video camera, and real-time on-scene subject
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FIGURE 6. lllustration of the subject tracking mechanism. (a) Two
subjects are recognized in the scene and labelled with distinct
identification numbers, and the centroids of their bounding boxes are
computed; (b) the subjects have moved in the next frame, and the new
positions are compared against the previous; (c) identifications are made
on a nearest-distance basis; (d) identification numbers are consistently
applied, with a new subject deduced to have entered the scene. Images
adapted from [70].

counts are recorded together with cumulative counts (start-
ing from a specified time, say, the start of each day). This
mode is useful if on-scene subject counts are of interest, for
instance, to monitor the number of people in an enclosed
space, or congestion conditions along corridors and passage-
ways. Alternatively, counting can be set to be portal-wise,
that is, subjects are added to a cumulative count only when
they cross a specified boundary in the captured scene. This
mode is useful to monitor crowd influx or outflux through
key doorways or area perimeters, for instance, in tracking
the boarding of public buses or commuter movement through
security checkpoints.

In the scene-wise mode, extremal boundaries can be set
by the user on the video scene, only within which count-
ing is active. Subject tracking is maintained throughout the
entire scene regardless of boundary settings, however, so that
identical subjects repeatedly crossing the set boundaries will
not be misidentified as distinct instances, so long as they
remain within the scene throughout. In the portal-wise mode,
the user may select from a default preset of 10 regularly
spaced boundary lines, or freely draw a desired boundary.
Movement direction filtering can also be set, such that only
subjects moving to the left or right are counted.

E. DATA PROCESSING

It is important to keep the analysis low-cost, as practical
deployment hardware may be limited in speed, especially
when there are multiple video streams sharing compute time.
To reduce computational load, the program can be configured
to perform BGS or SSD object identification only every Ny
frames; in our implementation, subject tracking and counting
is set to occur every N9 = 6 frames, corresponding to a ~
200 ms refresh rate. These limits were found to be sufficient
in providing good tracking results for typical pedestrian traf-
fic encountered in our test environments (Section I'V), and can
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FIGURE 7. Video snapshots of the controlled environment tests, for (a) a constrained case of a single subject in-scene at any

point in time, and (b) multiple subjects in-scene simultaneously.
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FIGURE 8. Subject counting results in the controlled environment
comparing BGS and SSD methods, in (a) the constrained case of a single
subject in-scene at any point in time, and (b) with multiple subjects
in-scene simultaneously. The actual counts were obtained through
manual counting by watching the same video footage, matched against
an on-site surveyor for consistency.

be adjusted for different hardware capabilities. While such
an approach effectively reduces the imposed computational
load per video stream, the trade-off between practicality and
accuracy stands to be further characterized; an important line
of development for future work is also in studying alternative
approaches that does not impact analysis frame rate.

F. COMPUTATIONAL RESOURCE

Reasonable computational cost is a requisite for viable
deployability in the real-world—a considerably modest
workstation was hence used for testing purposes. The work-
station was a laptop equipped with an Intel IS5 8250U quad-
core processor at 1.6 GHz (base), 8 GB of RAM, and an
Intel UHD Graphics 620 graphics processor, running the
Ubuntu (Linux) operating system. On this platform, the SSD
method runs in real-time on the CPU.

IV. RESULTS & DISCUSSION

The developed video analysis software was tested in
two types of environments—first a controlled environment
(Section IV-A), and then a non-controlled environment
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(Section IV-B) for validation. In these validation tests, portal-
wise subject counting mode was utilized.

A. CONTROLLED ENVIRONMENT

An indoor area in a shopping mall, in proximity to a lift lobby,
was used as an indoor controlled environment. A number of
subjects, dressed in varying attire, was sent to walk across
the captured space at varying speeds, ranging from a slow
walk typical of the elderly to fast jogs. These subjects are of
mixed genders and of varied heights. The controlled studies
were conducted with steady artificial lighting and primarily
constant environmental parameters; each test lasted a dura-
tion of 150 seconds with both the BGS and SSD methods,
and a manual on-site count was performed simultaneously
to match the results against. Snapshots of the controlled
validation tests are shown in Figure 7, and subject counting
results are presented in Figure 8. These results indicate sat-
isfactory counting accuracy for both BGS and SSD methods,
with BGS notably achieving perfect accuracy in the idealized
single-subject scenario, but is ultimately outperformed by
SSD in more realistic multiple-subject scenarios. The SSD
method yielded a maximum of a single miscount in these
controlled tests, suggesting good deployment viability in the
significantly more demanding non-controlled outdoor envi-
ronments.

B. NON-CONTROLLED ENVIRONMENT
Non-controlled validation tests were performed at a public
transport hub with considerable human traffic. The camera
placements were chosen for the purpose of tracking com-
muter volume boarding public buses at various terminals,
suitable for assessing the ability of the system to cope with
massive crowd surges. The tests were conducted over typ-
ical bus-boarding durations of approximately 20 seconds,
with both BGS and SSD used, and a simultaneous manual
count to match results against. Sample snapshots showing
the recorded environments are presented in Figure 9, and a
comparison of subject counting results is given in Figure 10.
It was observed that SSD yields > 92% accuracy (mean
square error), illustrating the robustness of SSD in handling
large crowd densities and volatile outdoor illumination con-
ditions. The obvious failure of BGS in comparison to the con-
trolled tests can be attributed to its inability to handle rapidly
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(b)

FIGURE 9. Video snapshots of the non-controlled environment tests. (a) Full scene captured by the camera; (b) zoomed snapshot of boarding
queue onto a public bus; and (c) zoomed snapshot of the queue at a later point in time.
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FIGURE 10. Subject counting results in the non-controlled environment,
comparing BGS and SSD methods. The actual counts were obtained
through manual counting by watching the same video footage, matched
against an on-site surveyor for consistency.

FIGURE 11. Separated foreground elements by BGS, corresponding to the
input frame shown in Figure 9(c). The fragmented masking of human
subjects is clearly observed.

varying backgrounds. We illustrate this in Figure 11, in which
the imprecise and fragmented masking of overlapping sub-
jects by BGS can be seen. The MOG2 implementation of
BGS statistically constructs a background mask from a sub-
sample of video frames, and is thus theoretically able to re-
adjust for changing background conditions; but in this real-
world deployment in a transport hub, there is insufficient time
for such a mechanism to work as intended. With background
masks of inadequate quality, multiple subjects in close prox-
imity are frequently misidentified as a single subject, hence
resulting in the severe under-counting. It is thus obvious that
the SSD implementation is greatly more suitable for use,
especially in places of significant human traffic.

V. CONCLUSION

In this study, we have considered a number of classical
and CNN-based object recognition techniques for real-time
video analytics, and have developed a software platform
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implementing BGS and SSD methods suitable for deploy-
ment for crowd monitoring in public spaces. Real-world
validation of our solution has been carried out with both
controlled and non-controlled tests, and the results strongly
indicate good accuracy of the SSD system, even in outdoor
conditions. This yields great confidence in expanding the
deployment of the developed system into other venues.

Our proposed automated video analytics for crowd mon-
itoring and tracking will enable significant manpower sav-
ings, especially in key security-sensitive installations such as
public transport facilities and protected areas, where CCTV
monitoring is oftentimes performed by human operators.
Data collection of crowd density and movement can be
performed more consistently and with better accuracy than
otherwise achievable with manual monitoring. It is noted
that the software solution developed here can accept multiple
video streams from a centralized storage location, suitable
for operation in facilities management or public spaces with
multiple installed security cameras. Other useful applications
of the current framework may include utilization in factories
to detect personnel in restricted places or unsafe proximity to
equipment.

Further extensions of the current framework may include
layering facial identification on top of the current object
recognition and tracking for enhanced surveillance capabil-
ities, or to configure recognition for potentially dangerous
items such as knives or firearms in the fight against terrorism,
to enhance commuter safety and security.
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