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ABSTRACT Accurate and reliable traffic flow forecasting is of importance for urban planning andmitigation
of traffic congestion, and it is also the basis for the deployment of intelligent traffic management systems.
However, constructing a reasonable and robust forecastingmodel is a challenging task due to the uncertainties
and nonlinear characteristics of traffic flow. Aiming at the nonlinear relationship affecting traffic flow
forecasting effect, a PSO-ELMmodel based on particle swarm optimization is proposed for short-term traffic
flow forecasting, which takes the advantages of particle swarm optimization to search global optimal solution
and extreme learning machine to fast deal with the nonlinear relationship. The proposed model improves the
accuracy of traffic flow forecasting. The traffic flow data from highways A1, A2, A4, A8 connecting to
Amsterdam’s ring road are employed for the case study. The RMSEs of PSO-ELM model are respectively
252.61, 173.75, 200.24, 146.05, while the MAPEs of PSO-ELM model are respectively 11.86%, 10.10%,
10.74%, 11.60%. The experimental results show that the performance of the proposal is significantly better
than the performance of state-of-the-art models.

INDEX TERMS Short-term traffic flow forecasting, extreme learningmachine, particle swarm optimization,
time-series model.

I. INTRODUCTION
Traffic flow forecasting, especially short-term traffic flow
forecasting is a pivotal aspect of the intelligent transportation
system, because traffic prediction is an important enabler for
traffic management or traffic control systems whose aim is
reducing congestion. For the drivers, they incur a longer trav-
elling time and economical loses because of the traffic con-
gestion, which is one of the severe problems in urban areas.
Traffic flow does not only show random behaviours, which
are influenced by exogenous factors, such as unexpected
events or weather, but also reveals seasonality obscured by
noise [1]. Due to the uncertainty and randomness of traffic
flow, it is still a challenging task to construct a reasonable
and robust forecasting model [2].

The associate editor coordinating the review of this manuscript and
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Different methods and theories were proposed for traffic
flow forecasting [3], which can be usually classified
into parametric methods and non-parametric ones [4].
Parametric methods include moving average [5], exponen-
tial smoothing (ES) [6], auto-regressive integrated mov-
ing average (ARIMA) models [7], [8], Kalman filtering
methods [9]–[11], multivariate time series models [12], [13],
and spectral analysis [14]. Support vector machine regres-
sion (SVR) [15], [16], non-parameter regression models [17],
artificial neural network (ANN) [18], fuzzy logic system
methods [19], [20], deep feature fusion model [21] and deep
belief network [22] belong to the non-parametric ones.

With the fast developing of machine learning and deep
learning methods, traffic flow forecasting models based on
neural network attract more and more attention and interest-
ing. Neural networks have great advantages, such as parallel
computation, flexibility and the ability to learn and build
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models of nonlinear complex relationships [23], [24]. The
feedforward neural networks have been widely introduced in
a series of areas including traffic flow forecasting. However,
they still have some drawbacks, for example, the slower learn-
ing speed of than required [25], [26] and easily converging to
local minima due to gradient descent-based learning methods
with improper learning steps [27]. The pivotal cause may be
that all the parameters of the networks are adjusted iteratively
by using slow gradient-based learning algorithms [23], [28].
In order to adjust the weight parameters of machine learn-
ing model more accurately and quickly, some data-driven
machine learning (ML)-based methods apply heuristic algo-
rithms for ML model training in the domain of forecasting.
In [29], the ANN in each stage of the forecasting model
employs the GA optimization technique to optimally tune the
weight parameters between neurons.

Huang et al. [30] proposed a novel learning algorithm
called extreme learning machine (ELM) and proved that the
input weights and hidden layer biases can be stochastic cho-
sen if the activation functions in the hidden layer are infinitely
differentiable. In ELM, input weights and hidden layer biases
are given by random initialization, and output weights matri-
ces are calculated using Moore-Penrose (MP) generalized
inverse [23]. ELM is not only thousands of times faster than
traditional learning algorithms, but also averts from some
problems caused by gradient-based learning methods such as
local minima, stopping criteria and learning rate [31], [32].
However, the over-fitting problem still cannot be solved com-
pletely in ELM. To improve prediction accuracy, the most
common method is to increase the number of hidden layer
nodes. The situation of over-fitting in ELM becomes more
serious when the number of hidden layer nodes become
large [33].

In this study, we reformulate the extreme learning machine
optimized by particle swarm algorithm for traffic flow fore-
casting. Our particle swarm optimized extreme learning
machine keeps the competitive forecasting accuracy as well
as reducing the network complexity and avoiding over-
fitting. We summarize the major contributions of this work
as follows.
• First, we rethink the potential to improve the extreme
learning machine by optimizing the weights and biases
with particle swarm optimization.

• Second, we applied our particle swarm optimized
extreme learning machine that preserves its virtues to
learn the nonlinear traffic flow in a end-to-end mecha-
nism.

• Third, we demonstrate the outperformance of our
PSO-ELM on two benchmark datasets by comparing
with several state-of-the-art methods for traffic flow
forecasting.

• Fourth, we also extend our PSO-ELM to applications of
other domains, such as CO2 emissions forecasting, and
the results demonstrate the generalization of our model.

The rest of this paper is organized as follows. The second
part is the related work, the third part is the methodology, and

the fourth part is an empirical study from real-world data. The
fifth part is the conclusions.

II. METHODOLOGY
In this section, we first formulate the traffic flow forecasting
model by extreme learning machine. Then, we incorporate
the particle swarm algorithm to optimize the model.

A. EXTREME LEARNING MACHINE
In the training process, the traditional feedforward neural
network propagates the error back through gradient descent
algorithm to constantly revise the model parameters, such as
weight and threshold [34]. In this way, the sum of the squared
errors increasingly reduces a certain level, and the output
of the neural network gradually approaches the prospective
output. Different from the traditional feedforward neural net-
work, the extreme learning machine is a machine learning
algorithm for a single-layer feedforward neural network,
in which, only the output weight is needed to be calculated
according to the parameters of the hidden layer, and the
hidden layer is randomly set [35]. This algorithm not only
has higher generalization performance and faster learning
speed than the traditional gradient-based learning versions,
but also has strong fitting ability, and lower computational
complexity. A three layers ELM is illustrated in Fig. 1.

FIGURE 1. Extreme learning machine. The feedforward neural network
has only one hidden layer, whose parameters include input weights α,
output weights β, and hidden layer biases b.

The principle of the extreme learning machine is
as follows. Assume that there are N training samples
{(xi, ti)}Ni=1, where xi = [xi1, xi2, . . . , xin]> ∈ Rn, ti =
[ti1, ti2, . . . , tim]> ∈ Rm. The neural network with an acti-
vation function g(x) and k hidden nodes are mathematically
shown as

Hβ = T , (1)

where H = {hij}i=1,...,N ,j=1,...,k , represents the output matrix

of hidden layer. hij = g
(
α>j xi + bj

)
is the output of jth

hidden node in respect of xi. αj = [αj1, αj2, . . . , αjn]> is
the weight vector that links the input nodes to the jth hidden
neuron. bj is the bias of the jth hidden neuron. The matrix
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of output weights is represented as β = [β1, β2, . . . , βk ]>,
where βj = [βj1, βj2, . . . , βjm]>, j = 1, . . . , k is the weight
vector that links the output nodes to the jth hidden neuron.
T = [t1, t2, . . . , tN ]> represents the matrix of targets.
The idea of ELM is to generate the initial input weights

and hidden biases randomly. Then the matrix H is deter-
mined according to the activation function g(x). In this way,
the training of feedforward neural network can be trans-
formed into a problem of solving the least-squares (LS) solu-
tion to the linear system given by the Eq. 1, whose result can
be denoted using Eq. 2.

β̂ = H†T , (2)

where H† means the Moore-Penrose (MP) generalized
inverse of matrix H .

B. PARTICLE SWARM OPTIMIZATION
Particle swarm optimization (PSO) is a iteration-based opti-
mization algorithm based on the observation of the social
behavior of biological organisms, such as birds in a flock. The
particle swarm optimization algorithm uses the individuals
sharing of information in the group to make the movement of
the whole group to evolve from disorder to order in the prob-
lem solving space, so as to obtain the optimal solution [36].

Suppose that there is a population Y = (Y1,Y2, . . . ,Yn)
consisting of n particles in a D-dimensional space, where the
ith particle is represented as a D-dimensional vector Yi =
[yi1, yi2, . . . , yiD]>, which not only represents the position of
the ith particle in the D-dimensional search space, but also
represents a potential solution of the problem. According to
the objective function, the fitness value corresponding to the
particle position Yi can be calculated to determinewhether the
current position is good or bad. Each particle has a velocity
indicating the distance and the orientation. The velocity of
the ith particle is Vi = [vi1, vi2, . . . , viD]>. At every iteration
of the PSO, the particles update their velocity and position
calculated as follows.

vk+1id = ωvkid + c1r1(p
k
id − y

k
id )+ c2r2(p

k
gd − y

k
id ), (3)

yk+1id = ykid + v
k+1
id , (4)

where k is the number of hidden layer nodes, ω is the inertia
weight. Pi = [pi1, pi2, . . . , piD]> is the personal best position
of the ith particle and Pg = [pg1, pg2, . . . , pgD]> is the global
best position of the swarm. The learning factors are denoted
using terms c1 and c2. The terms r1 and r2 are randomly given
in the range U (0, 1). [vmin, vmax] is the range of the velocity.

C. PSO-ELM FOR TRAFFIC FLOW FORECASTING
In the process of random assignment, there may be some
input weight matrices and the hidden layer biases are 0,
that is, a part of the hidden layer nodes is invalid. Thus,
in some practical applications, lots of hidden layer nodes are
needed to achieve the prospective accuracy in ELM. ELM has
insufficient generalization ability in dealing with the samples
that do not appear in the training process [37].

Algorithm 1 PSO-ELM Algorithm
1: Establish ELM network;
2: Set the number of hidden neurons k , activation function
g(x);

3: Initialize the particles 2;
4: Determine particle size n, inertia weightω, the maximum

of iterations T , and acceleration coefficients c1 and c2;
5: Input the training samples;
6: while ending conditions false do
7: for all particle i of the population do
8: Calculate the fitness f (2i);
9: Get the personal extremum Pi;
10: end for
11: Calculate the global extremum Pg;
12: for all particle i of the population do
13: Adjust the velocity Vi;
14: Update the position 2i;
15: end for
16: end while
17: Separate the global extremum Pg;
18: Get input weight αj and hidden layer bias bj;

Aiming at the above problems, this paper proposes an
algorithm called PSO-ELM, which incorporates the parti-
cle swarm optimization and the extreme learning machine.
In this model, the PSO algorithm optimizes the input weight
matrix and the hidden layer bias in ELM to obtain an optimal
network [36].

The number of particles is generally set from 20 to 40.
The particles in the population are composed of the input
weight matrices and the hidden layer biases. The particle
length is represented using D = k(n + 1), where k is the
number of hidden layer nodes, and n is the number of input
layer neurons, that is, the dimension of the input vector.2i

=

[αi11, α
i
12, . . . , α

i
1n, α

i
21, α

i
22, . . . , α

i
2n, . . . , α

i
k1, α

i
k2, . . . , α

i
kn,

bi1, b
i
2, . . . , b

i
k ] is the ith particle in the population, where

αiij and bij are random numbers in the range denoted by
[−Zmax ,Zmax]. Generally, Zmax = 1 as [36]. Choose the
mean square error rate in the training process to construct
the fitness function f

(
2i
)
. The iteration does not stop until

the number of iterations exceeds the maximum or the fitness
value is less than the minimum.

Suppose that we will predict the traffic flow of a point
of interest (POI), we collect the traffic flow of the POI
through the roadside units (RSU), which transmit real-time
measurements to the intelligent transportation control cen-
ter [15]. Then, we aggregate the historical traffic flow
dataset {(xτ , tτ )}Nτ=1 of the POI for training, where xτ =
{volτ−1, . . . , volτ−L}, tτ = volτ , and L is the number of
associated time intervals. After trained our PSO-ELM,we can
predict the traffic flow ˆvolτ+1 at time interval τ + 1 by
inputting the near traffic flow {volτ , . . . , volτ−L+1}. Without
loss generality, our algorithm can be extend to co-predict the
traffic flow of multi-POI.

The training steps of our PSO-ELM are detailed in
Algorithm 1.
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III. CASE STUDY
In this section, the traffic flow data from four highways
A1, A2, A4, A8 connecting to Amsterdam’s ring road
(A10 motorway) are employed for case study.

A. DATA DESCRIPTION
The real world data come from four highways including A1,
A2, A4 and A8. As shown in Fig. 2, these four roads end on
Amsterdam’s ring road (A10 highway) [38].

FIGURE 2. The four motorways, named A1, A2, A4, and A8, end on the
ring road of Amsterdam. Sensors are placed on each POI to collect the
traffic flow data.

We briefly describe the four highways as follows. All four
highways meet the ring road A10. Inducted loops are placed
close to the junctions on each motor road. The data were
available fromMay 20, 2010 to June 24, 2010 in 1-min aggre-
gation, which are the number of vehicles per hour collected
by the sensor.

The erroneous data that are zero or negative for a long
time is mixed in the raw data. We use the average of the
measurements at the same time in other weeks to make a
simple correction to the erroneous data.

B. EVALUATION CRITERIA
The experiment used two commonly employed criteria to
assess the performance of our PSO-ELM. The average dif-
ferences between the measurements and the predictive val-
ues of the method are measured by the root mean square
error (RMSE). The mean absolute percentage error (MAPE)
denotes the percentage of the differences. The two criteria are
calculated using Eq.5 and 6, respectively.

RMSE =

√√√√ 1
M

M∑
m=1

[v̂(m)− v(m)]2, (5)

MAPE =
1
M

M∑
m=1

∣∣∣∣ v̂(m)− v(m)v(m)

∣∣∣∣× 100%, (6)

where v(m) and v̂(m) are the true measurement and the pre-
dictive value of the mth group of data.

C. EXPERIMENTAL SETUP
As discussed in [2], [4], [38], the focus of the traffic flow
forecasting is not to predict minute-by-minute undulations.
Therefore, we calculate the 10-minute average based on the
1-minute aggregation in subsequent 10 min as the original
data for the forecasting task.

We divide the original data into two parts. The first part
consists the data in the first four weeks, which is used to
train the model. The other part contains the data of last
week, which is used for testing. Each input vector of the
prediction model consists of 10 consecutive data values in
the original data, and the corresponding output value is the
forecasting value of the 11th data after the ten data. Therefore,
the dimension of the network is 10, and the dimension of the
output vector is 1. In addition, we set 100 neuron nodes for the
hidden layer in the ELM, and set the range of inertia weights
in PSO as [0.30, 0.90] according to the conventional practice.
We set the number of particles to 40, and the number of
iterations to 100. According to the above parameter settings,
the PSO-ELM model is constructed for experiments.

We manually adjust the parameter value that denotes the
input vector dimension of the ELM model mentioned above,
and compare the MAPEs of the prediction results in different
values, as shown in Fig. 3. Finally, we choose 10-dimensional
input vector for the experiment. For the number of iterations
in PSO, we set it to 100 in advance. Taking the experiments of
the four data sets, the effects of iterations are shown in Fig. 4.
It can be seen that the value of the fitness function tends to
be stable when the number of iterations exceeds 80. So the
number of iterations we set for this experiment is a reasonable
parameter value.

FIGURE 3. The MAPEs of the prediction results by different dimension of
input vector on A1 dataset. When the dimension of input vector is 10,
the prediction result achieves the best MAPE.

D. PERFORMANCE EVALUATION
Table 1 shows the comparing results of the proposed method
and several models commonly applied for traffic flow fore-
casting.
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FIGURE 4. The prediction results by different number of iterations of PSO on dataset A1, A2, A4 and A8. When the number of
iterations exceeds 80, the value of the fitness function tends to be stable, which illustrates it is reasonable to set the number of
iterations to 100.

TABLE 1. The forecasting results of PSO-ELM and other contrast models
on the dataset A1, A2, A4 and A8.

Historical average (HA) predicts for a given time of the
day the average of the same time in the same day in previous
weeks. The seasonal autoregressive integrated moving aver-
age (SARIMA) model building process is designed to take
advantage of the association in the sequentially lagged rela-
tionships that usually exists in data collected periodically. The
SARIMAmodel incorporates both non-seasonal and seasonal
factors in a multiplicative model. The SARIMAmodel family
is generally denoted as SARIMA(p, d, q)× (P,D,Q)S , where
p is the number of time lags of the autoregressive model, d is
the number of times the data have had past values subtracted,
q is the order of the moving-average model, S refers to the

number of periods in each season, and the uppercase P, D, Q
refer to the autoregressive, differencing, and moving average
terms for the seasonal part of the model [39]. In this study,
we employ SARIMA(1, 0, 1) × (0, 1, 1)1,008 with φ = 0.8,
θ = 0.4, and 2 = 0.8 for such forecasting task. Comparison
studies of the historical average and the SARIMA have been
reported in [40].

The hybrid particle swarm optimization support vector
regression (SVR) is described in detail in [41]. The radial
basis function (RBF) is selected as the kernel. The width
parameter γ of the RBF is optimized using particle swarm
optimization. The cost parameter C is set based on the differ-
ence between the traffic flows. The PSO also optimizes the
ε-insensitive loss for the SVR.

The exponential smoothing algorithm (ES) is reasonably
used in [6]. ES is a special weighted moving average method
(MA). The weights given by the observations at different
times are not equal, which further strengthens the effect of the
recent observations on the predicted values during the obser-
vation period. In this study, we used the double exponential
smoothing method and set the parameter alpha in the model
to 0.4, which reflects the smoothness of the trend change.
The grey prediction model (GM) shows a good application

effect in [42]. GM finds the law of change by generating
raw data. Here, the cumulative generation process and the
GM (1, 1) model are used to forecast the traffic flow, which
means the closer data influences the results more.

Artificial neural network (ANN) is a learning model that
is generated by the interconnection of neurons. We set the
network parameters of the model according to the criteria
in [18], where the number of hidden layers is set as 1,
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the mean squared error goal is set as 0.001, and the spread of
radial basis functions is set as 2000. Simultaneously, we set
the maximum number of neurons in the hidden layer (MN)
to 40. The number of neurons to add between displays (DF)
is set based on default value that is 25.

Kalman filtering (KF) for traffic flow forecasting is
described in detail in [43]. We set the variance of the process
error Q to 0.1 × I , where I denotes the identity matrix.
The measurement is regarded to be correct, so we set the
variance of the measurement noise as 0. We set the initial
state to [ 1n , . . . ,

1
n ], where n is set as 8, as suggested in [43].

10−2 × I is used to represent the covariance matrix of initial
state estimation error.

We also conduct the experiments by standard extreme
learning machines. The last one is our proposed PSO-ELM
model.

We find in Table 1 that ANN has the best performance
among several other methods. The MAPEs of PSO-ELM
model are obviously better than the MAPEs of ANN. The
RMSEs of PSO-ELM model are 15.70%, 18.41%, 11.34%,
and 12.28% lower than the RMSEs of ANN at A1, A2, A4,
and A8, respectively. Comparing the predictions of standard
ELM and PSO-ELM, the MAPEs of PSO-ELM model in
each case are better than those of the standard ELM, while

FIGURE 5. The comparisons of prediction results in different models for
datasets A1, A2, A4, A8. ANN that has the best forecasting performance
among several other methods and the basic ELM are chosen to compare
with PSO-ELM by RMSE, which demonstrates that PSO-ELM outperforms
other in RMSEs.

the RMSEs of PSO-ELM are reduced by 13.78%, 11.99%,
10.50%, and 15.08%, respectively, as shown in Fig. 5.
It can be seen that the optimization of PSO has significantly
improved the prediction performance of ELM.

Then, several predicting scenarios are reported to demon-
strate the effectiveness of PSO-ELM in coping with uncer-
tainties and variations of traffic flow. The measurements are
plotted with red lines, while the predictions of PSO-ELM
are drawn with lines that are green in Fig. 6. The related

FIGURE 6. The predictions of the PSO-ELM and the measurements in a week, and the prediction related error, respectively. For these
cases, where the traffic flow is very low in the morning or late at night, small prediction error still causes a large related error.
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FIGURE 7. Fig.7 shows the predictions of various methods under the typical scenario where the traffic flow changes quite greatly. It is illustrated
that PSO-ELM implements higher prediction accuracy in dealing with uncertainties and variations of the traffic flow.

error represents the error between the predicted andmeasured
values divided by the measurements, plotted with blue lines.
As shown in Fig. 6, except for the traffic flow that is very
low in the late night or in the early morning, the PSO-ELM
accomplishes gratifying high accuracy most of the time. For
these cases, although prediction error is small, the related
error is still very large. Fortunately, we are more concerned
with forecasting accuracy when the traffic load is heavy.

At last, we illustrate that PSO-ELM outperforms on the
effectiveness in coping with uncertainties and variations of
the traffic flow through reporting the typical scenario shown
in Fig. 7a − f . The other models are difficult to implement
satisfactory result for forecasting in the scenario where the
traffic flow changes quite greatly.

ES and KF are incapable of attaining precise results when
the traffic flow has nonlinear variations. This is because the
functions forms of the parametric models are too stiff to
fit. The case we outcrop in Fig. 7a, b shows this problem.
Especially, in Fig. 7b, the Kalman filter is overshooting on
the 1st 10-min and the 5th 10-min.

Facing such a situation shown in Fig. 7c, the prediction
error of GM is relatively larger for the traffic flow with obvi-
ous fluctuations. The reason is that GM generates sequences
by accumulating generation operator (AGO), which can filter
out some irregular changes. Thus, this determines that GM is
insensitive to the changes in volatility.

Fig. 7d compares the predictions of the SVR model and
PSO-ELM model in the case. It is obviously that the pre-
dictions of SVR model diverge far from the measurements.

FIGURE 8. The predictions of PSO-ELM model under the scenario where
the measurements include outlier. It is illustrated that PSO-ELM keeps
stable predictive effect on the incomplete data.

The reason is that the input is mapped into a higher dimen-
sional space in the SVR model for learning a function
between the output and the input. The SVRmodel is trained in
a supervisedmanner, and it is difficult to be trained effectively
within scant training data set.

Fig. 7e, f show the measurements and predictions of ANN
and the basic ELM. Neural networks have great advantages
such as the ability to learn and build models of nonlinear
complex relationships and flexibility. But in this case where
the traffic flow varies greatly, the better performance of the
proposed model can be saw in Fig. 7e, f . Certainly, PSO
brings better fitting ability to PSO-ELM.

We choose a short period of time when the data are incom-
plete caused by hardware failure to evaluate our PSO-ELM.
Fig. 8 shows the incomplete measurement causes a minor
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TABLE 2. The forecasting results of PSO-ELM and several other models on the data set 1108380, 1108439, 1108599, 1111565, 1114254 and 1114515. The
PSO-ELM model has clearly achieved better performance than other contrast models for short-term traffic flow forecasting.

oscillation on the next prediction value, but the prediction
returns to normal quickly.

To confirm the effectiveness of the proposal in longer
scenes, we choose the benchmark data set collected from
Caltrans Performance Measurement System (PeMS) as the
experimental data sets to compare the MAPEs and RMSEs
of the representative models. The data covering the period
January 2018 to July 2018 are collected from individual
detectors, which span the freeway system across all major
metropolitan areas of the state of California. Table 2 shows
PSO-ELM outperforms others using longer data streams.

In addition to prediction accuracy, we also record the speed
performance and the memory consumption of the methods
forecasting on the Amsterdam’s A1 dataset. As table 3 show,
though parametric methods mostly have faster speed and cost
less memory, manually determining parameters often costs
much time and expertise domain knowledge. For the adaptive
models, ELM and PSO-ELM outperform than others on these
performance, especially running speed.

TABLE 3. The the speed performance and the memory consumption of
PSO-ELM and several other models on the data set A1. The PSO-ELM
model has clearly achieved better performance than others in the
adaptive models, especially running speed.

To demonstrate the generalization of the proposed algo-
rithms, we also extend the algorithm to other domains, such
as CO2 forecasting. We evaluate our model on the dataset of
CO2 concentration from April 1958 to December 2001 by
comparing with two other models. The grey forecasting
model (GM (1, 1)) was developed by Lu et al. [44] to capture
trends of the number of CO2 emissions in Taiwan during
2007 − 2025. The flexible artificial neural network (FANN)

model was proposed by Gallo et al. [45] for short-term CO2
emission forecasting. Our PSO-ELM performs better than
comparisons in Table 4. In this regard, our hybrid learning
model is also suitable for other forecasting tasks.

TABLE 4. The forecasting results of the PSO-ELM, GM(1,1) and FANN on
the atmospheric CO2 concentration dataset.

IV. CONCLUSION
In this paper, we develop a particle swarm optimization incor-
porated extreme learning machine algorithm for short-term
traffic flow forecasting. The particle swarm optimization
effectively improves the generalization performance in term
of short-term traffic flow forecasting. Such capacity empow-
ers the PSO-ELM better performance than other control mod-
els. Extensive experiments has proven the extreme learning
machine incorporating particle swarm optimization is effec-
tive for short-term traffic flow forecasting. The extension of
this algorithm to other similar application fields is experi-
mented and discussed in this study and will be promoted in
the future studies.
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