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Abstract: The nighttime light (NTL) imagery acquired from the Visible Infrared Imaging Radiometer
Suite (VIIRS) Day/Night Band (DNB) enables feasibility of investigating socioeconomic activities at
monthly scale, compared with annual study using nighttime light data acquired from the Defense
Meteorological Satellite Program/Operational Linescan System (DMSP/OLS). This paper is the first
attempt to discuss the quantitative correlation between monthly composite VIIRS DNB NTL data and
monthly statistical data of electric power consumption (EPC), using 14 provinces of southern China as
study area. Two types of regressions (linear regression and polynomial regression) and nine kinds of
NTL with different treatments are employed and compared in experiments. The study demonstrates
that: (1) polynomial regressions acquire higher reliability, whose average R square is 0.8816, compared
with linear regressions, whose average R square is 0.8727; (2) regressions between denoised NTL with
threshold of 0.3 nW/(cm2

·sr) and EPC steadily exhibit the strongest reliability among the nine kinds
of processed NTL data. In addition, the polynomial regressions for 12 months between denoised NTL
with threshold of 0.3 nW/(cm2

·sr) and EPC are constructed, whose average values of R square and
mean absolute relative error are 0.8906 and 16.02%, respectively. These established optimal regression
equations can be used to accurately estimate monthly EPC of each province, produce thematic maps
of EPC, and analyze their spatial distribution characteristics.
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1. Introduction

In recent years, the technology and application of remote sensing of nighttime light have attracted
increasingly extensive attention [1–14]. Nighttime light (NTL) imagery acquired by remote sensing
technology intuitively exhibit the distributions of artificial nocturnal radiances, which is an increasingly
useful indicator in investigating socioeconomic activities of human being [4–14].

Numerous studies have demonstrated that the range and intensity of NTL are closely correlated to
gross regional products (GRP) [6,15–17], size and density of population [17–19], urbanization [2,20,21],
electricity consumption [1,6,22–24], light pollution [25–27], carbon dioxide (CO2) emissions [28,29],
and humanitarian disasters, etc. [30,31].

Electric power consumption (EPC) is a basic index in measuring regional energy consumption,
which can not only objectively reflect economic performance situation, but also exhibit industrial
structure change and energy consumption level. Obtaining accurate and timely EPC is of
great practical significance in optimizing allocation of power resources and monitoring economic
performance situation.

Two kinds of remotely sensed NTL data, the Defense Meteorological Satellite Program/Operational
Linescan System (DMSP/OLS) and the Visible Infrared Imaging Radiometer Suite Day/Night Band
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(VIIRS DNB) onboard the Suomi National Polar Partnership (SNPP) satellite, were often used for
remote sensing-based estimation of EPC [3,5,6].

DMSP/OLS data has been widely used due to its long temporal coverage, from 1992 to 2013,
which was convenient for social and economic research of long time series [18,23]. Compared with
DMSP/OLS data, the VIIRS DNB data was superior with higher spatial resolution (15 arc-second vs.
30 arc-second of DMSP/OLS), shorter temporal intervals (monthly vs. annual of DMSP/OLS) and wider
radiometric detection range (free from saturation problem), which usually produced more reliable
research results [5,6].

Elvidge et al. demonstrated the high correlation between DMSP/OLS NTL and EPC for 21
countries [1]. Chand et al. investigated spatial and temporal variations of EPC in India during 1993
to 2002 using DMSP/OLS [32]. He et al. built models in estimating EPC in Mainland China using
saturation-corrected DMSP/OLS NTL data with high average R up to 0.93 [33]. Xie et al. investigated
the influences of affluence, urbanization, technology, temperature, and NTL pattern on relationship
between EPC and DMSP/OLS NTL data and suggested that EPC increased with higher per capita
GDP, urbanization rate, high-technology exports, and lower agricultural development, and generally
reduced with higher temperature and more agglomerate human activities [34]. Shi et al. evaluated
and compared the spatiotemporal patterns of urban electricity consumption within different spatial
boundaries, including the city administrative area, city district, urban center, and urban built-up
area [22].

Shi et al. compared linear regressions between EPC and 2 kinds of NTL data (DMSP/OLS and
VIIRS DNB) and proved that higher R2 value was obtained by using VIIRS DNB data for linear
regression [6]. Falchetta et al. demonstrated the effectiveness of interannual variation of VIIRS
DNB NTL data in predicting within-country changes of power consumption in lower-middle income
countries [35].

Previous studies have focused mainly on the quantitative relationship between NTL data and
statistical variables over relatively long-time scales (especially one year). However, the relationship
between NTL data and socioeconomic activities over short time scales, especially at monthly basis,
is not well-understood.

Although many scholars have conducted numerous application researches of VIIRS DNB data,
the application of VIIRS DNB data to estimate EPC at a monthly scale has not been reported. If monthly
EPC can be estimated using remote sensing data with sufficient accuracy, the regional economic
performance situation will be quickly obtained and corresponding countermeasures may be taken to
ensure the sustainable development of social economy. The present study is an attempt to investigate
the quantitative responses of NTL signals derived from monthly VIIRS DNB data to EPC at a monthly
scale, with the purpose of constructing models for estimating monthly EPC with high accuracy.

2. Materials and Methods

2.1. Study Area and Data

2.1.1. Study Area

The VIIRS DNB composites for May, June, July, and August contain numerous pixels in
high-latitude regions of the northern hemisphere with no data because solar illumination seriously
contaminates these regions in the summer months. Fourteen provinces of southern China were
selected as study cases in this paper considering the spatial and temporal coverage of monthly VIIRS
DNB data, which include Anhui, Hubei, Hunan, Jiangsu, Jiangxi, Shanghai, Sichuan, Chongqing,
Yunnan, Zhejiang, Fujian, Guangdong, Guangxi, and Guizhou. Figure 1 showed the distribution of the
provinces in the study area.
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aggregation of NTL data. The projection and coordinate of the vector data were consistent with VIIRS 
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Figure 1. Study area. Fourteen provinces of southern China were selected as study cases considering
the spatial and temporal coverage of monthly VIIRS DNB data.

2.1.2. Nighttime Light Data

The monthly cloud-free composites of VIIRS NTL images collected from December 2012 to January
2019 were used in this study. These images were retrieved from the National Oceanic and Atmospheric
Administration National Centers for Environmental Information (https://ngdc.noaa.gov/eog/viirs/
index.html, last accessed on 1 April 2019). These data have not been filtered to screen out lights from
aurora, fires, boats, and other temporal lights. Only two years of yearly composites released on the
website (2016 and 2017). The VIIRS images provide gridded average values of anthropogenic NTL
radiance (in units of nW/(cm2

·sr) hereafter) with a spatial resolution of 15 arc-seconds (~500 m at
the equator).

The NTL data of June 2018 was not available online, which was represented by the average data
of May and July 2018. For better identification, the downloaded NTL data and estimated NTL data of
June 2018 were identified as original NTL or NTL0 hereafter.

2.1.3. Auxiliary Data

Monthly EPC data of 14 provinces in study area from January 2013 to December 2018 were
acquired from statistical website of each provincial government. EPC included industrial and
household electricity consumption, which could reflect the social and economic status.

The vector data of provincial administrative regions of study area was acquired from website
of Database of Global Administrative Areas (GADM, https://gadm.org/) will be used for regional
aggregation of NTL data. The projection and coordinate of the vector data were consistent with VIIRS
DNB data.

2.2. Methods

Four main procedures were undertaken to figure out the optimal regression between NTL and
EPC: firstly, gap filling of downloaded NTL data; secondly, denoising of gap filled NTL; thirdly, spatial

https://ngdc.noaa.gov/eog/viirs/index.html
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filtering for denoised NTL; fourthly, regression between NTL and EPC for each month and evaluation
of regression (Figure 2).
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Figure 2. Flowchart of methodology.

2.2.1. Gap Filling of NTL Data

NTL data with nearly complete spatial coverage of study area in all months were selected for
experiment. However, there were still no-value areas in the northernmost part of the study area in
June every year. These no-value pixels were replaced by the average of the same pixels in May and
July of the same year [36]. In addition, due to various factors, pixels with values less than or equal to
0 nW/(cm2

·sr) may sporadically appeared in images in all months, which were replaced by the average
values of the same pixels in the preceding and the following months based on the assumption that
night lighting should be gradually changed between adjacent months. The NTL data of June 2014
before and after gap filling were shown as an example in Figures 3 and 4, respectively. After gap filling,
data coverage and availability of NTL data were significantly improved. Nevertheless, there were still
a small number of pixels equal to or less than 0 nW/(cm2

·sr) in the image, which will be handled in the
subsequent noise reduction process.

The NTL data after gap filling for pixels less than or equal to 0 nW/(cm2
·sr) was called

NTLg hereafter.

2.2.2. Denoise of NTL

Several kinds of processing were implemented on NTLg data, including denoising, average
filtering, median filtering, and mid-value filtering.

There existed background noise in VIIRS DNB data that should be treated. Li et al. derived a
denoised NTL data through multiplying the NPP-VIIRS imagery by the mask generating with all
positive value pixels from the DMSP-OLS imagery in 2010 [15]. Ma et al. proposed a simple and
feasible method of denoising by taking the mean radiance value of lake pixel samples as the denoising
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threshold value, which equaled to 0.3 nW/(cm2
·sr) [37]. Using the method proposed by Ma et al.,

the NTLg data were denoised by setting pixels of value lower than 0.3 nW/(cm2
·sr) with 0 nW/(cm2

·sr),
which were called denoised NTL with threshold of 0.3 hereafter (or NTL1).
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2.2.3. Spatial Filtering

There may be a few pixels with abnormally high value in NTL1 data, due to gas flares, fires,
oilfields, volcanoes, etc. In order to reduce the potential influence of abnormally high values, average
filtering, median filtering, and mid-value filtering were implemented on NTL1, respectively.

Average filtering means that the pixel value is reset to average value of n*n adjacent pixels.
The results of average filtering of 3 × 3 and 5 × 5 were called NTL2 and NTL3 hereafter, respectively.

Median filtering means that the pixel value is reset to median value of n*n adjacent pixels.
The results of median filtering of 3 × 3 and 5 × 5 were called NTL4 and NTL5 hereafter, respectively.

Mid-value filtering means that the pixel value is reset to the average of maximum and minimum
value of n*n adjacent pixels. The results of mid-value filtering of 3 × 3 and 5 × 5 were called NTL6 and
NTL7 hereafter, respectively.

2.2.4. Regression and Evaluation

Sum of NTL of each provincial region was calculated for each kind of NTL data (NTL0-NTL7 and
NTLg) by accumulating values of all pixels in each region and each month.

Two common regression models, linear regression and polynomial regression, were performed
between each sum of NTL and EPC data, respectively.

R-squared mean absolute relative error (MARE), maximum relative error (MRE), and root mean
squared error (RMSE) were used to demonstrate the reliability of regression, which were described as

RMSE =

√√
1
m

m∑
i=1

(ŷi − yi)
2 , (1)

MRE = max
i

(∣∣∣ŷi − yi
∣∣∣) , (2)

MARE =
1
m

m∑
i=1

∣∣∣ŷi − yi
∣∣∣ , (3)

where yi represents statistical EPC data of the ith sample. ŷi represents calculated EPC data of the ith
sample. m denotes the sample size of each month, which equals to 84 in this study.

R square and RMSE were used to evaluate the quality of regression. The higher R square and
the lower RMSE were, the stronger the regression will be. MARE and MRE were used to describe the
estimation error of models, which were only used as reference parameters due to the fact that maximum
R square, minimum RMSE, and minimum MARE may not indispensably occur at the same time.

3. Results

3.1. Overall Analysis of Regression

Two types of regression between monthly EPC and nine kinds of monthly NTL data with different
treatments were performed. A total of 216 regression equations were obtained for 12 months. It was
essential to decide which kind of regression performed strongest and which kind of NTL data performed
best in regression, for the sake of been reliably applied in the future.

As mentioned above, R square, MARE, MRE, and RMSE were employed to describe the quality of
each regression equation. In order to compare the stability of these regression analyses in 12 months of
a year, the average of regression parameters of each regression in 12 months were calculated and a
total of 18 groups of average values were obtained (shown in Table 1).
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Table 1. Mean regression parameters of 12 months for each regression

Types of
Regression

Types of NTL (Independent
Variable) R-Square MARE MRE RMSE

Linear
regression

Original NTL (NTL0) 0.8459 20.70 100.64 486632.44
Gap filled (NTLg) 0.8482 19.86 101.41 483911.95
Denoised by threshold of 0.3 (NTL1) 0.8837 18.24 81.57 418672.05
3*3 average filtered (NTL2) 0.8836 18.24 81.66 418819.95
5*5 average filtered (NTL3) 0.8835 18.23 81.83 419025.50
3*3 median filtered (NTL4) 0.8821 18.46 81.05 421391.10
5*5 median filtered (NTL5) 0.8799 18.82 82.19 425319.41
3*3 mid-value filtered (NTL6) 0.8820 18.31 82.36 422168.61
5*5 mid-value filtered (NTL7) 0.8650 19.80 89.86 451911.06
Mean 0.8727 18.96 86.95 438650.23

Polynomial
regression

Original NTL (NTL0) 0.8607 17.18 92.30 462995.95
Gap filled (NTLg) 0.8612 16.39 95.16 464088.51
Denoised by threshold of 0.3 (NTL1) 0.8906 16.02 77.85 405215.84
3*3 average filtered (NTL2) 0.8904 16.03 78.11 405513.61
5*5 average filtered (NTL3) 0.8902 16.06 78.53 405991.7
3*3 median filtered (NTL4) 0.8886 16.47 78.81 408859.26
5*5 median filtered (NTL5) 0.8861 16.92 79.25 414136.96
3*3 mid-value filtered (NTL6) 0.8898 15.89 80.05 408297.95
5*5 mid-value filtered (NTL7) 0.8768 16.49 82.85 432332.95
Mean 0.8816 16.38 82.55 423048.08

According to the average value in Table 1, all 18 regression formulas achieved promising results,
with all R square exceeded 0.8459 and mean value of R square equaled to 0.8772. The linear regression
between NTL0 and EPC was comparatively the least reliable one, whose R square, MARE, MRE,
and RMSE were 0.8459, 20.70, 100.64, and 486632.44, respectively. Meanwhile, the polynomial regression
between NTL0 and EPC was comparatively the least reliable one in 9 kinds of polynomial regression,
whose R square, MARE, MRE, and RMSE were 0.8607, 17.18, 92.30, and 462995.95, respectively. In other
words, when linear regression or polynomial regression was performed between EPC data and various
NTL data, respectively, using processed NTL data was consistently more reliable than using original
NTL data. These comparisons demonstrated the necessity to process NTL data appropriately before
using it to estimate EPC, which may improve the reliability of estimation.

As shown in Table 1, polynomial regressions were superior to linear regression in reliability for
regressions between any kind of NTL data and EPC. The mean values of R square, MARE, MRE,
and RMSE of nine linear regressions were 0.8727, 18.96, 86.95, and 438650.23, respectively. However,
the mean values of R square, MARE, MRE, and RMSE of nine polynomial regressions were 0.8816,
16.38, 82.55, and 423048.08, respectively. It was noticeable that the mean value of MARE of polynomial
regressions was 13.60%, lower than that of linear regressions. Therefore, compared with linear
regression, polynomial regressions can obtain higher precision results in estimating monthly EPC
based on NTL data.

Among the nine kinds of NTL data to be based in building regression models, regression between
NTL1 and EPC steadily exhibited the strongest reliability in two types of regressions. The mean value
of R square of regressions between NTL1 and EPC reached the highest value in two types of regression,
respectively. By contrast, three kinds of processing (average filtering, median filtering, and mid-value
filtering) on NTL1 data failed to effectively improve the reliability of regression.

Based on the above analysis, the polynomial regressions between NTL1 and EPC would be mainly
concerned in the following sections.
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3.2. Analysis of Monthly Regression

Taking NTL1 as the independent variable and EPC as the dependent variable, the polynomial
regressions of 12 months were built, respectively, and the results were showed in Figure 5.
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regression of January to December, respectively. The x-axis refers to NTL1 in units of nW/(cm2

·sr). The
y-axis refers to EPC in units of 108KW·h.

In each plot, the regression curve visibly reflected the distribution trend of scattered points.
The vast majority of the points were close to the fitting curves, whose relative errors were low. Even in
polynomial regressions with relatively low R square (Figure 5e,j), only a few points were relatively far
from the regression curves, with comparatively higher relative errors.

Polynomial regression equations between NTL1 and EPC for 12 months, together with
corresponding R square, MARE, MRE, and RMSE, were listed in Table 2. In the regression of
12 months, the R square of 5 months (Jan, Mar, Jul, Aug, and Dec) were higher than 0.9, together with
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the MARE lower than 16%. In addition, the R square of 3 months (Apr, May, and Oct) were between
0.82 and 0.85, together with the MARE between 19% and 20%. The MARE described the overall
reliability of estimation. However, compared with the MARE, the MRE usually reflects the estimation
results of very few abnormal samples, so it does not have a strong co-direction or hetero-direction
relationship with R square.

Table 2. Polynomial regression between NTL1 and EPC for each month

Month Regression Formula R square MARE MRE RMSE

Jan y = 3.7988×10−7x2 + 1.5444x + 528254 0.9270 12.52 32.20 306976.24
Feb y = 1.8358×10−7x2 + 1.2592x + 404967 0.8954 14.21 50.58 262870.38
Mar y = 2.0987×10−7x2 + 2.0904x + 248833 0.9038 15.50 65.75 370635.34
Apr y = 3.2212×10−7x2 + 1.5586x + 310130 0.8420 19.03 95.45 470503.52
May y = 5.2124×10−7x2 + 1.3815x + 378257 0.8296 19.53 111.24 538127.72
Jun y = 5.1758×10−7x2 + 1.7584x + 344580 0.8865 18.23 58.02 453496.40
Jul y = 6.0185×10−7x2 + 2.0318x + 366995 0.9362 13.26 66.11 388180.76

Aug y = 7.4130×10−7x2 + 1.7568x + 475335 0.9334 13.27 81.65 399151.08
Sep y = 7.7201×10−7x2 + 1.2086x + 516257 0.8772 17.24 99.04 471238.43
Oct y = 3.7995×10−7x2 + 1.3264x + 398706 0.8221 19.10 126.11 519539.28
Nov y = 1.6089×10−7x2 + 1.9612x + 319106 0.8789 17.37 80.18 418210.36
Dec y = 6.0544×10−7x2 + 1.1532x + 720479 0.9545 12.94 67.86 263660.58

X refers to NTL1, in units of nW/(cm2
·sr). Y refers to EPC, in units of 104KW·h.

According to the 12 equations listed in Table 2, 84 estimates and corresponding absolute relative
errors can be obtained each month. All absolute relative errors were statistically summarized according
to 6 intervals ([0, 10%), [10%, 20%), [20%, 30%), [30%, 40%), [40%, 50%)and [50%, +∞)) and the results
were listed in Table 3.

Table 3. Distribution of absolute relative errors

Month Regression Formula [0,
10%)

[10%,
20%)

[20%,
30%)

[30%,
40%)

[40%,
50%)

[50%,
+∞)

Jan y = 3.7988×10−7x2 + 1.5444x + 528254 36 31 14 3 0 0
Feb y = 1.8358×10−7x2 + 1.2592x + 404967 33 31 13 5 1 1
Mar y = 2.0987×10−7x2 + 2.0904x + 248833 33 22 22 5 1 1
Apr y = 3.2212×10−7x2 + 1.5586x + 310130 25 31 13 6 5 4
May y = 5.2124×10−7x2 + 1.3815x + 378257 26 28 17 5 3 5
Jun y = 5.1758×10−7x2 + 1.7584x + 344580 23 29 22 5 3 2
Jul y = 6.0185×10−7x2 + 2.0318x + 366995 40 27 10 3 2 2

Aug y = 7.4130×10−7x2 + 1.7568x + 475335 41 29 7 3 1 3
Sep y = 7.7201×10−7x2 + 1.2086x + 516257 29 34 12 3 0 6
Oct y = 3.7995×10−7x2 + 1.3264x + 398706 35 14 22 6 3 4
Nov y = 1.6089×10−7x2 + 1.9612x + 319106 34 22 13 7 5 3
Dec y = 6.0544×10−7x2 + 1.1532x + 720479 42 23 14 4 0 1

A total of 84 samples were covered in each regression. This table listed the frequency of occurrence of absolute
relative errors in each range.

In general, among all 1008 estimations (84 per month, 12 months), the frequency of occurrence of
absolute relative error of [0, 10%), [10%, 20%), [20%, 30%), [30%, 40%), [40%, 50%), and [50%, +∞) were
397, 321, 179, 55, 24, and 32 times, respectively, accounting for 39.38%, 31.85%, 17.76%, 5.46%, 2.38%,
and 3.17%, respectively. For nearly 90% of the samples, the absolute relative errors between estimated
EPC and statistical values were less than 30%, which indicated that high estimation accuracy could be
achieved in most cases.



ISPRS Int. J. Geo-Inf. 2020, 9, 32 10 of 13

4. Discussion

The reason why so many researchers endeavored to estimate EPC based on NTL images was
because the process of consuming electricity was often accompanied by the emission of light, such as
home lights, business lights, street lamps, etc. However, not all EPC produced lights, such as air
conditioners, water heaters, electric fans, etc. Although these electrical devices did not directly
produce lights, they were closely related to human activities. Where there were air conditioners, water
heaters, electric fans, and other electrical appliances, there would be human activities, accompanied by
household lights, commercial lights, street lamps, and so on. In addition, some other things besides
electricity may produce lights, by using gasoline or other materials, such as fireworks, car lights, etc.

From the perspective of time, the data of EPC includes the total EPC in a whole period of time,
while the NTL data only records the light information above a certain brightness at a certain moment,
which cannot record the information of most other time periods. Therefore, it is theoretically impossible
to accurately calculate the annual or monthly EPC by using NTL data. We can only estimate EPC
values within a given time period based on composite data of NTL values at multiple moments.
The accuracy of estimation may be affected by industrial structure, energy consumption structure,
population structure, and other factors in different regions besides the accuracy of NTL data.

The overpass time of SNPP is around 01:30 in local solar time, which is not the peaking lighting
time within a day. By visual interpretation upon VIIRS DNB images, there is still plenty of lighting
after midnight, which may probably last until dawn. Using such lighting information can reasonably
reflect socio-economic activities considering that reliable results have been obtained in large number of
previous studies based on this data.

Environmental surface variables may affect nighttime brightness. Levin found that albedo and
snow cover exert obvious positive impacts on VIIRS DNB nighttime brightness [38]. The accuracy of
estimating socioeconomic activities using VIIRS data may be enhanced if the magnitude of impact can
be reasonably estimated and corresponding calibration treatment be performed on VIIRS data.

The probable impacts of satellite observation angles were not covered in this study. Li et al.
investigated the variation of viewing angles of SNPP satellite and quantified the viewing angle effects
on the artificial light radiance [39]. The VIIRS DNB data will be able to describe socioeconomic activities
more accurately if they are improved by removing the angular effects.

Despite the above problems, there is a close positive correlation between EPC and NTL data,
which can reflect the social and economic activities of human beings on the surface of the earth to
a large extent. The use of NTL data can achieve a long time series, large spatial coverage, rapid
monitoring of social and economic activities.

DMSP/OLS data was the most widely used NTL data in EPC estimation, due to its long time
series (1992–2013). Despite its advantages, VIIRS DNB data was relatively less used in EPC estimation
due to its short time series. Previous studies have shown that annual EPC data can be estimated using
VIIRS DNB data with a higher accuracy than DMSP/OLS data. Except for annual data, NOAA released
monthly composite VIIRS DNB data from April 2012 to the present. Unfortunately, no study regarding
estimating monthly EPC using monthly composite VIIRS DNB data has been reported. We conducted
regression analysis between monthly EPC and corresponding monthly composite VIIRS DNB data
and obtained satisfactory results. This demonstrated the feasibility of estimating monthly EPC using
monthly composite VIIRS DNB data. In addition, NOAA began to release daily VIIRS DNB data,
which will provide additional data option for future research.

Linear regression models were often employed in estimating EPC based on NTL data. For each
month, we compared polynomial regression model with linear regression model and found that the
accuracy of EPC estimation using polynomial regression model was higher than the other one. We also
conducted exponential regression and logarithmic regression between EPC and NTL in the experiment,
but the R square values were much lower than those of linear regression and polynomial regression.

The method of reducing background noise in NTL data proposed by Ma et al. was employed in
this paper, because it was easy to understand and conduct. In spite of noise reduction, there might
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still be other sources of at-sensor nighttime radiance that remain uncorrected in the dataset, such as
atmospheric backscatter and diffuse radiation [40].

The purpose of conducting three kinds of spatial filtering was to reduce the feasible influence
of abnormal high pixel value. Filtering windows of 3*3 and 5*5 were chosen because they were
widely used and have low computational complexity. However, according to the regression results,
the relationships between EPC and spatially filtered NTL data did not improve. This might be due to
two reasons: (1) spatial filtering of a small number of outliers had little effect on the total NTL value of
the province; (2) a large number of pixels in urban and suburban areas have been smoothed, might
resulted in some information loss.

Although we have obtained EPC estimation models based on VIIRS NTL data on a monthly basis,
these models are built based on statistical analysis, and it is difficult to explain the physical meaning of
each parameter of the models. This is the inherent defect of statistical analysis. However, statistical
model is still of practical value and significance before the physical model is established effectively.

In this paper, monthly regression models are established with sample data from 14 provinces in
southern China. The parameters of these models may not be appropriate elsewhere, due to different
statistical standard of electric power consumption. However, it is feasible to establish monthly
regression models for each region using the steps and data described in this paper.

5. Conclusions

This paper investigated the relationship between EPC and NTL data on a monthly scale, using
monthly VIIRS DNB NTL composite data from January 2013 to December 2018 and the corresponding
monthly statistical data of EPC of 14 provinces in southern China. Two kinds of regressions were
compared for the purpose of obtaining more reliable regression results. Furthermore, nine kinds of
NTL with different treatments, including original NTL (NTL0), Gap filled NTL (NTLg), denoised NTL
by threshold of 0.3 (NTL1), 3*3 average filtered NTL (NTL2), 5*5 average filtered NTL (NTL3), 3*3
median filtered NTL (NTL4), 5*5 median filtered NTL (NTL5), 3*3 mid-value filtered NTL (NTL6) and
5*5 mid-value filtered NTL (NTL7), were involved in building regression formulas. The conclusions
are drawn as follows:

High reliability was achieved in all 18 regression formulas (two types of regressions between EPC
and nine kinds of processed NTL), with all R square exceeded 0.8459 and mean value of R square
equaled to 0.8772. Compared with linear regressions, polynomial regressions acquired higher reliability,
whose average R square was 0.8816, higher than 0.8727 of linear regressions. Regressions between
denoised NTL with threshold of 0.3 (NTL1) and EPC steadily exhibited the strongest reliability among
the nine kinds of NTL data to be based in building two types of regression models. Three kinds of
treatments (average filtering, median filtering, and mid-value filtering) on NTL1 data did not effectively
improve the reliability of regressions. These kinds of data processing were not recommended in
estimating EPC based on NTL data.

For the 12 months of polynomial regressions between NTL1 and EPC, the average value of R
square was 0.8906, and the average value of MARE was 16.02%. For nearly 90% of the 1008 estimations
(84 per month, 12 months), the absolute relative errors between estimated EPC and statistical values
were less than 30%, which indicated high estimation accuracy in most cases.
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