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ABSTRACT How to design an effective membership probability is an important component for Gaussian
mixture model (GMM) of point set registration. In order to improve the robustness of point set registration,
in this paper, a new representation is proposed for membership probability of Gaussian mixture model,
by utilizing two types of feature descriptor, i.e. shape context or fast point feature histograms. Moreover,
for each point of the model point set, a dynamic programming (DP) algorithm is developed to search for the
optimal candidate points from the target point set. Compared to the state-of-the-art approaches, the proposed
approach is more robust to deformation, outlier, occlusion, and rotation. Experimental results on several
widely used 2D and 3D data demonstrate the effectiveness and feasibility of the proposed algorithm.

INDEX TERMS Gaussian mixture model, point set registration, dynamic programming.

I. INTRODUCTION
Tte task of point set registration is to find an optimal spatial
transformation to align amodel point set and a target point set.
As a key component in computer vision, point set registration
have been widely used in numerous applications, e.g., shape
matching [1], visual navigation [2], stereo system [3], [4],
image registration [5], defect detection [6], etc.

So far, many algorithms have been developed for point set
registration. Due to its simplicity and low computational com-
plexity, iterative closest point (ICP) was probably the most
classical approach, by utilizing the nearest-neighbor rela-
tionship to assign a binary correspondence at each step [7].
However, the performance of ICP degenerates quickly for
datawith outliers and large deformations. In [8], the thin-plate
spline was used as the parameterization of non-rigid spatial
mapping. Moreover, instead of a strictly binary correspon-
dence, the softassign was introduced in [8] for the correspon-
dence to improve the robustness. In [9], an asymmetric point
matching (APM) algorithm [9] was proposed to formulate

The associate editor coordinating the review of this manuscript and

approving it for publication was Chunbo Xiu .

the matching problem as a concave quadratic assignment
problem, by eliminating the transformation variables of [8].

The feature-based non-rigid registration is an important
branch of point set registration. In [10], a descriptor, shape
context (SC), was proposed to provide a globally discrimina-
tive characterization for shape matching. The shape context
at a reference point captures the distribution of the remaining
points relative to it. A local spectral descriptor was pro-
posed in [11] to represent the attribute domain of feature
points. For a point in a given point-set, the weight graphs
are constructed based on its neighboring points. In [12], two
distance features were defined for measuring global and local
structural differences between two point sets, respectively.
Kernel correlation, a very effective way to align intensity
images, was extended to point set registration [13], [14].

As an effective model, Gaussian mixture model (GMM)
has been widely applied on point set registration. For this
kind of methods, the discrete point sets are represented via
GMM. On the one hand, the point set can be interpreted
as statistical samples, which are drawn from a continuous
probability distribution of random point locations. This inter-
pretation explicitly reflects the uncertainty of the extraction
process of the point sets to be registered. On the other hand,
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the traditionally hard discrete optimization problems can
be potentially converted to more tractable continuous opti-
mization problems by means of GMM [15]. A probabilistic
method, called the coherent point drift (CPD) algorithm,
was proposed in [16] for both rigid and nonrigid point set
registration. In CPD, the GMM centroids, i.e. the model
point set, were fitted to the target point set by maximizing
the likelihood. For GMM, how to design an effective mem-
bership probability is an important component for point set
registration. In [16], for simplicity, the membership proba-
bilities were assumed to be equal for all GMM components.
Nevertheless, the CPD algorithmwas sensitive to outliers and
occlusion. In [17], the correspondences between two point
sets were obtained by matching their feature descriptors, and
then used to initialize the membership probabilities according
to two rules.

In our work, a new representation is proposed for mem-
bership probability of Gaussian mixture model. Different
from [17], for the unmatched points, the membership prob-
abilities are devised by considering the feature descriptor
distance, instead of a constant. Dynamic programming (DP)
is a powerful technique for discrete optimization problem.
The DP algorithm decomposes an original problem into sev-
eral subproblem. Different from classical recursive methods,
the solution of each subproblem is saved and used multiple
times for solving larger subproblems [18]. Since the whole
solution of DP algorithm satisfies the optimal solution of
the subset, the DP algorithm can better maintain the sub-
structure. In our work, for each point of the model point set,
a dynamic programming algorithm is developed to search for
the optimal candidate points from the target point set.

The main contributions of the work can be summarizes
as two aspects: (a) An effective membership probability is
devised for Gaussian mixture model by means of the feature
descriptor distance. (b) Given the membership probability
representation, a dynamic programming algorithm is devel-
oped to search for the optimal candidate points.

The remainder of the paper is organized as follows.
A detailed description of the proposed method is presented
in Section II. Experimental results are given in Section III.
Finally, conclusions are made in Section IV.

II. METHODOLOGY
A. GAUSSIAN MIXTURE MODEL
Assume that there are two point sets, N model points
X = [x1, x2, . . . , xN ]T andM target points Y = [y1, y2, . . . ,
yM ]T in D-dimensional space. The goal of point set registra-
tion is to estimate a transformation T (X) to wrap the model
point set X to the target point set Y.

Considering T (X) as the centroids, the target points can
be drawn according to the following Gaussian mixture
model,

P(ym|θ ) = γ
1
a
+ (1− γ )

N∑
n=1

Cmn
(2πσ 2)D/2

e−
‖ym−T (xn)‖2

2σ2 , (1)

where σ 2 is the variance of the Gaussian distribution, Cmn
denotes the membership probability of Gaussian mixture
model, a is a constant, and γ is the percentage of outliers [16].
For GMM, the unknown parameter vector θ = {T , σ 2, γ }

can be obtained by minimizing the following negative log-
likelihood function,

E(θ ) = −
M∑
m=1

lnP(ym|θ )

=
1

2σ 2

M∑
m=1

N∑
n=1

P(n|ym, θold )||ym − T (xn)||2

+
MPD
2

lnσ 2
−MPln(1− γ )− (M −MP)lnγ

+
λ

2
φ(v), (2)

where µold denotes the current parameter values [16], and

Mp =

M∑
m=1

N∑
n=1

P(n|ym,µold ) ≤ M . (3)

In (2), φ(v) is a coherent constraint,

φ(v) = tr(WTGW), (4)

whereW is a matrix of coefficients,G is a kernel matrix, and
tr(·) denotes the trace [16].

B. MEMBERSHIP PROBABILITY REPRESENTATION
1) MEMBERSHIP PROBABILITY REPRESENTATION BASED
ON FEATURE DESCRIPTOR
In the proposed approach, the membership probability Cmn
in (1) is devised based on two types of feature descriptor,
i.e. shape context (SC) [10] and fast point feature histograms
(FPFH) [19], for 2D and 3D data, respectively. As a globally
discriminative characterization, the SC at a reference point
can capture the distribution of the remaining points relative to
it. For shape context, all measurements are taken with respect
to points on the object. Thus, shape context is more robust
to rotation, scale variation, occlusion, and outlier. FPFH can
effectively represent the underlying surface model properties
at a point. As a local feature, FPFH provides an overall
scale and pose invariant multi-value feature in 3D point set
registration.

For SC, the whole 2D plane is first divided into some uni-
form bins in log-polar space, in order to make the descriptor
more sensitive to positions of nearby sample points than to
those of points farther away [10]. For a point xi, a histogram
hi(k) of the kth bin can be defined according to the distance
to the remaining points xi, i.e.,

hi(k) = #{(xj − xi) ∈ bin(k), j 6= i} (5)

For a reference point xi, the point feature histogram (PFH)
can be computed in two steps [19]. First, the points in a sphere
with a given radius r are selected as the neighbors of xi. Then,
three angular variations are computed between the normals of
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xi and each neighbor xj. The Euclidean distance between xi
and xj, together with three angular variations, are merged as
a histogram hi(k).

Consider two points, the point n in the model point set
and the point m in the target point set, the feature descriptor
based histograms are represented as hn(k) and h′m(k) (k =
1, 2, ...,K ), respectively [10]. The feature descriptor distance
V (m, n) between two points can be computed as,

V (m, n) =
1
2

K∑
k=1

[hn(k)− h′m(k)]
2

hn(k)+ h′m(k)
. (6)

Given V (m, n), the membership probability Cmn of GMM
can be defined as,

Cmn =


ρ1 ∗ max(Vmn), if m = tn,

e
−

Vmn
ρ2 , if m 6= tn,

(7)

where ρ1 and ρ2 are two constants, (t1, t2, . . . , tN ) refer to the
optimal candidate points that assign point ytn in target point
set to point xn in model point set.

For simplicity, in [16], the membership probabilities are
set to be equal, i.e., P(M ) = 1

M , for all GMM components.
In [17], if a data point ym does not have a corresponding
model point, the equal membership probabilities are set for
all GMM components. As shown in (7), the soft membership
probabilities are devised to the unmatched points, by consid-
ering the local shape distances V (m, n).

2) CANDIDATE SEARCH WITH DP ALGORITHM
In stead of search for the optimal candidate points
(t1, t2, . . . , tN ) via finding the minimal feature descriptor
distance V (m, n) [17], a DP algorithm is devised in order to
keep up the spatial structure of neighbor points [18]. A natural
energy function for DP can be defined as,

min
j∑

i=1

V (ti, i), j = N , N − 1, . . . , 1. (8)

A set of optimal candidate points (t1, t2, . . . , tN ) can be
searched one by one, by minimizing the energy function
in (8). First, a minimum operation is defined for three input
variables a, b, and c, i.e.,

L(m, n) =


1, if min(a, b, c) = a,
2, if min(a, b, c) = b,
3, if min(a, b, c) = c,

(9)

Furthermore, an auxiliary matrix B ∈ RM×N is derived
through the following recursive equations,

B(1, 1) = min (V (1, 1), τ ), (10)

B(m, 1) = min (B(m− 1, 1)+ τ,V (m, 1)+ τ ∗ (m− 1)),

m = 2, 3, · · · ,M , (11)

B(1, n) = min (B(1, n− 1)+ τ,V (1, n)+ τ ∗ (n− 1)),

n = 2, 3, · · · ,N , (12)

FIGURE 1. Flowchart of the search process of the optimal candidate
points (t1, t2, . . . , tN ) according to the auxiliary matrix L.

B(m, n) = min (B(m− 1, n− 1)+ V (m, n),

B(m− 1, n)+ τ,B(m, n− 1)+ τ ),

m = 2, 3, · · · ,M , n = 2, 3, · · · ,N , (13)

where τ is a given threshold [18]. In terms of (9), we can
obtain the values of L(m, n) corresponding to (10)-(13). Fur-
thermore, the optimal candidate points (t1, t2, . . . , tN ) can be
determined by,

if L(m, n) = 1, t∗n = m,m = m− 1, n = n− 1,
if L(m, n) = 2, m = m− 1,
if L(m, n) = 3, n = n− 1,

(14)

For (14), Fig. 1 shows the flowchart of the search process
of the optimal candidate points (t1, t2, . . . , tN ) according to
the auxiliary matrix L.

C. THE EM ALGORITHM
The unknown variables in (2) are solved through the the EM
algorithm. The optimization process is alternated between
two steps: an expectation step (E-step) and a maximization
step (M-step) [17].
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Algorithm 1 The Proposed Algorithm
1: Input: model point set X, target point set Y;
2: Output: nonrigid transformation T (X), and correspon-

dence matrix P;
3: Initialize: weighting coefficients λ, γ , β, W = 0, σ 2

=
1

DMN

∑M ,N
m,n=1 ||ym − xn||2;

4: repeat
5: E-step:
6: Compute Cmn by (7);
7: Update P by (15);
8: M-step:
9: ComputeW by (18);

Update f (X) = X+GW;
Calculate γ and σ 2 by (16) and (17), respectively;

10: until converges;
11: The transformation f (X) = X + GW and the optimal

correspondence matrix P.

1) EXPECTATION STEP
After deriving the membership probability according to the
method in Section II-B, the posterior probabilities pmn of
GMM components can be computed as,

pmn =
Cmne

−
‖ym−T (xn)‖2

2σ2∑N
k=1 Cmke

−
‖ym−T (xk )‖2

2σ2 +
γ (2πσ 2)(D/2)

(1−γ )2

. (15)

2) MAXIMIZATION STEP
After obtaining P, we compute the partial derivatives of (2)
with respect to γ , σ 2 and W, and set them as zeros [17].
We can obtain,

γ = 1−
MP

M
, (16)

σ 2
=

∑M
m=1

∑N
n=1 pmn‖ym − T (xn)‖

2

MPD
, (17)

W = (G+ λσ 2d(P1)−1)−1 × (d(P1)−1PX− Y), (18)

where d(·)−1 is the inverse diagonal matrix.
The process of proposed algorithm can be outlined in

Algorithm 1.

III. EXPERIMENTAL RESULTS
A. EXPERIMENTAL DATA AND SET-UP
To evaluate the effectiveness of the proposed dynamic pro-
gramming based membership probability method, denoted
as DP-MP, we present the experimental comparisons to six
state-of-the-art algorithms, including MSTT [20], APM [9],
CPD [16], PRGLS [17], SCGF [21] and MR [22], [23].
All simulations were conducted in the Matlab environment,
running on an ordinary personal computer with dual 3.0-GHz
CPUs and 4-GBmemory. In experiments, three types of data,
i.e., synthetic data from fish and and a Chinese character
Fu [8], three sets of data with arbitrary shape [8], three sets

FIGURE 2. The registration errors of the Fu point sets when the weighting
coefficient λ is set as different value.

FIGURE 3. Model points of (left column) and their corresponding target
points including deformation, outlier, occlusion and rotation
(column 2 to 5).

of 3D face image sequences [16], [24], [25], are used to
investigate the robustness of the various algorithms.

The registration error ε between the transformed model
points f (X) and the corresponding target points Y [21], i.e.,

ε = (

∑
(||f (X)− Y||2)

N
)
1
2 , (19)

is used to evaluate the registration accuracy.
As an example, Fig. 2 shows the registration errors of the

point set Fu when the weighting coefficient λ is set as dif-
ferent value. We can see that the registration error fluctuates
with the variation of λ. Therefore, it is necessary to determine
the optimal weighting coefficient. Nevertheless, there is no a
separated training procedure for point set registration. Tradi-
tional methods, such as cross validation, cannot be employed
to choose the optimal parameters. In experiments, the grid
search is adopted to find the approximately optimal parameter
values for the weighting coefficients of the various methods.

B. EXPERIMENTAL COMPARISONS
1) EXPERIMENTAL RESULTS ON THE SYNTHETIC DATA
Two widely used shapes, a fish with 98 points and a Chinese
character Fu with 105 points, are adopted as the model point
sets, to produce the target point sets by adding deformation,
outliers, occlusion and rotation. Figure 3 shows some exam-
ples of model points (fish andFu) and their corresponding tar-
get points with deformation, outlier, occlusion and rotation,
respectively.
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TABLE 1. The mean and standard deviation (µ± σ ) of the registration errors of seven methods when the deformation parameter β is set as different
value for the fish point sets.

TABLE 2. The mean and standard deviation (µ± σ ) of the registration errors of seven methods when the deformation parameter β is set as different
value for the Chinese character Fu.

FIGURE 4. The model point set (a) and the wrapped point sets when the
deformation parameter β is varied from 0.04 (b) to 0.18 (i) for the Chinese
character Fu.

Referring to [20], non-rigid deformation was generated
by means of the random data sampled from the standard
normal distribution. The deformation parameter β is varied
from 0.04 to 0.18 to change the deformation extent. As an
example, Fig. 4 shows themodel point set (a) and thewrapped

point sets when the deformation parameter β is varied from
0.04 (b) to 0.18 (i) for the Chinese character Fu. It can be seen
that the point set has a larger deformationwhenβ is increased.
For each β, the random data are sampled ten times to obtain
ten sets of synthetic data points. After ten trials, we compute
the mean and standard deviation (µ ± σ ) of the registration
errors ε of ten sets of data.

Tables 1 and 2 show the mean and standard deviation
(µ± σ ) of the registration errors of seven methods, when the
deformation parameter β is set at different values. The best
result and the second-best result are highlighted as red and
blue, respectively. For the shape fish, the registration errors
of DP-MP and PR-GLS are lower than that of other methods.
For the shape Fu, the registration errors of DP-MP are lower
than that of other methods, including PR-GLS. From Fig. 3,
we can see that the topology structure of fish is relative
simpler than that of Fu. As the topology structure of fish is
simple, the target point set can also be well matched via the
membership probability of PR-GLS. Therefore, compared to
PR-GLS, the gain of performance improvement is not obvi-
ous for the shape fish. Nevertheless, for the shapeFu, the adja-
cent points may be wrongly matched when a deformation is
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TABLE 3. The mean and standard deviation (µ± σ ) of the registration errors of seven methods when the outlier percentage Po is set as different value for
the fish point sets.

TABLE 4. The mean and standard deviation (µ± σ ) of the registration errors of seven methods when the outlier percentage Po is set as different value for
the Chinese character Fu.

happened. Thus, compared to PR-GLS, the performance is
significantly improved for DP-MP, especially for the large
deformation.

Similarly, Table 3-10 show the mean and standard devia-
tion (µ±σ ) of the registration errors of seven methods, when
the model point set is wrapped by outlier, occlusion, rotation,
and noise, respectively. We can see that the mean registration
errors of DP-MP are lower than that of other methods for
most sequences.Moreover, the standard deviations of DP-MP
are generally smaller than that of other methods. Therefore,
compared to other methods, DP-MP is more accurate and
robust for the various synthetic data of the shapes fish and Fu.
For Table 6, the registration error of DP-MP is larger

than that of MR when the occlusion percentage Poc is set
as 0.5. As the topology structure of Fu is relative complex,
the target points may be easily matched wrong when the
occlusion percentage Poc is relative large for the membership
probability representations of DP-MP and PR-GLS. In MR,
themanifold regularization term is utilized to enforce a global
structure constraint on the likelihood. Therefore, the effect of
occlusion can be alleviated effectively.

2) EXPERIMENTAL RESULTS ON THREE IRREGULAR SHAPES
We also present the experimental results on three irregular
shapes [8], as shown in Fig. 5. Table 11 shows the registra-
tion errors of the seven methods for three irregular shapes.
We can see that the proposed method can achieve the best
performance among the seven methods.

3) EXPERIMENTAL RESULTS ON 3D FACE IMAGES
Besides 2D data, we also performed the experimental com-
parisons on three sets of 3D face image sequences provided
by the Bosphorus database [25], face recognition grand chal-
lenge (FRGC), and [16]. As an example, Fig. 6 shows the

FIGURE 5. Model points (top row) and their corresponding target points
(bottom row) for three irregular shapes.

FIGURE 6. An example of model points (top row) and their corresponding
target points (bottom row) of three 3D face images.

model points (top row) and their corresponding target points
(bottom row) of three 3D face images. For each sequence,
ten trials are carried out on ten frame pairs. Since shape
context is used as a feature descriptor, MSTT can only deal
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TABLE 5. The mean and standard deviation (µ± σ ) of the registration errors of seven methods when the occlusion percentage Poc is set as different
value for the fish point sets.

TABLE 6. The mean and standard deviation (µ± σ ) of the registration errors of seven methods when the occlusion percentage Poc is set as different
value for the Chinese character Fu.

TABLE 7. The mean and standard deviation (µ± σ ) of the registration errors of seven methods when the rotation angle δ is set as different value for the
fish point sets.

TABLE 8. The mean and standard deviation (µ± σ ) of the registration errors of seven methods when the rotation angle δ is set as different value for the
Chinese character Fu.

TABLE 9. The mean and standard deviation (µ± σ ) of the registration errors of seven methods when the noise percentage Pn is set as different value for
the fish point sets.

with 2D data. Figure 7 shows the registration errors of six
methods for three sequences, respectively. The registration
errors of SCGF are significantly larger than that of other

methods. For easier comparison, the logarithm of the regis-
tration error is adopted as the longitudinal coordinate. More-
over, Table 14 tabulates the corresponding mean and standard
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TABLE 10. The mean and standard deviation (µ± σ ) of the registration errors of seven methods when the noise percentage Pn is set as different value
for the Chinese character Fu.

FIGURE 7. The registration errors of six methods for three 3D sequences.

FIGURE 8. Three types of more complex point sets, 2D contour-like
shapes (a: hand, b: fish), 3D surface-like shape (c: pace), and 3D
cloud-like shape (d: coin).

deviation (µ± σ ) of the registration errors. We can see from
Fig. 7 and Table 14 that, the registration errors of MR and
DP-MP are obviously smaller than that of other methods. For
3D shape 1, the point number is only 22, which is far less
than that of other data. The performance of DP algorithm is
significantly affected when the point number is very small.
Thus, the registration error of DP-MP is larger than that
of MR.

TABLE 11. The registration errors (ε) of seven methods for three irregular
shapes.

4) EXPERIMENTAL RESULTS ON THE POINT SETS OF 2D
CONTOUR-LIKE SHAPES (HAND, FISH), 3D CLOUD-LIKE
SHAPE (PACE), AND 3D SURFACE-LIKE SHAPE (COIN).
As shown in Fig. 8, three types of more complex point sets,
2D contour-like shapes (hand, fish), 3D cloud-like shape
(pace), and 3D surface-like shape (coin), are adopted to com-
pare the performance of the various methods. Table 13 shows
the registration errors of 2D contour-like shape hand and fish.
We can see that the registration errors of MR and DP-MP
are less than that of other methods. In MR, the manifold
regularization term can better capture the global structure of
the 2D contour-like shape. Therefore, the registration error of
MR is lower than that of DP-MP.
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FIGURE 9. The registration errors of five methods for 3D sequence pace and coin.

TABLE 12. The mean and standard deviation (µ± σ ) of the registration errors of six methods for three 3D sequences.

TABLE 13. The registration errors of 2D contour-like shape hand and fish.

Figure 9 shows the registration errors of five methods
for 3D sequence pace and coin. Correspondingly, Table 14
tabulates the mean and standard deviation (µ ± σ ) of the
registration errors. Compared to other methods, we can see
that DP-MP can achieve the best performance.

C. RELATED DISCUSSIONS
1) THE EFFECTIVENESS OF THE MEMBERSHIP
PROBABILITY REPRESENTATION
In order to investigate the effectiveness of proposed member-
ship probability representationCmn and the DP algorithm, we
conducted the experiments to evaluate the performance for
four cases, i.e., (a) the original PR-GLS algorithm, (b) ini-
tial membership probability with the proposed representa-
tion Cmn, and used as the input of PR-GLS, denoted as
MP+PR-GLS, (c) search for the optimal candidate points

with DP for the original membership probability representa-
tion of PR-GLS, denoted as DP+PR-GLS, (d) the proposed
approach, i.e., DP-MP.

Take the synthetic data from Fu for example, Table 15-17
shows the registration errors of four cases when the defor-
mation parameter β, the occlusion percentage Poc, and the
rotation angle δ, are set as different values. Compared to
PR-GLS, the registration errors generally can be decreased
by adopting the new membership probability representation
or the DP algorithm.

2) COMPLEXITY ANALYSIS
Referring to [26], the computational complexity is roughly
analyzed by considering the costs of updating the objec-
tive function and the unknown parameters. For DP-MP,
the computational complexities of the membership proba-
bility assignment and the objective function are O(N 3) and
O(N 2M + N 3). Thus, the total computational complex-
ity of DP-MP is O(N 2M + N 3). As the related methods,
the computational complexities of CPD, PR-GLS, and MR
are O(M2N +M3), O(N 2M + N 3), O(M2N +M3), respec-
tively. Therefore, the computational complexities of the four
methods are close to each other.

TABLE 14. The mean and standard deviation (µ± σ ) of the registration errors of five methods for two 3D cloud-like shapes pace and coin.
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TABLE 15. The registration errors of four cases for the synthetic data
from Fu when the deformation parameter β is set as different values.

TABLE 16. The registration errors of four cases for the synthetic data
from Fu when the occlusion percentage Poc is set as different values.

TABLE 17. The registration errors of four cases for the synthetic data
from Fu when the rotation angle δ is set as different values.

TABLE 18. The average running time (second).

Furthermore, take one synthetic data of fish for example,
Table 18 shows the run times of the various methods. The run
time of SCGF is significantly larger than that of the other five
methods. Nevertheless, the run-times are close to each other
for other methods.

3) ANALYSIS OF CONVERGENCE
Similar to [17], a global optimum solution cannot be derived
via the optimization process, because the objective function
(2) is also not convex. As done in [17], the variance σ 2

is initialized with a large value in the EM algorithm. As a
result, a lot of unstable shallow local minima can be fil-
tered out, because the objective function becomes convex
in a large region. In practice, a stable local minimum may
be sufficient in many applications. In experiments, similar
to [17], the iteration is terminated when the difference of
transformation T (x) of two successive iterations is less than
a given threshold.

IV. CONCLUSION
In this paper, two strategies, i.e., a new representation for
membership probability of Gaussian mixture model, and a
dynamic programming algorithm, are proposed to improve
the robustness of point set registration. Experimental results
on some widely used data sets demonstrated that, compared
to state-of-the-art approaches, a better comprehensive perfor-
mance can be achieved by the proposed approach.
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