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ABSTRACT
Light scattering inside disordered media poses a significant challenge to achieve deep depth and high resolution simultaneously in biomedical
optical imaging. Wavefront shaping emerged recently as one of the most potential methods to tackle this problem. So far, numerous algorithms
have been reported, while each has its own pros and cons. In this article, we exploit a new thought that one algorithm can be reinforced by
another complementary algorithm since they effectively compensate each other’s weaknesses, resulting in a more efficient hybrid algorithm.
Herein, we introduce a systematical approach named GeneNN (Genetic Neural Network) as a proof of concept. Preliminary light focusing has
been achieved by a deep neural network, whose results are fed to a genetic algorithm as an initial condition. The genetic algorithm furthers the
optimization, evolving to converge into the global optimum. Experimental results demonstrate that with the proposed GeneNN, optimization
speed is almost doubled and wavefront shaping performance can be improved up to 40% over conventional methods. The reinforced hybrid
algorithm shows great potential in facilitating various biomedical and optical imaging techniques.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5131181., s

I. INTRODUCTION

Light focusing and imaging through disordered media are of
great significance for biomedical imaging, but they have been con-
sidered challenging for decades due to the inevitable multiple scat-
tering of light in biological tissues. Traditional wisdom in the field
has assumed that image information is carried only by unscat-
tered ballistic or quasiballistic light, whose intensity decays expo-
nentially in heterogeneous media.1 After propagating more than one
transport mean free path, light will be totally scrambled; as a
consequence, image information will be lost. If light is coherent,
scattered light from different optical paths interferes randomly,
forming speckles. Recently, researchers successfully overcame the
effect of multiple scattering and realized light focusing inside or
through the disordered media by various techniques such as opti-
cal time reversal2–10 and iterative wavefront shaping.11–15 Built upon
the former, Time-Reversed Ultrasonically Encoded (TRUE)2–4 and
Time Reversal of Variance-Encoded (TROVE)5 adopt ultrasound as

virtual guide stars, and diffused light encoded by ultrasonic waves
is time reversed and focused inside media. By contrast, wavefront
shaping algorithms modulate phases of light incident into scatter-
ing media based on the transmission matrix11 or adaptive feed-
back signals provided by light intensity12,13 or photoacoustic sig-
nals.14,16 Some neural networks were recently introduced to focus
light through scattering media, for example, Refs. 17–19. So far,
wavefront shaping has been employed in numerous areas such as
fluorescence imaging,20–22 photoacoustic imaging,23–25 and optical
coherence tomography.26–28

In the field of wavefront shaping, a lot of algorithms have
been reported to guide the modulation of the incident light phase
patterns, including the stepwise sequential algorithm,12 continu-
ous sequential algorithm,29 partitioning algorithm,30 phase retrieval
algorithm,31 genetic algorithm (GA),32,33 and neural networks.17

The stepwise sequential algorithm and continuous sequential algo-
rithm compute the incident phase values one by one; thus, the opti-
mization process is slow, and their performance is susceptible to
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noises.32 The partition algorithm has a larger signal-to-noise ratio,
but much more time is required to reach an optimum than a con-
tinuous sequential algorithm.34 As for phase retrieval, particularly,
it is applied to digital optical phase conjugation (DOPC) and the
transmission matrix measurement. The implementation of binary
phase retrieval in DOPC can shorten the optimization time to sev-
eral milliseconds when working with a DMD (digital micromirror
device) and a Field-Programmable Gate Array (FPGA),35,36 making
in vivo light focusing possible. In contrast, when a phase retrieval
algorithm is used in transmission matrix measurement that requires
retrieval of more complicated phase patterns, the time spent in
computation is increased significantly, varying from several min-
utes to hours.31,37 Moreover, the experimental setup for the afore-
mentioned phase retrieval based wavefront shaping is more com-
plicated, posing high demands to the optical alignment and work-
flow control. Meanwhile, the initial guess involved in the algorithm
can lead to artifacts in reconstructed images.38,39 Last but not least,
like some other iterative algorithms, the phase retrieval algorithm
cannot guarantee the convergence to the global optima, tending to
stagnate after several iterations.40 As an adaptive method, the GA
demonstrates faster convergence and is also well-suited for noisy
environments. Nevertheless, GA results can be easily trapped into
a local minimum. Meanwhile, optimization results differ largely
each time the GA is run due to the GA’s high sensitivity to ini-
tial solutions.41 As for neural networks, it directly establishes the
mapping from transmitted speckles to the phase patterns of incident
light through training without iteration, making this algorithm quite
straightforward. That said, the performance of supervised learning
heavily relies on the quality and the amount of training samples,
which suggests that achieving the globally optimal focusing with
only supervised learning is hardly possible, considering that it is
impractical that utilizing finite training samples can represent all
scattering conditions.

While promising as the aforementioned representative algo-
rithms are all able to focus light through scattering media, each
has its own limitations. Employing a single algorithm toward glob-
ally optimal solution may consume extremely long time and enor-
mous computational sources. To alleviate the burden, we propose
an enhanced algorithm through the hybrid of two or more selected
algorithms, taking advantage of the complementation between
them. Among all algorithms, deep learning, which is often known
as deep neural networks (DNNs), and the GA precisely compensate
each other’s drawbacks. Hence, hybridizing them as a systemati-
cal approach, which is named GeneNN (Genetic Neural Network),
shows great potential in paving a way to a reinforced, more efficient
optimization algorithm. Basically, under the proposed framework,
the pretrained DNNs are able to form a focused speckle through
disordered media, and then, DNN results are regarded as good ini-
tial patterns to the GA. The GA continues the optimization toward
the global optimum, resulting in enhanced performance from many
aspects; for instance, the possibility of being stuck in local minima
will be largely reduced, and the optimization process will also be
speeded up comparing with using the GA or DNNs alone.

In this article, we introduce the systematic approach of
GeneNN to demonstrate the merits of reinforced hybrid algorithms
over the single algorithm. The rest of this paper is organized as fol-
lows. In Sec. II, the working principle of both the GA and DNNs
in the context of wavefront shaping is briefly introduced. After

the analysis of their advantages and shortcomings, the roadmap to
hybridize them is proposed. In Sec. III, experimental results and
comparisons with individual DNNs and the GA are shown. In
Sec. IV, factors that influence GeneNN performance are discussed,
including prefocusing performance reached by DNNs, mutation
rate, and the number of phase patterns used in the GA. In Sec. V,
the work is summarized.

II. WAVEFRONT SHAPING BY GENETIC ALGORITHM
AND DEEP LEARNING

The forward multiple scattering process is described by the fol-
lowing linear model relating incident optical modes and transmitted
optical modes:30

Em =
N

∑

n=1
tmnEn =

N

∑

n=1
∣tmn∣ exp(iϕmn)∣En∣ exp(iϕn), (1)

where En is the nth complex incident mode with amplitude |En| and
phase ϕn, while Em is the mth complex optical mode transmitted
from the scattering media. tmn is one element in the complex trans-
mission matrix which represents light scattering paths. Phase values
in the globally optimal phase pattern satisfy ϕn = −ϕmn.42 When it
is configured to this condition, light will be perfectly focused to the
chosen position.

The process of employing the GA for wavefront shaping
roughly consists of the following five steps: initialization, ranking,
breeding, mutation, and iteration, as shown in Fig. 1. First of all, a
certain number G of phase patterns are created, while each phase
value is chosen from a uniform pseudorandom distribution.32 Then,
these patterns are scored by a specially designed fitness function.
Using Eq. (1), the fitness function is defined as the light intensity
at a chosen point,32

Im = ∣Em∣2 =
1
N
∣

N

∑

n=1
tmnAn exp(iϕn)∣

2

, (2)

where An is the amplitude of En. The phase patterns are ranked in
the light of fitness function evaluation results. The higher the score,
the higher the ranking. The next step is breeding. The offspring is
generated through offspring = T × ma + (1 − T) × pa, where T
is a random binary template and ma and pa are parent patterns.
These two parents are selected according to the rule that patterns
with higher ranking are more likely to be chosen. After breeding,
some segments in the offspring are mutated and randomly changed.
The mutation rate R decreases with the increase in generations n to
avoid over mutation, following R = (R0 − Rend) × exp(−n/λ) + Rend,
where R0, Rend, and λ are the initial mutation rate, the final mutation
rate, and the decay factor, respectively.32 The offspring will also be
evaluated by the fitness function. During each generation, a partic-
ular number (in our paper, G/2) of offsprings will be reproduced to
replace G/2 existing patterns with lower rankings.32 Afterward, all
G phase patterns are ranked again based on their scores. The above
breeding and mutation procedures will be iterated multiple times
until the end condition is met. In general, the iteration stops when
a predefined number of generations are reproduced or the fitness
function evaluation result reaches a threshold.

The benefits of the GA are significant. The GA can find a fit
solution in a short time. Moreover, the GA is robust to noises as the
GA updates as many pixels altogether instead of adjusting pixels one
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FIG. 1. Working principle of the employ-
ing genetic algorithm for wavefront shap-
ing. First of all, a specific number G of
initial phase patterns are created, and
then, they are ranked according to their
fitness function scoring results. Two pat-
terns are selected as parents to gen-
erate offsprings. Several segments of
the offspring are mutated (indicated by
white circles), and then, the offspring is
evaluated by the fitness function. Each
generation G/2 offspring is reproduced
to replace existing G/2 patterns, and
then, all phase patterns are ranked again
based on their fitness function scores.
The whole breeding and mutating pro-
cess is iterated multiple times until the
end condition has been met; typically,
a predefined number of generations are
reproduced, or the fitness function eval-
uation result reaches a threshold.

by one. Whereas GA results are remarkably influenced by a lot of
factors such as the rate of mutation and breeding, fitness function,
and especially the amount of phase patterns used in each gener-
ation, i.e., the population size G,43 finding proper parameters is

nontrivial and requires both time and experience. More importantly,
there are some scenarios that randomly create initial patterns, which
may be in the neighborhood of one or several local minima. Con-
sidering that the GA is a stepwise optimization process and that
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offsprings are reproduced by breeding and mutating existing pat-
terns, the GA is prone to be stuck in a local minimum, posing the
risk that probably better solutions are not able to be explored. Con-
sequently, employing a good initialization is crucial to achieve the
global optima or near-global optima.44 In addition, with random
initializations, optimization results can vary significantly each time
the GA is run owing to the uncertainty in randomly created initial
solutions.

As a data-driven approach, deep learning uses a totally differ-
ent strategy to compute the phase pattern required for light focus-
ing. The ill-posedness and nonlinearity of inverse scattering prob-
lems indicates that the direct inversion is not practical, bringing
forward the requirements for iterative algorithms with regulation.45

The typical form of the inverse problem is given as46

arg min
p

∥y −HWp∥2
2 +λ ∥p∥1, (3)

where H is the forward scattering model, y is the recorded speckle
intensity, W is a transformation, and p represent transformation
coefficients so that x̂ =Wp is a desired reconstruction.

Almost all state-of-the-art iterative algorithms for inverse scat-
tering problems are cascades of linear convolutions and pointwise
nonlinear operations,47 which are similar to the structure of convo-
lutional neural networks (CNNs). As a representative application,
the popular iterative shrinkage-thresholding algorithms (ISTA) are
based on the following block model:46

pm+1
= Aθ[

1
L
W ∗H ∗ y + (I −

1
L
W ∗H ∗HW)pm], (4)

where L is the Lipschitz constant. The iterative optimization gov-
erned by Eq. (4) can be treated as a convolutional process with
kernel I − (1/L)W ∗ H ∗ HW and bias (1/L)W ∗ H ∗ y, followed
by a nonlinear activation function Aθ. Hence, CNNs can be consid-
ered intrinsically suited to solve inverse scattering problems.45,48–50

The success of conventional iterative algorithms safely serves as the
guarantee for employing CNNs to focus light through scattering
media.

Known as universal approximators, deep CNNs (DCCNs) have
been proved to be powerful in resolving inverse problems.48,50,51

Hence, DCNNs are suited to be adopted to model the inverse scatter-
ing process H−1 via supervised learning, revealing the relationship
between transmitted speckles y and incident optical phase patterns
x. As shown in Fig. 2, DCNN inputs are the intensity distributions
of transmitted speckles recorded using a camera while the outputs
are their corresponding incident phase patterns modulated by a spa-
tial light modulator (SLM). After training, the DCNN will establish
an accurate mapping from speckles to incident phase patterns, and
thus, the DCNN is capable of predicting the required phase pattern
to focus light through a specific scattering medium.

Comparing with iterative wavefront shaping methods, the deep
learning approach is simpler since the relationship between speck-
les and incident phase patterns is learned straightforwardly through
training, circumventing the need for interferometers or iterations.
Nevertheless, its performance is significantly affected by training
samples. Only when the training sample size is sufficiently large,
meanwhile, these samples are typical enough to represent the entire
scattering processes, and then, the DCNN will be able to predict

FIG. 2. Working principle of applying deep learning for wavefront shaping. First
of all, a DCNN is trained with a number of samples. DCNN inputs are speckles
recorded using a camera and outputs are the corresponding incident phase pat-
terns modulated by a SLM. After training, the DCNN can accurately map speckles
to their corresponding phase patterns. Afterward, a focused speckle is sent to the
DCNN as the desired pattern, and the phase pattern predicted by the DCNN is
able to focus light through the medium when the pattern is loaded on the SLM.

the optimal phase pattern for light focusing after training. Unfor-
tunately, it is impractical to include all possible phase patterns and
speckles for training, and the typicality of samples is also difficult
to measure; thus, the supervised learning method genuinely suffers
from the dilemma in reaching the global optimum. Notwithstanding
this, results from DCNNs can be regarded as a good initialization
for the GA. As for the GA, convergence to the global maximum is
achieved on the condition that the initial value is around the global
optimum.44 Hence, the possibility of the optimization trapped in
local minima for the GA will be largely reduced, thanks to the initial
patterns provided by the DCNN. Considering that the DCNN and
GA serve as the complementary algorithm to each other, the hybrid
of them, named Genetic Neural Network (GeneNN), will demon-
strate significant improvements against the GA or deep learning
alone in terms of convergence speed and focusing efficiency.

The proposed GeneNN consists of two parts. The first part is
collecting samples to train a DCNN. After training, an initial focused
speckle can be obtained with the phase pattern predicted by the
DCNN. The second part is adopting the GA to further the opti-
mization of the focusing process. We put forward two methods to
create initial phase patterns, both utilizing the DCNN results. The
first method, named GeneNNv1, is taking the pattern predicted by
the DCNN as one of the initial patterns, while all the other pat-
terns are created following a uniform pseudorandom distribution,32

as shown in Fig. 3(a). The pattern from the DCNN will certainly
have the highest ranking, so it has the highest opportunity to be cho-
sen for breeding. The other method, named GeneNNv2, is that all
the initial patterns are created based on the DCNN predicted pat-
tern but by augmenting various additional phase patterns to this
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FIG. 3. Two methods to apply DCNN results to the GA
in the Genetic Neural Network (GeneNN). (a) GeneNNv1.
The phase pattern predicted by the DCNN is one of the ini-
tial phase patterns in the GA. This pattern should have the
highest ranking, so it is of great possibility of being cho-
sen to breed the next generation. (b) GeneNNv2. The SLM
pattern from the DCNN works as the common base, and
initial phase patterns in the GA are created by augmenting
various patterns to it.
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common base, while all the additional patterns are also produced
with a uniform pseudorandom distribution, as shown in Fig. 3(b).
In Sec. III, the experimental results of both methods will be pre-
sented in details.

III. EXPERIMENTAL RESULTS AND COMPARISON
OF ALGORITHMS

The experimental setup is illustrated in Fig. 4. Light emitted
from a He-Ne CW laser (633 nm, Melles Griot) passes through a ND
filter (NDC-50C-4M, Thorlabs), and then, the light beam is colli-
mated and expanded by 4.3 times with a telescope. A half-wave plate
(HWP) (WPH10M-633, Thorlabs) and a polarizer (LPVISC100-
MP2, Thorlabs) are employed together to adjust the polarization
state of the incident light to be parallel along the long axis of the spa-
tial light modulator (SLM, X13138-01, Hamamatsu). Light is modu-
lated and reflected by the SLM, and hence, the SLM patterns are used
to represent the phase patterns of the incident light. Light is focused
onto the front surface of a diffuser (120 Grit, 83-419, Edmund) by an
objective lens (OBJ) (50X/0.80, Nikon TU Plan Fluor). Then, light is
scattered inside the diffuser. Transmitted optical speckles are col-
lected by another objective lens (20X/0.45, Nikon TU Plan Fluor)
placed behind the diffuser. Finally, the intensity distribution of the
speckles is recorded using a camera (Zyla 4.2 sCMOS, Andor). The
input signal levels to the SLM are set as 32, i.e., 32 different gray levels
are employed to represent the phase values from 0 to 2π. The resolu-
tion of the SLM screen is 1280 × 1024, while in the experiment, the
SLM pattern size is 32 × 32, i.e., the whole SLM screen is divided into
32 × 32 macropixels with one macropixel containing 40 × 32 pixels.
The size of the speckle patterns is 64 × 64 pixels.

As stated above, CNNs are intrinsically related to iterative
algorithms for inverse scattering problems. Moreover, DCNNs are

FIG. 4. Experimental setup. Light emitted from the laser passes through a ND filter
(F), and then, light is expanded and collimated by a telescope (L1 and L2). A half-
wave plate (HWP) and a polarizer (P) are used together to adjust the polarization
state of light. Light is modulated and reflected by the SLM. The following two lenses
(L3 and L4) reduce the beam size so that light can enter an objective lens (OBJ1).
OBJ1 focuses light on the surface of the diffuser (D), and another objective lens
(OBJ2) placed behind the diffuser collects scattered light and projects it onto the
camera.

known to be good at processing images.47,52–54 These properties
make the DCNN suited for solving wavefront shaping problems.
The structure of the DCNN employed in our work is shown in
Fig. 5. The DCNN has three inputs and one output. They work col-
laboratively, contributing together to guarantee that the proposed
DCNN can learn sufficient information on the scattering medium;
hence, an accurate mapping from speckles to their corresponding
SLM patterns will be established. Input 2 is randomly generated
SLM patterns, while the speckles obtained with them are noted as
Input 1. Input 3 is the target speckle, and the DCNN output is
the required SLM pattern to generate the desired speckle. In gen-
eral, the last few layers are task specific, while the earlier parts are
modality specific.55 With Input 1, Input 2, the first three convolu-
tional layers (Conv1, Conv2, and Cov3), and the first fully connected
layer (FC1), the DCNN is supposed to learn the information on
scattering processes in the medium. The last fully connected layer
(FC2) is trained to establish the mapping from speckles to SLM pat-
terns. Conv1, Conv2, and Cov3 work together to extract and abstract
image features from Input 1, and then, these features are flattened
to a 1D array. Input 2, which is a 2D SLM pattern, is also flattened
to concatenate with the features from Input 1, followed by a fully
connected layer (FC1). Output of FC1 is concatenated with flattened
image features from Input 3, and then, the final fully connected layer
(FC2) predicts the SLM patterns required in order to get the desired
speckle indicated as Input 3. Convolutional layers (Conv1, Conv2,
and Cov3) consist of 16, 32, and 48 filters, and the filter size of each
layer is 7 × 7, 5 × 5, and 3 × 3 with stride set as 3 × 3, 2 × 2, and 1 × 1,
respectively. Conv1 and Conv4, Conv2 and Conv5, and Conv3 and
Conv6 have the same structure. FC1 consists of 512 neurons, whose
dropout rate is set as 0.5. FC2 has 1024 neurons. The activation func-
tion of the last output layer is sigmoid, while the activation function
of all other layers are tanh. The mean squared error is employed as
the loss function. Adam is used as the optimizer with alpha, beta1,
beta2, and epsilon set as 0.0005, 0.9, 0.99, and 0.0001, respectively.
The Tensorflow Keras library is used to construct the CNN model.
The Graphics Processing Unit (GPU) type is NVIDIA GEFORCE
GTX 980.

Experimental results are reported here. First of all, samples
were collected for training. 10 000 SLM patterns were randomly cre-
ated, and then, they were sequentially sent to the SLM to modu-
late the incident light phases. Each time a SLM pattern was loaded,
the camera recorded the corresponding speckle pattern. Afterward,
both SLM patterns and speckles were respectively normalized to be
between 0 and 1. Epoch was set as 15. Training time was approxi-
mately 3 min. After training, a focused speckle pattern was sent to
the DCNN as the desired pattern, and then, one SLM pattern was
predicted and sent to the SLM for light modulation, resulting in
a transmitted speckle shown as Fig. 6(a) in practice. A focal point
has already been observed. Enhancement η is introduced to quan-
titatively evaluate light focusing performance, which is defined as
the ratio between the intensity at the focal point after optimization
and the average intensity before light focusing.12 The enhancement
η achieved by the DCNN is 33. Next, the initial phase patterns for
the GA were produced according to the two proposed algorithms
indicated above (GeneNNv1 and GeneNNv2). For GeneNNv2, addi-
tional phase values were selected from [−π/2 π/2], following a
uniform pseudorandom distribution as well. The summation pat-
terns are scaled to [0 2π]. The optimization performance of both
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FIG. 5. The structure of the pro-
posed deep convolutional neural net-
work (DCNN). Input 1 is speckle pat-
terns, and their corresponding SLM pat-
terns are noted as Input 2. Input 3 is the
desired speckle, and the DCNN output
is its required SLM pattern correspond-
ing to Input 3. With Input 1, Input 2, the
first three convolutional layers (Conv1,
Conv2, and Cov3), and the first fully con-
nected layer (FC1), the DCNN is sup-
posed to learn the information on scat-
tering processes in the medium. The last
fully connected layer (FC2) is trained to
establish the mapping from speckles to
SLM patterns.

algorithms was tested when the population size G was 10, 20, 30,
40, and 50, while measurement times varied with different sizes.
Each algorithm was run 10 times under each population size, and
then, the results were averaged. For comparison, the GA was also
tested 10 times using a random initialization. Experimental results
were shown from Figs. 6(c)–6(g). Figure 6(b) is a representative
focused speckle achieved using GeneNNv2, and the population size
G is set to 50. The focal point in Fig. 6(b) is much brighter and the
background is also darker than Fig. 6(a), with the enhancement η
improved more than four times, reaching 148. Figures 6(a) and 6(b)
use the same color bar and scale. As illustrated in Figs. 6(c)–6(g), the
enhancements η reached by the two hybrid algorithms (GeneNNv1
and GeneNNv2) are always higher than the one by the random GA
regardless of measurement times. As more and more generations
are reproduced, the merits of the hybrid algorithm become more
significant as its enhancement η rises faster. To achieve the same
enhancement η, the time spent by hybrid algorithms is only a half
of that the random GA needs, despite the population size. With dif-
ferent hybrid algorithms or population sizes, the increase percentage
in enhancement η over the randomly initialized GA also varies, as
listed in Table I. The increase percentage of the enhancement ratio
is defined as [(η achieved by GeneNN/η achieved by a randomly ini-
tialized GA) − 1]. Except the differences in initial conditions, all the
other parameters are the same. The improvement in η ranges from
20% to 40%, depending on the algorithm and population size. How-
ever, in all cases, the hybrid algorithms contribute significantly to
better focusing.

In the GeneNN, the DCNN was trained with 10 000 sam-
ples, and then, the GA continued the reinforced optimization
based on the DCNN prediction. In order to compare with opti-
mization performance relying on deep learning individually, the
size of training samples is enlarged, improving DCNN perfor-
mance accordingly. Results are illustrated in Fig. 6(h). The increase
percentage of enhancement η is calculated as the ratio between
η achieved by the DCNN when the amount of training sam-
ples is increased and η reached with 10 000 samples. It can be
expected that the larger the sample size, the higher the enhance-
ment η. Enlarging the training sample size by about 60% is able
to improve the focusing performance by almost 50%. Never-
theless, limited by the SLM frame rate, collecting 6000 samples
takes nearly 18 min. In contrast, from Figs. 6(c)–6(g), with the
GeneNN, increasing the DCNN performance by 50% requires only
50–200 measurements, depending on the algorithm and popula-
tion size. At all events, the optimization time is always less than
10 min, which is almost half of the time spent in deep learning.
Therefore, our hybrid GeneNN can be claimed as a more effi-
cient approach in optimizing SLM patterns against individual deep
learning.

The experimental results confirm the efficacy of the GeneNN
in improving the optimization performance in various aspects.
The hybrid of the DCNN and the GA successfully leads to a
reinforced algorithm considering that they compensate for each
other’s drawbacks. Instead of employing a random initialization,
the initial phase patterns in the GA are created with the help of
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FIG. 6. Experimental results of
GeneNNv1, GeneNNv2, and the
randomly initialized GA. (a) A focused
speckle obtained using the SLM pattern
predicted by the pretrained DCNN. (b)
Focusing result with GeneNNv2 while
the population size is 50. (a) and (b) use
the same color bar and scale. (c)–(g)
Enhancement η achieved by the three
algorithms: GeneNNv1, GeneNNv2, and
randomly initialized GA with different
population sizes G = 10, 20, 30, 40, and
50, respectively. (h) Different amounts
of samples are used for DCNN training,
resulting in different enhancement
η after light focusing. The increase
percentage in η over the result achieved
when the training sample size is 10 000
is shown as a function of training sample
size.

the pretrained DCNN. Phase patterns from the DCNN have already
realized light focusing, indicating that they are already close to
the globally optimal SLM pattern. During breeding, offsprings are
generated by amending the SLM pattern from the DCNN, and
thus, the optimization process is effectively guided, avoiding the

time-consuming random trials at the initial stage of the GA. In addi-
tion, since the GA inherently favors patterns with a higher fitness
score, a good initialization decreases the risk that the gene pool
is trapped around one local minimum, which may result in the
failure in exploring globally optimal solution. It can be observed
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TABLE I. Increase percentage in enhancement η comparing with the randomly
initialized GA.

G = 10 G = 20 G = 30 G = 40 G = 50

GeneNNv1 (%) 18 27 21 44 35
GeneNNv2 (%) 20 23 21 31 33

from experimental results that faster and smooth convergence has
been achieved by the GeneNN, indicating that a better conver-
gence direction has been found. However, the focusing perfor-
mance achieved by the proposed two hybrid algorithms (GeneNN
v1 and GeneNN v2) are almost the same, which suggests that with
the two methods, the DCNN actually imposes almost equal influ-
ence on phase patterns generation and contributes robustly to the
performance improvement of the subsequent GA algorithm.

IV. DISCUSSION
Focusing light and imaging inside or through disordered media

is an important yet a challenging problem. As a widely accepted
solution, wavefront shaping successfully achieves light focusing by
virtue of various algorithms, while each has its own pros and cons.
In this article, we propose a hybrid of complementary algorithms
to benefit each other toward developing a reinforced algorithm. As
a proof of concept, the GeneNN has demonstrated effective perfor-
mance enhancement in many aspects including convergence speed
and light focusing performance. Applying DCNN results to assist the
creation of initial patterns in the GA, a much better focused speckle
could be observed and the optimization process was also faster than
the GA or CNN algorithm alone.

The performance of the GeneNN algorithm is affected by many
elements, among which the influence from population size G and
mutation rate R are particularly significant. First of all, the impact
of population size G is discussed. With different G, the required
number of measurements to increase the enhancement η to 60, 70,
and 80 also varies, as listed in Table II. In general, the larger the
population size G, the less the measurements needed to achieve the
same η, regardless of hybrid algorithms. With GeneNNv1, in order
to improve η to 60, the necessary measurements are almost 1/5 of
that needed when G is only 10. By virtue of the larger diversity in
a higher population, the overall probability of generating better off-
springs becomes larger. Moreover, with larger amounts of patterns,
better light focusing can be achieved without significantly increasing
computational time.56 For instance, with GeneNNv2, when the pop-
ulation size G is 10, nearly 7 min (150 measurements) were spent to
increase the enhancement η to 60 [Fig. 6(c)], while less than 6 min
(less than 50 measurements) were costed once the G was enlarged
to 50 [Fig. 6(g)]. In this circumstance, a larger population size not
only contributes to better light focusing but also saves computa-
tional time. Besides, in Figs. 6(f) and 6(g), with the increase in mea-
surement times, enhancement η rises much more smoothly than in
Figs. 6(a)–6(c), which implies that as the population size G becomes
larger, the GeneNN will be more stable and more robust to environ-
mental disturbance. In addition, the improvement percentage real-
ized by the GeneNN over the randomly initialized GA is also affected
by the population size G. In Table I, when G is increased from 10

TABLE II. The number of required measurements to reach different enhancements η
with varying population sizes G and hybrid algorithms.

Population size G GeneNNv1 GeneNNv2

η = 60

10 173 161
20 100 89
30 81 71
40 58 68
50 36 42

η = 70

10 214 177
20 118 106
30 106 87
40 76 79
50 44 50

η = 80

10 282 269
20 146 136
30 123 106
40 93 105
50 49 59

to 50, the improvement percentage also rises up from nearly 20% to
40%, while the way of applying DCNN results to the GA (GeneNNv1
or GeneNNv2) does not induce obvious difference on final optimiza-
tion results. Despite this, a larger population size does not always be
helpful. Chen. et al. have discussed that in some situation, a large
population may degrade algorithm performance.57 The increase in

FIG. 7. GeneNN optimization results with different mutation rates R using
GeneNNv1 and GeneNNv2.
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the population size can improve the accuracy, but it will saturate
when reaching a certain size; then, the adoption of more phase pat-
terns will only consume more computational resources without any
improvement in accuracy.58 Finding a suitable population size is
nontrival, requiring both experience and time.

In the GeneNN, breeding leads the convergence to a spe-
cific minimum, while mutation tries to expand searching space
and avoids convergence. As a consequence, mutation rate R plays
an important role in the optimization process, and finding a bal-
ance between exploration and exploitation is vital. An experimental
comparison of the enhancement η achieved with various mutation
rates R using two GeneNN algorithms is shown in Fig. 7. Initial
mutation rate R0, final mutation rate Rend, and decay factor λ were
adjusted respectively to discover their effect on the GeneNN opti-
mization process. The population size G was set at 30. Comparing
the results under different conditions, in general, lower mutation
rateR leads to faster convergence, regardless of the hybrid algorithm.
Among the three parameters, initial mutation rate R0 imposes larger
influence on the GeneNN optimization than the other two factors,

considering that the mutation rate R decays following the equation
R = (R0 − Rend)⋅exp(−n/λ) + Rend and the diminution in R0 con-
tributes to faster decreasing in R. Nevertheless, employing smaller
mutation rate R poses a risk of not reaching the global optimum due
to the lack of explorations. If the mutation rate R is too high, then
the optimization process will be degraded to a random trail. The best
mutation rate R is always problem-specific, and an adaptive steering
of mutation rate R is preferred.59 In our work, a gradually decreasing
mutation rate R is adopted. The initial larger mutation rate is able
to induce high diversity in phase patterns to effectively avoid con-
verging to local maxima. With the increase in iteration times, the
mutation rate keeps reducing adaptively in order to deliver a specific
and best solution.

The experimental results presented in Sec. III demonstrate
that the DCNN efficiently contributes to improving light focusing.
Herein, we further explore the performance of the two GeneNN
algorithms as a function of the quality of DCNN predictions,
and the results are shown in Fig. 8. The DCNN was trained by
five sets of samples whose sizes are varied, resulting in different

FIG. 8. The focusing performance of
GeneNNv1 and GeneNNv2 with vari-
ous enhancements η achieved by the
DCNN under different population sizes
G. (a) The enhancement η achieved by
GeneNNv1 when G = 10 with different
initial η offered by the DCNN. The ini-
tial η realized by the DCNN are 42 (gray
line), 37 (red line), 32 (blue line), 26
(green line), and 19 (purple line), respec-
tively. (b) The enhancement η achieved
by GeneNNv2 when G = 10 with dif-
ferent initial η. (c) The enhancement η
achieved by GeneNNv1 when G = 20
with different initial η. (d) The enhance-
ment η achieved by GeneNNv2 when
G = 20 with different initial η. (e) The
enhancement η achieved by GeneNNv1
when G = 30 with different initial η.
(f) The enhancement η achieved by
GeneNNv2 when G = 30 with different
initial η.
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TABLE III. The drop percentage of the enhancement η after the first measurement of the GA against initial η offered by the
DCNN with different population sizes G, hybrid algorithms, and initial η.

η achieved by the DCNN 42 (%) 37 (%) 32 (%) 26 (%) 19 (%)

G = 10 GeneNNv1 77.8 81.7 85.5 79.3 87.9
GeneNNv2 75.5 76.4 76.9 76.9 61.7

G = 20 GeneNNv1 84.8 89.8 83.5 91.3 89.6
GeneNNv2 57.2 80.6 89.0 70.9 84.2

G = 30 GeneNNv1 88.6 83.4 83.1 92.6 89.4
GeneNNv2 61.4 80.7 74.3 67.2 71.1

enhancements η after light focusing. With each sample set, the
DCNN was trained five times. Each time after training, light was
modulated by the SLM pattern output from the DCNN, and a
focused speckle could be recorded. Then, results were averaged. The
enhancement η achieved by the DCNN with different sample sets
was 42, 37, 32, 26, and 19, respectively. As expected, the less the
training samples, the lower the enhancement η. Afterward, using
different DCNN results as initialization, each GeneNN algorithm
was run ten times with different population sizes G, and then, the
mean value was calculated and presented in Fig. 8. The amount of
phase patterns was set as 10, 20, and 30. At the initial stage of the
GA, the phase pattern from the DCNN is randomly modified to
some extent due to breeding and mutation, which causes a drop in
enhancement η, as observed in Fig. 8. For better vision, the initial
enhancement η offered by the DCNN is shown as the first measured
value in Fig. 8, while the second value is with the first generation
with the GA. Steep drops exist in all figures in Fig. 8. But soon, the
performance will be recovered and exceeded. With the increase in
the population size G, the enhancement η recovery speed becomes
higher. To fully restore the DCNN performance, approximately 100
measurements are required when G is 10, while less than 50 mea-
surements are enough as G is enlarged to 30. Besides, under the same
population size, the drop of enhancement η is more significant with
GeneNNv1 than GeneNNv2 after the first measurement of the GA,
as shown in Table III. The drop percentage of the enhancement ratio
is defined as [1 − (η obtained with offsprings of the first generation
in GA/η achieved by the pretrained DCNN)]. For GeneNNv1, the
drop percentage of the enhancement η is 80%–90% compared with
the original DCNN performance, whereas using GeneNNv2, the
drop percentage is 60%–80%. This phenomenon implies that larger
changes in phase patterns are induced by GeneNNv1. The result
is reasonable considering that with GeneNNv2, all the initial phase
patterns are created based on the SLM pattern from the DCNN. No
matter which two patterns are selected for breeding, the next gener-
ation will still be influenced and guided more or less by the DCNN
results. In contrast, in GeneNNv1, the SLM pattern from the DCNN
only serves as one initial phase pattern. In this situation, offsprings
receive less information from the DCNN, thus are more suscepti-
ble to random changes. In addition, with the same hybrid algorithm
and measurement times, better preliminary focusing results from
the DCNN contribute to higher GeneNN performance. As shown
in Fig. 8, when the enhancement η achieved by the DCNN is 42
or 37, after reinforced optimization, η reached by the GeneNN is

approximately twice of that obtained when the DCNN performance
is only 19 or 26. In general, the higher the enhancement η achieved
by the DCNN, the better the focusing performance of the GeneNN
algorithms, regardless of the population size. Higher enhancement
η suggests that the phase pattern from the DCNN is closer to the
optimal one and is less likely to be around local optima. During
the reinforced optimization process, better SLM patterns are further
generated as they are obtained by applying adjustments to the initial
SLM pattern, and thus, improved focused speckles will be observed.

V. CONCLUSION
In summary, we have introduced a new strategy to develop

a hybrid algorithm for adaptive wavefront shaping to reinforce
a single algorithm by compensating its limitations. As an insti-
tutive approach, we propose the hybrid of deep neural networks
and the genetic algorithm, named GeneNN, considering that they
can effectively compensate for each other’s drawbacks. The phase
pattern output by a pretrained DCNN has already realized a pre-
liminary focused speckle, and then, optimal focusing performance
is reinforced by successive optimization with a GA. We put for-
ward two different hybrid algorithms to apply DCNN results to the
GA. Even though both of them demonstrate similar improvements,
GeneNNv2 leads to less drop of the enhancement η in the initial
stage after applying the GA after the DCNN. It has been proved
that GeneNN achieves reliably higher enhancement η and a faster
convergence rate than the individual GA or DCNN can do. The pre-
focusing performance reached by the DCNN and the population
size G can significantly influence the reinforced optimization per-
formance of the GeneNN. In general, the higher the enhancement η
reached by the DCNN, the better the performance of the GeneNN.
With the increase in population size G, the optimization process will
be more stable, and the performance improvement percentage real-
ized by the GeneNN over the single algorithm will also be higher.
This pioneering work demonstrates that the hybrid of supervised
and reinforcement learning algorithms can effectively enhance the
individual algorithm, which has great potential in boosting global
optimization efficiency in various aspects.
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