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High-speed rail (HSR) is being developed in Asian and European countries to satisfy the
rapidly growing demand for intercity services and to shore up economic growth. The rapid
growth of HSR, however, has posed great challenges regarding operation safety, reliability
and ride comfort. Irregular wheel defects can induce high-magnitude impact forces hinder-
ing safety and ride comfort of HSR and may also cause damage to rail tracks and vehicles.
The focus of this study is to develop a real-time defect detection methodology based on
Bayesian dynamic linear model (DLM) enabling to detect potentially defective wheels in
real time. The proposed methodology embraces logics for (i) prognosis, (ii) potential outlier
detection, (iii) identification of change occurrence (change-point detection), and (iv) quan-
tification of damage extent and uncertainty. Relying on the strain monitoring data acquired
from high-speed train bogies, the Bayesian DLM for characterizing the actual stress ranges
is established, by which one-step forecast distribution is elicited before proceeding to the
next observation. The detection of change-point is executed by comparing the routine
model (forecast distribution generated by the Bayesian DLM) and an alternative model
(the mean value is shifted by a prescribed offset) to determine which better fits the actual
observation. If the comparison results are in favor of the alternative model, it is claimed
that a potential change has occurred. Whether such an observation is an outlier or the
beginning of a genuine change (change-point), three metrics (i.e., Bayes factor, maximum
cumulative Bayes factor and run length) are performed for further identification. Once a
change-point is confirmed, Bayesian hypothesis testing is conducted for the purpose of
damage extent assessment and uncertainty quantification. A severe change, if identified,
implies that the quality of train wheels has suffered from a significant alteration due to
defects. In the case study, two cases making use of strain monitoring data acquired by fiber
Bragg grating (FBG) sensors affixed on bogies are illustrated to verify the performance of
the proposed methodology for real-time wheel defect detection of in-service high-speed
trains.
� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The rapid development of high-speed rail (HSR) has enhanced convenience and mobility, but paralleling this compara-
tively new transport mode is a growing concern about operation safety as well as an annually increasing budget for inspec-
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tion and maintenance work to prevent potential accidents. Rail accidents were occasionally caused by failures such as severe
defects or fatigue of railway components. To maintain a good service quality and operation safety, it is paramount to develop
online monitoring techniques that not only quickly recognize faults of mission-critical HSR components but also can antic-
ipate of long-term mechanisms and gradual deterioration in performance.

Wheelsets in a high-speed train are physically connected with and controlled by the bogie system which corrects align-
ment for stable running and reduces the vibration caused by wheel-rail interaction [1,2]. However, the wheel performance
progressively deteriorates in different mechanisms (e.g., wheel flat and wheel polygonization) during the routine operation
of a high-speed train [3,4]. Wheel performance deterioration increases stresses experienced by the bogie system. In addition,
the increased stress within bogie frames caused by wheel quality deterioration can be unexpectedly large, thus posing a seri-
ous threat to the operation safety of concerned trains. According to the statistics of train accidents caused by failure in
mechanical components during 2004 to 2007 in the United States, the wheelsets faults are the most cause with a rate of
44.7% [5]. Therefore, the railway managers are keen to keep wheels in an adequate condition and detect potential failure
as soon as possible. For railway wheels, there are three different ways of estimating the conditions: physical modeling
[6,7], statistical modeling [8] and condition monitoring [9]. However, the first two ways are not applicable to in-service
wheel condition assessment, and in contrast, the third way is most feasible for wheel condition estimation. The monitoring
approaches available to wheel defect detection can be divided into in-workshop inspection and in-service detection [9]. The
latter provides the real-time data required for maintenance planning, while the former is normally carried out at workshops
at fixed intervals. The commonly used in-workshop methods for wheel defect inspection include the ultrasonic techniques
[10], infrared camera [11] and magnetic methods [12]. In-service monitoring approaches can be categorized as on-board and
wayside methods. The on-board methods implement sensors on the train and continuously obtain comprehensive data from
the system. The methods of this category include magnetic technique [13], ultrasonic technique [14], acoustic technique
[15], and vibration technique [16]. On the other hand, wayside methods attempt to detect the wheel or vehicle performance
by installing sensors on the rail or its surrounding areas. Such indirect measurements give rise to limited information of the
wheel condition while they can monitor all train wheels going by with using only one or a few sensors. According to the type
of sensors used, wayside detection approaches include strain sensing technology [17], fiber optic sensing technology [18],
ultrasonic technique [19], vibration technique [20], acoustic emission [21], lasers and high-speed cameras [22]. However,
the study on data interpretation techniques enabling the extraction of defect-sensitive features is far from sufficient.

Bayesian dynamic linear model (DLM) is an elegant system approach to handling time series data from a Bayesian per-
spective, which originates from the field of applied statistics [23,24] and is extensively used in other fields such as economics
and engineering [25–30]. The Bayesian DLM treats the time series as the output of a dynamic system perturbed by random
disturbances. It is suitable for modeling both univariate and multivariate time series, and also for representing the structural
changes, non-stationarity and irregular patterns [31]. Unlike the classical time series method which assumes a fixed relation-
ship between the dependent variables (response variables) and the independent variables (regressors), the DLM considers
the relationship changes over time and is able to directly capture time series data features, such as trend, seasonality,
and regression effects. Moreover, the DLM allows for descriptions of temporary or permanent shifts in time series parame-
ters that occur abruptly, which are necessary for outlier and damage detection in structural health monitoring (SHM) para-
digms. Recently, Goulet and his collaborator [32,33] adopted the Bayesian DLM theory in SHM to model the time-dependent
responses of structures by breaking them into subcomponents. In the perspective of real-time damage detection, only few
studies are available. The first attempt was conducted by Lipowsky et al. [25] with the development of a Bayesian DLM-based
real-time detection algorithm to evaluate the performance of a gas turbine using simulated data. Later on, Wang et al. [34]
and Zhang et al. [35] adopted the above algorithm for detecting high-speed train defects by using real-world monitoring
data. In the previous studies, however, the real-time detection algorithm devised possesses only outlier identification and
change detection abilities, without the function of damage extent assessment and uncertainty quantification.

The aim of this investigation is to develop a methodology for real-time defect detection of high-speed train wheels in the
context of Bayesian DLM, which incorporates logics for prognosis, potential outlier detection, identification of change occur-
rence (change-point detection), and damage extent and uncertainty quantification. The Bayesian DLM is considered as a tool
for time series analysis, while Bayesian forecasting is executed to enable the calculation of one-step ahead forecast distribu-
tion. The change-point detection is performed by checking the current observation against the routine model (forecast dis-
tribution generated by the Bayesian DLM for current instant) as well as against an alternative model of which the mean value
is shifted by a prescribed offset. The detection rule is that if the alternative model better fits the actual observation, a poten-
tial change is signaled. To further determine whether such an observation is only an outlier or the beginning of an actual
change (change-point), a specific logic is developed by introducing the Bayes factor and the maximum cumulative Bayes fac-
tor. Once the change-point is confirmed, Bayesian hypothesis testing is conducted for damage extent assessment and uncer-
tainty quantification.

The main contributions of this study are the provision of: (i) a formula which not only enables the modeling of actual
stress ranges derived from the monitoring data of strain but also forecasts the next observation distribution in the Bayesian
framework; (ii) three metrics (i.e., the Bayes factor, maximum cumulative Bayes factor and run length) to allow for outlier
and change-point detection in real-time manner; and (iii) an efficient way for damage extent assessment and uncertainty
quantification. The rest of the article is organized as follows. Section 2 introduces the Bayesian DLM theory and an elabora-
tion of the Bayesian forecasting philosophy. Section 3 presents the defect detection methodology that incorporates logics for
outlier detection, change-point identification, and damage assessment. In Section 4, two case studies making use of time-
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series strain data acquired by fiber Bragg grating (FBG) sensors affixed on the bogies of an in-service high-speed train are
offered to demonstrate the feasibility and performance of the proposed methodology. Finally, conclusions are drawn in
Section 5.

2. Bayesian DLM and forecasting

2.1. Bayesian DLM

The Bayesian DLM is a kind of process-based Bayesian prediction model which provides a flexible way to intuitively cap-
ture how processes evolve over time. It consists of two basic equations: an observation (measurement) equation and a sys-
tem (evolution) equation [20,21]. The observation (measurement) equation describes the relationship between the observed
data and the unknown state parameters. The system (evolution) equation represents the evolution of state parameters over
time, thus illustrating the dynamic changes of the state variables. The two equations stated above are defined as [23]
Observation Equation : yt ¼ F
0
tht þ v t; v t � N 0;Vt½ � ð1aÞ

System Equation : ht ¼ Gtht�1 þxt; xt � N 0;Wt½ � ð1bÞ

where yt is the observation (measurement) vector (m� 1) at time t; ht is unknown state parameter vector (p� 1);Ft and Gt

are the respective known regression matrix (p�m) and evolution matrix (p� p); v t andxt are two independent Gaussian
random vectors with mean zero and unknown covariance matrices Vt andWt . The DLM defined above amounts to treating ht

as a Markov chain and yt being independent conditionally on ht; that is, htjht�1
~NðGtht�1;WtÞ and ytjht � NðF 0

tht ;VtÞ.
The idea of describing a time series with DLM is to imagine the observation as obtained by combining simple elementary

components, each capturing a series of diverse features, such as trend, seasonality (periodicity) and dependence on covari-
ates (regression). The second order polynomial is a basic component for representing the trend of DLM, allowing for system-
atic growth or decline in level. The general expression of the second order polynomial DLM is [23]
yt ¼ lt þ v t ; v t � Nð0;r2
obsÞ ð2aÞ

lt ¼ lt�1 þ at�1 þx1t ; x1t � Nð0;r2
levelÞ ð2bÞ

at ¼ at�1 þx2t ; x2t � Nð0;r2
trendÞ ð2cÞ
in which yt is the real-time monitoring-derived stress range of a high-speed train bogie at time t, lt represents the stress
range level at time t, and at represents the stress range change between time t � 1 and t. v t is the zero-mean Gaussian ran-
dom variable representing the error of measurement at moment t. x1t and x2t are both zero-mean Gaussian random vari-
ables representing the evolution of DLM from time t � 1 to t. In association with the form of DLM in Equation (1), we have
ht ¼
lt

at

� �
; Ft ¼

1
0

� �
; Gt ¼

1 1
0 1

� �
; Wt ¼

r2
level 0
0 r2

trend

 !
; Vt ¼ r2

obs ð3Þ
2.2. Bayesian forecasting

The Bayesian forecasting philosophy is based on the description of an observed process using its probability density func-
tion (PDF). As implied by the name, the Bayesian forecasting approach commences from Bayes’ theorem, hence enabling the
calculation of conditional probabilities. The details of using DLM for the recursive one-step ahead forecasting of the (poste-
rior) distribution of monitoring-derived stress ranges under the Bayesian framework are presented as follows

Step 1 (initialization): Given the initial information D0, the distribution of initial state parameters in the stress range is
specified as
Pðh0jD0Þ � Nðm0;C0Þ ð4Þ

wherem0 and C0 are initial mean and variance of the state parameters, which can be determined by using the first measured
data of the time series in practice. Set t ¼ 0.

Step 2 (a priori estimation): The posterior distribution of the state parameters at current time t, Pðht jDtÞ � Nðmt ;CtÞ, is
employed to estimate the priori distribution of the state parameters at the next time t þ 1 as Pðhtþ1jDtÞ � Nðatþ1;Rtþ1Þ with
atþ1 ¼ E htþ1jDt½ � ¼ Gtþ1mt ð5aÞ

Rtþ1 ¼ Var htþ1jDt½ � ¼ Gtþ1CtG
0
tþ1 þWtþ1 ð5bÞ
where Dt denotes the state of information at time t; Wtþ1 is the variance of the evolution error in the system equation.
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Step 3 (forecast): The mean and variance of the stress range distribution at next time t þ 1, Pðytþ1jDtÞ � Nðf tþ1;Qtþ1Þ, can be
forecasted through the observation equation,
f tþ1 ¼ E ytþ1jDt
� � ¼ F

0
tþ1atþ1 ð6aÞ

Qtþ1 ¼ Var ytþ1jDt
� � ¼ F

0
tþ1Rtþ1Ftþ1 þ Vtþ1 ð6bÞ
Step 4 (update): As time moves forward, once the new stress range ytþ1 at time t þ 1 becomes available, the posterior dis-
tribution of the state parameters can be updated to Pðhtþ1jDtþ1Þ � Nðmtþ1;Ctþ1Þ, in which the mean and variance are given by
mtþ1 ¼ atþ1 þ Atþ1etþ1 ð7aÞ

Ctþ1 ¼ Rtþ1 � Atþ1A
T
tþ1Qtþ1 ð7bÞ

etþ1 ¼ ytþ1 � f tþ1 ð7cÞ

Atþ1 ¼ Rtþ1Ftþ1=Qtþ1 ð7dÞ

where Dtþ1 ¼ Dt ; ytþ1

� �
.

Step 5: Set t ¼ t þ 1 and repeat the steps from Step 2 until to the end of the observation data. The recursive updating pro-
cedure is demonstrated in Fig. 1.

Note that in Step 4, Atþ1 is the adaptive coefficient which can be viewed as the information tuner. It scales the correction
term according to the relative variances of the prior and likelihood, as measured by Rtþ1=Qtþ1 and regressor value Ftþ1. etþ1 is
the one-step forward forecast error, the difference between the observed value ytþ1 and its expectation f tþ1. More details
about the recursive one-step ahead forecast method can be found in [24].

3. Defect detection methodology

The proposed defect detection methodology contains three logical processes: outlier detection, change-point detection,
and damage assessment. By comparing the real-time measurement with the predicted values, the named outlier detection
and change-point detection are devised to determine whether the measurement is a single outlier or the first observation of
a remarkable change, the former being executed by calculating the Bayes factor, while the latter being based on the maxi-
mum cumulative Bayes factor. Once a change-point is affirmed, Bayesian hypothesis testing is conducted for further damage
extent assessment and uncertainty quantification.

3.1. Outlier detection

Potential outlier detection is the first step in the process of the proposed defect detection approach, accomplished by the
Bayes factor calculation. Bayes factor is advocated because of its straightforward and natural interpretation of evidence
afforded by data. At every time step t, the Bayesian DLM can yield a PDF for the next measurement, labeled as M0. Mean-
while, an artificial alternative model labeled asM1 is defined by shifting the mean ofM0 by +h. The underlying idea of outlier
detection is to check the current observation against bothM0 and M1. For each time step t, the Bayes factor is the ratio of the
PDF value under M1 to the PDF value under M0 [24],
Ht ¼ p yt jDt�1;M1ð Þ
p ytjDt�1;M0ð Þ ð8Þ
Fig. 1. Flowchart of DLM updating.
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where yt is the measurement at time t and Dt�1 refers to the history information up to time t � 1. In the case of Gaussian
distributions, the Bayes factor is [25]
H1;t ¼ exp
2h yt � f tð Þ � h2

2r2
t

 !
ð9Þ
where h is the shift value; yt is the observation value; f t and rt are the mean and standard deviation of the forecasting dis-
tribution for observation at time t. A Bayes factor H ¼ 1 indicates that the probability of the observation derived from model
M1 is identical to the probability of that derived from Model M0. For better quantitative comparison between any two mod-
els, Jeffreys [36] suggested interpreting the Bayes factor as a scale of evidence and provided descriptive statements although
the partitions are somewhat arbitrary. According to his suggestion, a Bayes factor can be divided into several intervals for
assessing the significance of discrimination: 1 < H < 3 is ‘barely worth mentioning’, 3 < H < 10 is ‘substantial’,
10 < H < 30 is ‘strong’, 30 < H < 100 is ‘very strong’, and H > 100 is ‘decisive’. In this study, Hmin ¼ 10 is set as a threshold
for outlier detection.

In addition to the threshold of Bayes factor, the shift value h is also of concern, which can be determined by
h ¼ U�1 1� a

2

� �
� rt ð10Þ
where U�1ð�Þ is the inverse of the standard normal cumulative distribution function, and a is the confidence level required.
After the confirmation of Hmin and h, an uncertainty limit (ucl) can be procured by the following equation
ucl ¼ lnðHminÞ
h

r2
t þ

h
2

ð11Þ
For instance, when the confidence level a and threshold of Bayes factor Hmin are set as 90% and 10 respectively, the uncer-
tainty limit ucl ¼ 2:22rt . Thus, an observation is diagnosed as an outlier if its deviation from the mean value of M0 is larger
than 2:22rt :

With the Bayes factor defined in Equation (9), only outliers with a positive deviation can be detected. To enable the out-
liers with negative deviation to be detected as well, a second Bayes factor is defined as
H2;t ¼ exp
�2h yt � f tð Þ � h2

2r2
t

 !
ð12Þ
In the automatic monitoring process, both the Bayes factors H1;t and H2;t should be examined in parallel to enable the
detection of both positive and negative outliers.

3.2. Change-point detection

In a dynamical system it is significant for an online diagnostic approach to maintain special vigilance on the most recent
behavior, rather than judgments based on long past performances. Change-point is an abrupt variation in time series data,
representing a transition that occurs between states. Change-point detection aims to detect abrupt change in the generative
process of sequential data. It is assumed that a sequence of observations y1; � � � ; yT could be divided into several non-
overlapping partitions, e.g. dataset j � 1, dataset j, and dataset j + 1 as shown in Fig. 2. The delineations between partitions
are known as change-points (e.g. TOC j � 1 and TOC j); the goal of change-point detection is the determination of where the
boundary of two adjacent partitions is located in a sequence of observations. Change-point detection approaches can be clas-
sified into offline and online methods. The former needs to observe the whole sequential observations before aiming to make
inference on the generative process of the sequence [37–40], wheras the latter aims to update the inference at each time step
with the newly acquired measurements from the sequence [41–43]. In particular, the Bayesian online change-point detec-
tion methods are based on computing the probability distribution of the run length.

The outlier detection method stated in the previous sub-section is confined to single-point outlier recognition and cannot
differentiate between the single-point outlier and the beginning of a continual change. To overcome this problem, cumula-
tive Bayes factor (local Bayes factors) is recommended to detect change-point(s) in the sequence of observations, by defining
it as the product of k consecutive Bayes factors
Fig. 2. Sequence of observations obtained under different conditions.
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Ht kð Þ ¼
Yt

t�kþ1

Ht ; k ¼ 1;2; � � � ; lmax ð13Þ
where lmax is the maximum number of Bayes factors taken into account. Unlike Bayes factor with implicitly no historical
influence in the judgement, the consecutive Bayes factors collect evidence of change over a series of observation (from time
ðt � kþ 1Þ to time t). That is, Ht kð Þ measures the evidence provided by the most recent k consecutive observations. The max-
imal cumulative Bayes factor is defined as
Lt ¼ max Ht kð Þð Þ ¼ Ht ltð Þ ð14Þ

where lt refers to the run length which counts the number of recent, consecutive observations that contribute to the max-
imum value of Lt . It can be calculated recursively by
lt ¼
1; if Lt�1 � 1

1þ lt�1; if Lt�1 > 1

�
ð15Þ
initialized with L0 ¼ 1 and l0 ¼ 1. The sequence of Lt provides the basis of a local monitoring scheme, with the run length lt
indicating how long ago the change might have begun. The rational run length threshold of lt is suggested as lmin ¼ 4 by Pole
et al. [23]. Akin to the Bayes factor threshold for outlier detection, the threshold of maximal cumulative Bayes factors is set as
Lmin ¼ 10. If the conditions Lt > Lmin and lt > lmin occur simultaneously, an alarm of change is immediately issued at time t
(time of notification, TON). The real time of occurrence (TOC) is (t � lt þ 1), that is, TOC =t � lt þ 1.

3.3. Damage extent assessment

Once the change-point is confirmed, Bayesian hypothesis testing is performed to assess damage extent and quantify the
associated uncertainty. The proposed approach directly quantifies the likelihoods of two scenarios (e.g., the sequential obser-
vations before and after the change-point), that is, ‘‘no fault” and ‘‘fault”, and the yielded results are easy to interpret. An
additional merit of the proposed approach is its ability to quantify the uncertainty in damage detection. Assume that the
observed sequential data can be divided into two non-overlapping partitions, the first of which is regarded as healthy
and conforms to a normal distribution Nðl0;r2

0Þ, while the second is deemed as damage complying with a normal distribu-
tion Nðl1;r2

1Þ. In this study, the variance r2
1 is assumed as equal to r2

0, and the hypothesis testing is made only on the mean
of the observations. Thus, the damage detection problem becomes the test of H0 : l ¼ l0 versus H1 : l–l0 with
ljH1 � Nðq; s2Þ, where q and s2 are two parameters of the prior density of l under the alternative hypothesis. The null
hypothesis H0 indicates that the structure is healthy, while the alternative hypothesis H1 indicates that the structure is
damaged.

With the above, damage detection can be achieved by means of Bayes factor which is defined as the ratio of the proba-
bility of observations given the alternate hypothesis to the probability of observations given the null hypothesis [24]
BF H1 : H0ð Þ ¼ B10 ¼ PðDjH1Þ
PðDjH0Þ ð16Þ
where D ¼ y1; � � � ; ynf g refers to the observed data. It is proven to be [44]
BF H1 : H0ð Þ ¼ B10 ¼
 
s2 þ r2

0=n
r2

0=n

!�1=2

exp
n
2

� y� qð Þ2
r2

0 þ ns2
þ y� l0

	 
2
r2

0

" #( )
ð17Þ
where y refers to the mean of the observed data fy1; � � � ; yng. If no prior information is available, the initial mean and variance
can be set as q ¼ l0 and s2 ¼ r2

0 [44]. The two assumptions take the prior mean and variance in the alternative hypothesis as
equal to the values of null hypothesis. Then the Bayes factor is
B10 ¼ ðnþ 1Þ�1=2exp
n

nþ 1
z2

2

� �
ð18Þ
where z ¼ ffiffiffi
n

p y�l0
r0

. At each time step (i.e., n=1), the Bayes factor B10 is larger for the larger values of zj j, which is reasonable

and easy to interpret. The logarithm of the Bayes factor, for convenience of comparison among a larger of values, is derived as
logB10 ¼ �1
2
log nþ 1ð Þ þ nz2

2ðnþ 1Þ ð19Þ
If the Bayes factor B10 is larger than 1, the implication is that the observed data provide evidence in favor of the alternative
hypothesis H1 (i.e., the structure is damaged). Otherwise, the observed data are judged to support the null hypothesis H0 (i.e.,
the structure is healthy). As with the previous threshold, B10 � 10 is set as a threshold for damage indication.

With the proposed approach, the uncertainty in damage detection can be quantitatively assessed by the posterior prob-
ability of the alternative hypothesis p H1jDð Þ. It can be derived as
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p H1jDð Þ ¼ pðDjH1ÞpðH1Þ
p DjH0ð Þp H0ð Þ þ pðDjH1ÞpðH1Þ ¼

B10pðH1Þ
p H0ð Þ þ B10pðH1Þ ð20Þ
where pðH1Þ and pðH0Þ denote the prior probabilities of the hypotheses H1 and H0, respectively. Due to the absence of any
prior information concerning the two hypotheses, it usually lets p H1ð Þ ¼ p H0ð Þ ¼ 0:5. In such circumstance, Eq. (20) reduces
to
p H1jDð Þ ¼ B10

1þ B10
ð21Þ
B10 ! 0 indicates 0% confidence in accepting the alternative hypothesis, and B10 ! 1 indicates 100% confidence. The
above equation gives a direct metric of the probability of damage and it is also easy to compute and interpret.

Integrating together the outlier detection, change-point detection and damage assessment, the implementation proce-
dures of the proposed methodology are shown in Fig. 3. Beginning at time t, the single Bayes factor is firstly evaluated to
judge whether yt is an outlier. If not, the maximum cumulative Bayes factor Lt and run length lt for change-point detection
are calculated. Once a change-point is detected, the intervention is carried out by resetting the time to the time of occurrence
(i.e., TOC = t � lt þ 1) and by adjusting the mean value of M0 to the observation yt (i.e., f t ¼ yt), and the subsequent analysis
will then be started at TOC. Meanwhile, Bayesian hypothesis testing is executed for damage extent assessment and uncer-
tainty quantification from the current TOC to the next TOC.
4. Application to in-service monitoring data of high-speed train

4.1. Onboard monitoring system

An onboard monitoring system has been designed and implemented on an in-service high-speed passenger train running
on the Lanzhou-Urumqi High-Speed Railway (LUHSR) in China [45]. As shown in Fig. 4, the monitoring system is composed
of a total of 52 FBG strain sensors, 4 FBG temperature sensors, 11 accelerometers (tri-axial) and 1 noise sensor deployed on
both motor and trailer bogies. Also, one tri-axial FBG accelerometer, one video camera and two GPS sensors are installed
inside a train carriage. As the present work is focused on the real-time detection of potentially defective wheels by using
strain monitoring data from bogies, only the deployment of strain sensors is concerned. The strain sensors are mounted
on 4 measurement zones of the bogies: (i) the zone with the action of high loads; (ii) the stress transmission zone; (iii)
the zone with high responses predicted by finite element analysis; and (iv) welded joints. FBG strain (and temperature) sen-
sors are deployed and attached to the surface of the train bogie with industrial glue and tapes, and connected to the inter-
rogator (data logger) with laptop inside the train carriage through optical fiber cables.

The data utilized in this study were obtained from a monitoring schedule spanning 18 days as shown in Table 1. The total
length of the LUHSR between Lanzhou and Urumqi is 1777 km. In the trip from Lanzhou to Urumqi, the high-speed train
stops by 14 stations and travels cross 13 railroad sections (e.g. 1st, 2nd, . . ., 13th); in trip from Urumqi to Lanzhou, the
high-speed train stops by 15 stations and travels cross 14 railroad sections (e.g. 1st, 2nd, . . ., 14th). During the monitoring
period, the train operated at its normal speed around 200–250 km/h. The sampling rate for all the sensors was set at 5000 Hz.

Since the train wheels were lathed (lathing is a process to make wheels perfectly rounded) during the monitoring period,
the recorded data contain information in line with two different states (before lathing and after lathing). The wheels can be
considered as potentially unhealthy (defective) before lathing and as healthy after lathing. To verify the effectiveness of the
Fig. 3. Flowchart of defect detection framework.



Fig. 4. In-service monitoring of a high-speed passenger train.
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proposed real-time defect detection methodology, the strain monitoring data obtained from the bogies before and after
wheel lathing are used in the study.



Table 1
Monitoring schedule for instrumented high-speed train.

Train Conditions Time Type of Work

Before wheel lathing 20 ~ 21 Dec 2015 Installation (2 days)
22 ~ 31 Dec 2015 Onboard monitoring (10 days)
1 ~ 2 Jan 2016 Wheel lathing (2 days)

After wheel lathing 3 ~ 10 Jan 2016 Onboard monitoring (8 days)
11 ~ 13 Jan 2016 Regular maintenance (2 days)
14 Jan 2016 Urban route (1 day)

 (a)

(b)

(c)
Fig. 5. Time histories of temperature, strain before and after temperature compensation: (a) measured temperature; (b) measured strain response; (c)
strain response after temperature compensation.
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4.2. Data processing

The train’s dynamic responses may be influenced by different subgrade conditions of the railroad, such as ground, tunnel,
and bridge. To eliminate the effects of different railroad conditions, the strain data recorded from the same railroad section



Fig. 6. Measured strain responses (Case 1).

Fig. 7. Measured strain responses (Case 2).

(a)

(b)

TOC

TOC

Fig. 8. Bayesian DLM-based forecasts of stress range for Case 1: (a) before adjustment; (b) after adjustment.
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before and after lathing, are used in each scenario. In addition, the passenger loads in different trips are deemed statistically
identical and the speed of train is assumed to be constant as in normal operation. Without loss of generality, the monitoring
data respectively obtained from two typical railroad sections (1st and 14th) in the trip from Urumqi to Lanzhou are chosen to
illustrate the proposed real-time defect detection methodology, which are from the strain gauge (MS3-7) deployed at the
tubular crosspiece (Fig. 4b).

For the sake of brevity, the monitoring data collected from the 1st railroad section are denoted as Case 1, while those from
the 14th railroad section are denoted as Case 2. Firstly, the measured strain is converted to stress for the subsequent stress
range calculation. For the strain gauges mounted on the steel surface, the conversion of the measured strain to stress is made
by rs ¼ Ee, where E is the elasticity modulus of steel and e is the strain after eliminating the effect of varying temperatures.
The equation of temperature compensation is defined as
e ¼ em � a1ðTm � T0Þ ð22Þ
(a)

(b)

(c)

(d)
TOC

Fig. 9. Detection results for Case 1: (a) Bayes factor; (b) maximal cumulative Bayes factor; (c) run length; (d) Bayesian hypothesis testing.



(a)

(b)

TOC

TOC

Fig. 10. Bayesian DLM-based forecasts of stress range for Case 2: (a) before adjustment; (b) after adjustment.
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where em is the measured strain, Tm is the measured temperature in the vicinity of the strain sensor, T0 is the temperature at
the installation, and a1 is a constant coefficient. In our case, the original temperature is 4 , i.e., T0 ¼ 4. The results of tem-
perature compensation are demonstrated in Fig. 5. It is obvious that the trend in strain responses caused by temperature
change has been eliminated.

Afterwards, the stress ranges are extracted from the monitoring-derived stress data by the application of the rainflow
counting algorithm. From each stress cycle, the stress range Sa is obtained by calculating the difference between the max-
imum stress rmax and the minimum stress rmin measured in that stress cycle, i.e., Sa ¼ rmax � rmin. More details on the stress
ranges extraction are given in [45]. The stress ranges with amplitudes lower than 1 MPa need to be culled because the major-
ity are caused by noise. To decrease the uncertainty arising from the measurement facilities, the average stress ranges for
every ten minutes are used as the target quantities. Due to the different lengths of the two selected railroad sections (1st
and 14th), the traveling time of the train in each section is also different. This results in different data lengths. The data
lengths of the average stress ranges in Case 1 and Case 2 are 110 and 90, respectively. Figs. 6 and 7 show the original mea-
sured strain responses before and after lathing in Case 1 and Case 2, respectively.
4.3. Analysis results and discussion

Following the implementation procedures mentioned before, the defect detection results for Case 1 are demonstrated in
Figs. 8 and 9. Fig. 8(a) shows the average stress range (red point) together with 1-step ahead prediction (blue solid line) and
the corresponding 90% prediction interval (grey shadow). It is observed that, although some observations at the time interval
t 2 [55, 59] fall outside the 90% prediction interval, only the Bayes factor at time t ¼ 55 exceeds the established threshold of
Hmin ¼ 10 as shown in Fig. 9(a). It is thus judged as an outlier (marked as h). The reason is that because when applying the
proposed approach, the shift parameter is set as h ¼ 1:645rt , resulting in the uncertainty limit ucl ¼ 2:22rt while the other
four observations are still within the uncertainty limit. On the other hand, Fig. 9(b)–(c) shows the results of the maximum
cumulative Bayes factor and the corresponding run length for change detection. It is seen that the maximum cumulative
Bayes factor values at time instants t ¼ 56; 57 and 58 are larger than the threshold of Lmin ¼ 10, while merely the run length
at instant t ¼ 58 surpasses the threshold of lmin ¼ 4. Apparently, this observation at time t ¼ 58 fulfills the conditions of
change-point detection causing an alarm to be issued (i.e., TON ¼ 58). The identified real occurrence time of change-point
is t ¼ 55 (i.e., TOC ¼ 58� 4þ 1 ¼ 55), which coincides well with the actual time point of lathing the wheels. In accordance
with the real-time identification of change-point occurrence, the prediction model is refined by altering the guessed mean
value at TOC, as shown in Fig. 8(b). The predictions near TOC in the refined model obviously agree well with the actual obser-
vations, thus offering a better prediction performance than that of the original model.

The results of defect detection by means of Bayesian hypothesis testing are illustrated in Fig. 9(d). The discrimination
between ‘‘healthy” and ‘‘defective” is quantified by the logarithm value of Bayes factor. It is seen from Fig. 9(d) that the vast
majority of logarithm values of Bayes factor before TOC are nearly zero and below the threshold level (dotted red line), which
advocate the hypothesis of ‘‘healthy state” (no defect). This is consistent with the actual health condition and thus validates
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the capability of the Bayesian hypothesis testing. On the contrary, all the logarithm values of Bayes factor after TOC are larger
than 2, meaning that the corresponding Bayes factor values exceed 100. According to the classification of Bayes factor stip-
ulated in Sub-section 3.1, this result (H > 100) favors the hypothesis of ‘‘damage existence” and the damage severity is clas-
sified as ‘‘decisive”. Indeed, wheels immediately before being sent to depot for lathing were in the state of ‘heavily defective’.
Making use of Eq. (21), the probabilities of damage after TOC are obtained as 100%, that is, the wheels are identified as defec-
tive with a very high confidence.

The defect detection results for Case 2 are similar to Case 1, and are illustrated in Figs. 10 and 11. As seen in Fig. 11(a)–(c)
no outlier exists throughout the whole period, but a change-point is identified, of which the time of notification is t ¼ 44 (i.e.,
TON ¼ 44) and the real time of occurrence is t ¼ 41 (i.e., TOC ¼ 44� 4þ 1 ¼ 41). The result matches well with the actual
time point when wheel lathing is inflicted. For the predictions near the change-point, the modified prediction model
(Fig. 10(b)) offers a better performance than the original model (Fig. 10(a)). As illustrated in Fig. 11(d), all the logarithm val-
ues of Bayes factor after TOC are larger than the threshold (dotted red line), whereas the values before TOC are within the
(a)

(b)

(c)

(d)

TOC

Fig. 11. Detection results for Case 2: (a) Bayes factor; (b) maximal cumulative Bayes factor; (c) run length; (d) Bayesian hypothesis testing.
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threshold line. The values of Bayes factor after TOC are obtained to be higher than 100 (H > 100) and the corresponding prob-
abilities of damage are approximately 100%, which advocate the hypothesis of ‘‘damage existence” and the damage severity
is classified as ‘‘decisive”.

Apart from the accuracy of the proposed approach, the computational efficiency is also of concern. The algorithmic imple-
mentation is performed on a Lenovo ThinkCentre M720t desktop (Lenovo, Beijing, China) with Dual Intel Core i7-8700 pro-
cessor (Intel, California, USA) and 24 GB of memory. The computation times consumed in Case 1 and Case 2 are 4.0109 s and
3.7704 s respectively. In this sense, it realizes the detection of wheel defects in real time.
5. Conclusions

A novel methodology for real-time defect detection of high-speed train wheels using Bayesian forecasting and dynamic
linear model (DLM) has been developed and validated in this study. First, the DLM is formulated to approximate the actual
stress range derived from the strain monitoring data and to obtain forecast distribution for next observation in the Bayesian
framework. Afterwards, three metrics (i.e., Bayes factor, maximum cumulative Bayes factor and run length) are elicited for
outlier detection and change-point detection. After the change-point has been confirmed, damage assessment is executed by
the Bayesian hypothesis testing of the sequential observations before and after the change-point. Due to accommodating the
dynamic evolution process and the statistical nature of the method, the proposed approach not only possesses the ability of
real-time damage detection, but also enables damage quantification (through classifying the range of Bayes factor) and
uncertainty assessment (through calculating the probability of damage). The methodology is illustrated by using the online
monitoring data of strain from high-speed train bogies acquired under different wheel conditions (before and after wheel
lathing). In the two cases addressed, wheel defects are successfully identified, hence validating the effectiveness of the devel-
oped method. The quantitative results about the damage extent and confidence would provide useful information helping to
make cost-effective, risk-based decisions with the aim of maintaining the operation safety of high-speed rail.

Despite the proposed methodology being developed for wheel defect detection of high-speed trains, it can also be applied
to low-speed passenger and freight trains as well as extended to SHM for a wide variety of civil infrastructure (e.g., bridges,
buildings and tunnels) when vibration signals are available via monitoring. In this study, the second-order polynomial DLM
is employed to model the stress ranges, which only considers the change of stress range level and trend. However, most long-
term SHM data, especially long-term strain monitoring data, are generally contaminated by trend, seasonal (cyclical) and
regression effects, which require a more complex model. The Bayesian DLM enables the modeling of time-dependent
responses of a structure by integrating appropriate components, for instance, the response with cyclical characteristics
can be depicted by embedding a seasonal (cyclical) component. Thus, in accordance with the nature of monitoring data,
an appropriate Bayesian DLM enabling to describe time series data of different features, can be formulated for damage detec-
tion of a variety of structures subject to different operational/environmental conditions.
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