
1

Path-Planning-Enabled Semi-Flocking Control for
Multi-target Monitoring in Mobile Sensor Networks

Wanmai Yuan, Nuwan Ganganath, Member, IEEE, Chi-Tsun Cheng, Senior Member, IEEE, Guo
Qing, Member, IEEE, Francis C.M. Lau, Senior Member, IEEE, Yanjie Zhao

Abstract—Mobile sensor networks (MSNs) are good candidates
for large-scale unattended surveillance applications. However,
it is challenging to track moving targets due to their complex
dynamic behaviors. Semi-flocking algorithms have been proven to
be efficient in controlling MSNs in both area coverage and target
tracking applications. While many existing literatures on the
study of semi-flocking algorithms often assume an area of interest
(AoI) to be regular and with unified traversal cost, the uneven
and rough landscapes in real-life applications have imposed extra
challenges and raised demands for new management strategies.
In this paper, a mobility map is used to incorporate different
costs associated with irregular terrains which results in different
maximum allowed speeds on nodes in different regions. In order
to reduce target detection time and node energy consumption,
a heuristic search algorithm is developed to find time-efficient
and feasible paths between nodes and sensing targets. Under
the proposed algorithm, nodes can effectively select a target to
track or search for new targets in the AoI. Results of extensive
experiments show that semi-flocking-controlled nodes together
with path planning can reach their targets faster with lower
energy consumption compared to three exiting flocking-based
algorithms.

Index Terms—Semi-flocking, path planning, mobility maps,
mobile sensor networks, area coverage, target tracking

I. INTRODUCTION

W IRELESS sensor networks (WSNs) can gather vast
volume of data using their sensing modules with

minimum human intervention. A typical node in a WSN
consists of sensing circuitries for target detection, power-aware
processing units for data conditioning and pre-processing, an
energy-efficient transceiver for data transmission, and a limited
power source. For static WSNs, to improve their sensing
capabilities, nodes are strategically deployed within an area
of interest (AoI) in which prior knowledge of target motion
attributes is given. However, the computational overheads due
to sensor placement and their relatively low scalability have
reduced their applicability in monitoring moving targets in
large AoIs. Moreover, it is challenging for static WSNs to

This work is supported by the China Academy of Electronics and Informa-
tion Technology, China. (Projects 41411030501).

W. Yuan and Y. Zhao are with the China Academy of Electronics and
Information Technology, Beijing, P.R.China.

N. Ganganath is with the School of Electrical, Electronic and Computer
Engineering, the University of Western Australia, WA, Australia.

C.-T. Cheng is with the Department of Manufacturing, Materials and
Mechatronics, RMIT University, Melbourne, Australia.

Q. Guo is with the School of Electronics and Information Engineering, the
Harbin Institute of Technology, Harbin, P.R.China.

F.C.M. Lau is with the Department of Electronic and Information Engi-
neering, Hong Kong Polytechnic University, Hong Kong.

monitor multiple moving targets and to provide the required
sensing coverage to each of them.

Mobile sensor networks (MSNs) are recognized as one
of the promising approaches in wide-area target monitoring
[1]. Compared with ordinary WSNs, MSNs are capable of
repositioning and reorganizing themselves to provide better
sensing coverage. MSNs have been applied in many real-
life monitoring scenarios, such as pursuit-evasion [2], search
and rescue [3], intrusion detection [4], and border patrol [5],
due to their low operating cost, high operating flexibility, and
monitoring capabilities.

In most MSN monitoring applications, movements of nodes
consume most of the nodes’ limited energy. Many existing
target-tracking algorithms in MSNs assume a flat operating
environment. With such a design limitation, these algorithms
may lead nodes to pass through high-cost regions, and will
ultimately lead to an even higher energy consumption. There-
fore, it is necessary to incorporate traverse cost in MSN
management strategy designs.

In this paper, a semi-flocking-controlled algorithm for
MSNs with path planning is proposed to tackle the multi-
target monitoring problem in an uneven environment. The
incorporation of the path-planning algorithm allows nodes to
pick time-efficient and feasible paths to reach their targets and
deliver better sensing performance.

A. Related Work

Researchers have extensively examined different approaches
for reducing resources involved in monitoring moving targets
and for improving tracking performances of sensory systems.
A Voronoi-based clustered target-tracking scheme is presented
in [6], where barrier coverage and moving-target tracking are
studied together to improve target detectability. Bocca et al.
[7] proposed a real-time radio tomographic imaging method to
track multiple targets using received signal strength indicator
(RSSI) measurements. Milan et al. [8] proposed an unified
model of data association and trajectory estimation to carry out
multi-target tracking through the minimization of a consistent
discrete-continuous energy function.

In [9], a decentralized motion coordination algorithm is
proposed based on Kalman filter to control MSNs in static
and dynamic target tracking applications. The problem of col-
lecting local information and generating the information report
is explored in [10], where a tree-based technique is utilized
to increase sensing coverage and lower energy consumption.
A prediction-based method for deriving target trajectories,

This is the Pre-Published Version.
The following publication W. Yuan, N. Ganganath, C. Cheng, G. Qing, F. C. M. Lau and Y. Zhao, "Path-Planning-Enabled Semiflocking Control
for Multitarget Monitoring in Mobile Sensor Networks," in IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4778-4787, July 2020 is
available at https://dx.doi.org/10.1109/TII.2019.2959330

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

2

velocities, and residual energy is designed in [11]. In [12],
Wang and Gu have presented a cooperative target tracking
strategy to estimate target position and to maneuver nodes
toward the estimated position under flocking control.

In [13], a geographic routing protocol in MSNs is proposed
to steer nodes to bypass obstacles in given areas. The work
focuses on selecting cluster heads and forming energy-efficient
paths between cluster heads and sink nodes. An energy-
efficient target tracking algorithm is proposed in [14]. The
algorithm has translated the minimum energy problem into a
constrained shortest path problem.

Semi-flocking algorithms had been proposed in [15] and
[16] which combine flocking [17], [18] and anti-flocking [19],
[20] controls via mode switching. Initially, the nodes search
the AoI to detect targets. Once a node finds a target, it will
attract nearby nodes to move toward the target via straight
lines. Such a design performs well in ideal scenarios where
an AoI consists of regular regions with unified motion cost.
However, for real-life monitoring applications, the AoI often
imposes speed constraints to mobile platforms. To the best
knowledge of the authors, there is no formal investigation on
multiple target tracking using MSNs on terrains with non-
uniform speed limits.

B. Contributions

The main contributions of our work are as follows:

1) This paper proposes a path-planning-enabled semi-
flocking algorithm for multi-target monitoring in terrains
with irregular costs. Semi-flocking-controlled nodes can
simultaneously sense the AoI efficiently and track multi-
ple targets rapidly. These nodes are capable of determin-
ing whether they should be involved in target tracking or
they should continue to search the AoI.

2) A mobility map is used to represent different maximum
allowed speeds that a node can achieve when passing
through patches in the AoI. A novel heuristic search
algorithm is developed to perform path planning on the
mobility map. Nodes can travel along time-efficient paths
to reach a target and cooperate with other nodes that are
tracking the same target.

3) Performances of the proposed algorithm are evaluated un-
der two different scenarios, i.e., a 200×200 m2 AoI with
obstacles and a 200×200 m2 AoI without obstacles. Our
work validates that path-planning-enabled semi-flocking-
controlled MSNs can efficiently and effectively monitor
multiple targets in terrains with non-uniform maximum
speed limits.

The rest of the paper is organized as follows. Section
II reviews the formulations of MSNs and the concepts of
mobility maps. In Section III, a novel A*-based path planning
algorithm is introduced. The proposed path-planning-enabled
semi-flocking algorithm is presented and elaborated in Section
IV. Test results are presented and analyzed in Section V. In
Section VI, discussions on the computational complexity of
the proposed algorithm are provided. Finally, conclusions are
given in Section VII.

II. PRELIMINARIES

A. Formulation of MSNs

We consider a MSN consisting of N nodes. The motion of
node i is governed by{

q̇i(t) = pi(t),

ṗi(t) = ui(t), i = 1, 2, . . . , N,
(1)

where qi(t) and pi(t) are the position and velocity of the node
i at time t, respectively, and ui(t) is the control input of node
i. For notational convenience, we define qi(t) = qi, pi(t) = pi,
and ui(t) = ui as in [17].

While moving in the AoI, a node is able to interact with
other nodes within its communication range rc. The set of
neighbors of node i within rc at time t is denoted as

Ni(t) = {j : ‖qj − qi‖ < rc, j = 1, 2, . . . , N, j 6= i}

where qj is the position of node j.

B. Mobility Map Concepts

In real-life applications, an AoI can impose strong influ-
ences on the maximum speed of nodes. There are many
approaches that can be used to construct a mobility map for an
AoI and can be applied directly to this work. In [21], robots
with incomplete differential-global-position-system (DGPS)
information autonomously generate rough elevation maps of
their terrains. An incremental terrain mapping algorithm is
utilized to obtain the depth and elevation information of
the AoI. Karnadi et al. in [22] developed a mobility model
generator for vehicular networks. In their work, a real-world
map is imported from publicly available databases. Then, a re-
alistic mobility model is generated using a source micro-traffic
simulator (SUMO). There are many factors that dominate the
maximum allowed or achievable speed between any two points
on a given AoI. Examples include [23]
• the availability of traction to overcome resistances re-

sulting from terrain roughness, terrain slope, blocking
obstacles, and vegetation density, etc; and

• the maneuverability of the node across obstacles.
Since this work focuses on incorporating path planning for
navigation in the semi-flocking-controlled nodes, the construc-
tion of the mobility map is regarded as out of scope.

In this work, the speed limit of each sub-region is generated
arbitrarily and the whole region is represented in form of
a mobility map. As shown in Fig. 1, patches in the AoI
with different colors correspond to different specific maximum
allowed speeds. Anchor points are represented as black dots
on the patches and they are the initial sites in the underlaid
Voronoi diagram. As an example, a path connecting a start
point and an end point is shown as a green line on the mobility
map. From there, red stars denote the intersection points of the
path and the boundaries of adjacent patches on the mobility
map.

To speed up the path-planning process, the mobility map
is first divided into a number of square cells. Then the
map is transformed into a graph G = {V, E} where V is
a set of nodes denoting the cell centers, and E represents

3

TABLE I
RESULTS OF PATH PLANNING ALGORITHMS UNDER TEST

Path planning methods Travel times (s) Avg. online execution times (s) Number of nodes expanded during path planning

Dijkstra’s 16.0712 235.6643 16157

A* 16.0712 221.0276 9726

A*PL 16.3147 8.3668 9783

A*IL 15.9477 0.0012 9783

0 50 100 150 200
x (m)

0

50

100

150

200

y
(m

)

0

5

10

15

20

25

30
Anchor points
Intersection points
Start point
End point

max. speed (m/s)

Fig. 1. An example of a mobility map.

0 50 100 150 200
x (m)

0

50

100

150

200

y
(m

)

Dijkstra
A*
A* PL
A* IL

0

5

10

15

20

25

30

Start point
End point

max. speed (m/s)

Fig. 2. Snapshots in executing 4 different search methods for finding time-
efficient paths between a start point and an end point.

the set of connections between adjacent cell centers. In this
paper, a time heuristic is proposed for finding the fastest path
on mobility maps efficiently. The proposed time heuristic is
proven to be both admissible and consistent [23]. When an A*
search algorithm is guided by the proposed time heuristic, it
guarantees an optimal solution can be found if there is such
a solution for the problem. For every pair of adjacent cell
centers n and n′, their connection (n, n′) ∈ E is associated
with a time heuristic ct(n, n

′) which can be obtained as

ct(n, n
′) =

d(n, n′)

vavg
.

Here, d(n, n′) and vavg are the Euclidean distance and average
maximum allowed speed between n and n′, respectively.

III. PATH PLANNING ON MOBILITY MAPS

In this section, we report results of a preliminary study that
aims to select a fast and scalable path-planning method for the
proposed semi-flocking algorithm. Four different algorithms
are put under test for path planning on mobility maps. They
are (1) Dijkstra’s algorithm [23], (2) A* algorithm [23], (3)
A* algorithm with path lookup (A*PL), and (4) A* with inter-
section lookup (A*IL). Both the Dijkstra and A* algorithms
are in their generic versions for generating time-efficient paths
between the given start and end points on a mobility map.
A*PL and A*IL are two variations of the A* algorithm that
are proposed in this paper for time-efficient path planning on
mobility maps. They are further elaborated in this section.

Both A*PL and A*IL consist of offline and online planning
phases. In the offline planning phase, time-efficient paths
between all anchor points are obtained using the A* algorithm
which incorporates the costs in the mobility maps. In A*PL,
the path segments between the first and the last intersec-
tion points in each time-efficient path are stored in a static
routing table. In A*IL, only the intersection points on the
time-efficient path are stored in a static routing table. Thus,
the routing table built by A*IL is less memory-consuming
compared to that built by A*PL.

In the online planning phase of A*PL, an A* algorithm
is employed to plan time-efficient path segments (i) from
the start point to the first intersection point and (ii) from
the last intersection point to the end point. The time-efficient
path between the first and the last intersection points can be
retrieved from the static routing table. In the online planning
phase of A*IL, the interconnection points on the time-efficient
path between the first and the last intersection points are
first retrieved from the static routing table. Then the time-
efficient path between the first and the last intersection points
is obtained by connecting these interconnection points with
straight paths. The time-efficient path between the start point
and the first intersection point within the same patch is again
obtained by connecting them with a straight path. Similarly,
the time-efficient path between the last intersection point and
the end point on the same patch is obtained by connecting
these points with another straight path.

Extensive tests have been conducted to evaluate the per-
formance of the four path-planning algorithms. The paths
obtained in one such test are illustrated in Fig. 2. All the tests
were carried out in MATLAB on a computer with a 2.67 GHz
Intel i5 processor, 8 GB memory, and Windows 10 operating
system. It is obvious that all these 4 algorithms can find paths
avoiding the obstructed areas, i.e., areas with maximum speed
0 m/s. The corresponding travel time and average execution

4

time are given in Table I. The average execution time is
obtained by averaging the run time of each algorithm over 10
executions. Note that this excludes the time spent on building
the static routing tables in the offline phase.

Referring to Table I, Dijkstra’s algorithm has expanded
16157 nodes using 235.66 seconds in its search for the fastest
path whereas A* with the proposed heuristic has found the
exact same path by just expanding 14751 nodes using 221.03
seconds. With the help of heuristic functions to estimate the
time-cost to the end point [23], the A*-based methods can find
paths faster than the Dijkstra’s method. While the generic A*
algorithm improves only slightly over the Dijkstra’s algorithm
in terms of execution time, both A*PL and A*IL algorithms
show significant improvements with the use of static routing
tables. A*IL algorithm further outperforms A*PL because
A*IL algorithm uses a much smaller routing tables which
result in shorter execution times.

Note that in the Dijkstra’s, A*, and A*PL algorithms,
each move in the path is restricted between the current
cell center and the center of a neighboring cell. Thus, each
move can only point toward one of the 8 directions, e.g.,
0◦, 45◦, 90◦, . . . , 315◦. As a result, the overall path may be-
come longer due to unnecessary turnings. On the contrary,
the path within each terrain is a straight line in the case of
the A*IL algorithm. Therefore, provided that the intersection
points stored in the static routing table are close to optimal,
the A*IL algorithm is more likely to create the shortest travel
time compared with the other three methods. The results in
Table I concur with such a hypothesis.

It can also be observed that the travel time of the paths
obtained by the A*PL algorithm is the longest. In the off-line
planning phase of A* PL, the time-efficient path segments
between the first and the last intersection points are planned
and then stored in a static routing table. In the online planning
phase of A*PL, an A* algorithm is employed to find time-
efficient path segments (i) from the start point to the first
intersection point and (ii) from the last intersection point to
the end point. On the other hand, in Dijkstra’s and the original
A* algorithms, time-efficient paths are directly planned from
the start point to the end point. Therefore, the paths generated
by the A*PL algorithm that stored in the routing table can be
less optimal compared with those generated by the Dijkstra’s
and A* algorithms.

Obviously, A*IL can eliminate this limitation and can find
a faster path when compared with those obtained by A*PL
which concur with the results provided in Table I. The travel
time of the path obtained by A*IL is even smaller than those
obtained by the Dijkstra’s and A* algorithms because of using
straight lines between each pair of neighboring intersections.
Therefore, A*IL is selected as the path planning algorithm in
the proposed semi-flocking algorithm.

IV. PROPOSED SEMI-FLOCKING ALGORITHM FOR
MULTI-TARGET MONITORING

MSNs under the proposed algorithm can detect targets and
inform other nodes to arrive quickly so as to accomplish
the required number of monitoring nodes per target. The

transition mechanism of the three operating states (namely
searching, traveling, and monitoring) of a node with the
proposed algorithm is introduced as follows.

Algorithm 1 A state switching mechanism for node i.
1: Initialize qi, pi, nk, qs, θk, and Tmax;
2: t = 0;
3: while t < Tmax do
4: for k = 1 to M do
5: Exchange information with other nodes nearby and

update nk;
6: Access static routing table and acquire the corre-

sponding traveling cost for reaching the target;
7: Calculate the switching probability for tracking target

k based on the corresponding traveling cost;
8: end for
9: Select a target to track or remain in searching state;

10: fgi = φα(‖qj − qi‖σ)nij ;
11: fdi = (pj − pi)aij(qi, qj);
12: if node i decides to track target k then
13: nk = nk + 1;
14: if ‖qηk − qi‖ > θk then
15: Switch into the traveling state;
16: Carry out A* IL-based path planning;
17: Visit the pre-stored intersection points on the path

one-after-another;
18: else
19: Switch into the monitoring state;
20: f ti = c3(q

η
k − qi) + c4(p

η
k − pi) + c5a

η
k;

21: ui = fgi + fdi + f ti ;
22: end if
23: else
24: Remain in the searching state;
25: Calculate qs;
26: fsi = c1(qs − qi);
27: ui = fgi + fdi + fsi ;
28: end if
29: qi = pi · t+ qi;
30: pi = ui · t+ pi;
31: t = t+ 1;
32: end while

A. State Transition Mechanism

The state transition mechanism of node i is shown in
Algorithm 1. In the proposed algorithm, nk represents the
number of nodes that are currently monitoring target k; θk
is a predefined threshold; Tmax denotes the operating time of
the MSNs.

Initially, all nodes are in the searching state. They do not
have any prior information about the targets. Therefore, they
try to maximize the global sensing coverage by minimizing
their overlapping sensing areas.

Once a target is detected by a node in searching state,
other nearby nodes will be informed with the information of
the target, including its location and velocity. The informed
nodes can access their static routing table and acquire the

5

corresponding traveling cost for reaching the target. These
nodes will make a decision to track the target only if the
corresponding traveling cost is low. These nodes will return to
the searching state if the target has already been tracked by a
sufficient number of nodes while the nodes are approaching it.
For nodes that have decided to track a target but are not close
to it, they will be operating in the traveling state. A node in
the traveling state will visit the pre-stored intersection points
on the path one-after-another until they arrive at an area that
is close to the target.

Once arrived, it will switch to the monitoring state and form
a sensing cluster with other nearby nodes that are monitoring
the same target.

B. Nodes in the Searching State

Initially, all nodes operate in the searching state are aiming
to maximize their area coverage by reducing their overlapping
sensing area with their neighbors. In addition, each node in
the searching state tries to visit regions that have not been
visited for a long time. Under the proposed algorithm, node i
in the search state is steered by ui, which is defined as

ui = fgi + fdi + fsi , (2)

where fgi is the gradient-based term for regulating distances
among nodes, fdi is the velocity consensus term aims to match
the velocities of nodes [17], and fsi is the selfishness term
which encourages nodes to regions where have not been visited
for long time. The gradient-based term fgi [17] is given as

fgi = φα(‖qj − qi‖σ)nij , (3)

where the σ-norm of a vector is defined as ‖y‖σ =[√
1 + ε‖y‖2 − 1

]
/ε, nij = (qj−qi)/

√
1 + ε‖qj − qi‖2 and

ε ∈ (0, 1). The action function φα(z) [17] is defined as

φα(z) = φ(z − dα)ρh
(
z

rα

)
, (4)

where dα is a constant, rα = ‖rc‖σ , and

φ(x) =
1

2
[(a+ b)σ1(x+ c) + (a− b)] , (5)

with σ1(w) = w/
√
1 + w2 and the parameters a, b, c satisfy

0 < a ≤ b and c = |a− b|/
√
4ab [15]. Furthermore, the bump

function ρh(v) in (4) is expressed as [17]

ρh(v) =

1, if v ∈ [0, h),
1

2

[
1 + cos

(
π(v−h)
1−h

)]
, if v ∈ [h, 1],

0, otherwise,

(6)

where h ∈ (0, 1). The velocity consensus term fdi [17] is given
as

fdi = (pj − pi)aij(qi, qj),

where pj is the velocity of node j, and the spatial adjacency
matrix aij(qi, qj) [17] is expressed as

aij(qi, qj) = ρh

(
‖qj − qi‖σ

rα

)
i 6= j.

The selfishness term fsi is given as

fsi = c1(qs − qi), (7)

where c1 is a positive constant, and qs is the next searching
location of node i. Here, we apply the approach proposed
in [20] to determine qs for node i. In that approach, each
node records its last visiting time of cells in the AoI on its
own information map. Apart from updating the information on
cells that they have actually visited, nodes also can exchange
information via local communications with nearby nodes to
update their records. Then, the location with the longest time
of not being visited in the database of node i will be chosen
as qs.

C. Nodes in the Traveling State

A node in the traveling state traverses along its planned path
derived from its static routing table until its distance to the
target lies within a predefined threshold θk. The static routing
table is obtained using the A*IL method based on the mobility
map. When a target or node moves across terrain patches, the
path needs to be updated accordingly.

In this work, only the intersection points are recorded in
the static routing table. Once a node decided to approach a
target, it consults its static routing table and visits the nearest
intersection point. When a node enters a new terrain patch, it
will select the next intersection point and proceed. The node
will therefore visit the intersection points one-after-another
until it meets the conditions mentioned above.

D. Nodes in the Monitoring State

When a node is at proximity of its target, it will switch to
the monitoring state. Nodes in the monitoring state perform
coordinated motions and form small groups around targets. A
node i in its monitoring state is steered by ui according to

ui = fgi + fdi + f ti ,

where the navigational feedback term f ti which steers node i
to follow the target k is given as

f ti =

m∑
k=1

c2(q
t
k − qi) + c3(p

t
k − pi)

nk
, (8)

with c2 and c3 being positive constants; m being the total
number of targets; qtk and ptk being the location and the
velocity of target k, respectively.

V. EVALUATIONS

A. Setup

Two 200 × 200 m2 terrains with and without obstacles
were used for evaluating the performances of the proposed
path-planning-enabled semi-flocking algorithm, as shown in
Figs. 3(a) and 3(b), respectively. Each mobility map consists
of 30 terrain patches with 7 different maximum allowed
speed values, i.e., 0 (or 1), 5, 10, . . . , 30 m/s. Fig. 4 show
the snapshots taken at time zero, 10-th second, and 20-
th second respectively after executing the proposed path-
planning-enabled semi-flocking algorithm with 30 nodes and

6

0 50 100 150 200
x (m)

0

50

100

150

200

y
(m

)

0

5

10

15

20

25

30

max. speed (m/s)

Mobile node

Movement trajectories

(a)

0 50 100 150 200
x (m)

0

50

100

150

200

y
(m

)

1

5

10

15

20

25

30

max. speed (m/s)

Mobile node

Movement trajectories

(b)

Fig. 3. Motion patterns of 2 targets in terrains (a) with obstacles and (b) without obstacle, respectively.

t����Ta)

目标

搜索模式中的移动节点

行进模式中的移动节点

跟踪模式中的移动节点

t����Ta)

目标

搜索模式中的移动节点

行进模式中的移动节点

跟踪模式中的移动节点

max. speed (m/s)

max. speed (m/s)

max. speed (m/s)

t�����TD

目标

搜索模式中的移动节点

行进模式中的移动节点

跟踪模式中的移动节点

t�����TD

目标

搜索模式中的移动节点

行进模式中的移动节点

跟踪模式中的移动节点

max. speed (m/s)

max. speed (m/s)

t�����T

t�����T

b)

D

目标

搜索模式中的移动节点

行进模式中的移动节点

跟踪模式中的移动节点

t�����T

t�����T

b)

D

目标

搜索模式中的移动节点

行进模式中的移动节点

跟踪模式中的移动节点

max. speed (m/s)

Target Nodes in the searching state Nodes in the traveling state Nodes in the monitoring state Communication links

max. speed (m/s)

a) t = 0 s b) t = 10 s c) t = 20 s

Fig. 4. Snapshots taken at (a) time zero, (b) the 10-th second and (c) the 20-th second, after executing the proposed path-planning-enabled semi-flocking
algorithm with 30 nodes and having 4 targets in the terrain.

4 targets on the terrain with obstacles. The maximum number
of monitoring nodes required for each target is 6. Simulations
were conducted in MATLAB on a computer with a 2.67 GHz
Intel i5 processor, 8 GB memory, and Windows 10 operating
system. Fig. 4(a) shows that at time zero, all nodes are at the
searching state and are seeking for targets. In Fig. 4(b), some
nodes have detected the targets at the 10-th second and have
informed nearby nodes to switch to the traveling state. Finally
in Fig. 4(c), nodes form small groups around each target right
after 20 seconds while other nodes continue to search the AoI
for newly emerging targets.

Initial positions of nodes and targets were selected uni-
formly at random within the terrain except the obstructed areas
(i.e., where speed limit equals 0 m/s), while the initial speeds
of nodes and targets were selected uniformly at random in
[−10, 10] ms−1 for both x- and y-directions. We adopt the
Brownian motion as the movement pattern of each target.
The speed of a node cannot be higher than the corresponding
maximum allowed speed of the patch. In the following tests,
the number of nodes is 24 and the number of targets in the
terrain varies from 1 to 6. The following parameters remained
fixed in all tests: a = b = 5 for φ(x), h = 0.2, c1 = 0.85,
c2 = 2, c3 = 2, θk = 15 m, ε = 0.1, rs = 10 m, and rc = 18
m [15], [16], [20]. The maximum and minimum numbers of

monitoring nodes required for each target are both 3.

B. Results

The first set of tests was conducted to compare the in-
stantaneous area coverages of MSNs with different flocking-
based algorithms, which are measured as the ratio of the
union sensing coverage to the area of the AoI at a particular
instance. Figs. 5(a) and 5(b) show the average instantaneous
area coverage against the number of targets in the AoI with and
without obstacles, respectively. It can be observed that the in-
stantaneous coverage of MSNs with semi-flocking algorithms
declines with the increasing number of targets while those
with the anti-flocking algorithm in [20] remains unchanged. It
is because anti-flocking-controlled MSNs only focus on pro-
viding coverage to the AoI. Without the need to track targets
as in semi-flocking-controlled MSNs, anti-flocking-controlled
MSNs can achieve a higher and more stable coverage even
when the number of targets increases. In other words, MSNs
with semi-flocking algorithms are trading-off their sensing
coverage with higher target tracking capabilities.

Furthermore, it is observed that MSNs with the proposed
algorithm can maintain a higher instantaneous area coverage
compared than those with the semi-flocking algorithms in [15]

7

0 1 2 3 4 5 6 7
Number of targets in the AoI

10

15

20

25

30

35

A
ve

ra
ge

 in
sta

nt
an

eo
us

 a
re

a
co

ve
ra

ge
 (%

)

Anti-flocking in [23]
Semi-flocking in [17]
Semi-flocking in [18]
Proposed semi-flocking

(a)

0 1 2 3 4 5 6 7
Number of targets in the AoI

0

5

10

15

20

25

A
ve

ra
ge

 in
sta

nt
an

eo
us

 a
re

a
co

ve
ra

ge
 (%

)

Anti-flocking in [23]
Semi-flocking in [17]
Semi-flocking in [18]
Proposed semi-flocking

(b)

Fig. 5. Average instantaneous area coverage of MSNs operating on the terrain (a) with obstacles and (b) without obstacles. In the experiments, each MSN
comprises 24 nodes. All the data points are the results of averaging over 50 executions.

0 1 2 3 4 5 6 7
Number of targets in the AoI

0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 ta
rg

et
 d

et
ec

tio
n

tim
e

(s
) Semi-flocking in [17]

Semi-flocking in [18]
Proposed semi-flocking

(a)

0 1 2 3 4 5 6 7
Number of targets in the AoI

0

5

10

15

20

25

30

A
ve

ra
ge

 ta
rg

et
 d

et
ec

tio
n

tim
e

(s
) Semi-flocking in [17]

Semi-flocking in [18]
Proposed semi-flocking

(b)

Fig. 6. Average multi-target detection time of MSNs operating on the terrain (a) with obstacles and (b) without obstacles. In the experiments, each MSN
comprises 24 nodes. All the data points are the results of averaging over 50 executions.

and [16]. The reason is that each node under the algorithm
in [15] is controlled based on the data of the 8 neighboring
cells in the terrain. With such a strategy, nodes can easily
get trapped in local regions. In contrast, nodes controlled by
the algorithm in [16] or the proposed algorithm can exchange
information with nearby nodes. Thus, nodes can acquire more
knowledge about the overall operating environment and can
decide to visit regions which have not been covered for the
longest time. However, nodes controlled by the algorithm in
[16] move along straight lines to reach their targets which
can lead nodes into obstacles or areas with extremely low
speed limit. In the proposed algorithm, nodes are capable of
being guided along time-efficient paths toward their targets
and maintain a relatively high instantaneous area coverage.
According to Figs. 5(a) and 5(b), MSNs operating on the ter-
rain with obstacles can achieve relatively higher instantaneous
area coverage compared to those without obstacles, because
the obstructed areas are excluded when calculating the ratio
of visited areas to the total AoI.

The second set of tests was conducted to study the targets
detection capabilities of MSNs with the proposed algorithms
in AoI with/without obstacles. Similar to [15], it is considered
that a target is 3-covered when it is tracked by 3 nodes si-
multaneously. Nodes under the anti-flocking algorithm in [20]

are not able to track targets. Therefore, only the algorithms in
[15] and [16] are compared with the proposed algorithm. In
Figs. 6(a) and 6(b), the average targets-detection time is plotted
versus the number of targets in terrains with and without
obstacles. It is obvious that MSNs under the proposed path-
planning-enabled semi-flocking algorithm requires a shorter
time to successfully detect all the targets compared to MSNs
with [15] and [16]. Under the algorithms in [15] and [16],
nodes are instructed to navigate along straight paths toward
the targets and therefore some nodes could be guided toward
obstacles or areas with extremely low speed limits. In com-
parison, nodes under the proposed algorithm avoid obstacles
and areas with extremely low speed limits, and can maneuver
along time-efficient paths toward the targets. Thus nodes under
the proposed algorithm can quickly reach the targets and then
form small groups around them. Furthermore, it is obvious
that MSNs under the semi-flocking algorithms in [15] and [16]
in terrains with obstacles require longer target detection time
compared to those in terrains without obstacles. The reason is
same as above.

The third set of tests was conducted to analyze the average
travel time of a node under the control of different algorithms.
“Travel time” is defined as the time duration when a node
is in the traveling state, i.e., traveling to reach a target. An

8

0 1 2 3 4 5 6 7
Number of targets in the AoI

0

5

10

15

20

25

30

35

A
ve

ra
ge

 tr
av

el
 ti

m
e

(s
)

Anti-flocking in [23]
Semi-flocking in [17]
Semi-flocking in [18]
Proposed semi-flocking

(a)

0 1 2 3 4 5 6 7
Number of targets in the AoI

0

5

10

15

20

A
ve

ra
ge

 tr
av

el
 ti

m
e (

s)

Anti-flocking in [23]
Semi-flocking in [17]
Semi-flocking in [18]
Proposed semi-flocking

(b)

Fig. 7. Average travel time of nodes operating on the terrain (a) with obstacles and (b) without obstacles. In the experiments, each MSN comprises 24 nodes.
All the data points are the results of averaging over 50 executions.

1 2 3 4 5 6
Number of targets in the AoI

0

10

20

30

40

50

60

A
ve

ra
ge

 e
ne

rg
y

ex
pe

nd
itu

re
 (k

J)

Semi-flocking in [17]
Semi-flocking in [18]
Proposed semi-flocking

(a)

1 2 3 4 5 6
Number of targets in the AoI

0

10

20

30

40

50

A
ve

ra
ge

 en
er

gy
 ex

pe
nd

itu
re

 (k
J)

Semi-flocking in [17]
Semi-flocking in [18]
Proposed semi-flocking

(b)

Fig. 8. Average energy expenditure of MSNs for detecting all targets on the terrain (a) with obstacles and (b) without obstacles. In the experiments, each
MSN comprises 24 nodes. All the data points are the results of averaging over 50 executions.

anti-flocking-controlled node can only stay in the searching
state and so its travel time is ∞. According to the test results
presented in Figs. 7(a) and 7(b), the proposed algorithm can
remarkably shorten the average travel time because a node can
traverse to its target via a time-efficient path. Furthermore, in
the proposed algorithm, via information exchanges with other
nodes, a node can make better state-switching decisions based
on its traveling costs to different targets compared with their
peers. This design can avoid unnecessary traversals if a better
candidate exists.

The last set of tests was conducted to compare the en-
ergy expenditure of MSNs in finding all targets in the AoI
with/without obstacles. According to the results in Figs. 8(a)
and 8(b), MSNs controlled by the algorithms in [15] and
[16] need to spend significantly higher energy to detect all
targets compared to the proposed algorithm. Due to the reasons
mentioned above, nodes under the control of the algorithm in
[15] or [16] need longer times to detect and reach the targets.
However, nodes controlled by the proposed algorithm can
detect all targets more quickly with the help of information ex-
changes. The nodes are also able to move along time-efficient
paths toward their targets. Hence, MSNs with the proposed
algorithm can consume less energy in finding all targets and
ultimately prolong the network lifetime. Furthermore, MSNs

with the proposed algorithm are able to avoid obstructed areas
and reach their targets via time-efficient paths.

VI. DISCUSSION

Under the control of semi-flocking algorithm in [15], nodes
in searching state use a centralized mechanism to record
the visiting information on cells in the AoI. Let Ns be the
number of nodes in searching state. Let Nc and Na be the
number of cells of the AoI and the number of targets in
the AoI, respectively. Thus, the total communication load for
both area coverage and target tracking can be kept within
O(Ns) since each node needs to upload its own information
to a control center and then receives updated information. The
total computational load can be kept within O[Ns(Nc +Na)].
For nodes in monitoring state, they only need to upload the
target tracking information to the center and receive updated
information. Let Nm be the number of nodes in monitoring
state. Thus, the communication load is kept within O(Nm)
and the computational load is kept within O(NmNa).

Nodes under the control of the semi-flocking algorithm in
[16] apply a distributed mechanism to make decisions on area
searching and target tracking. Each node can independently
process its information of visiting time on cells of the AoI
and target information. Let N i

n be the number of neighboring

9

nodes of node i. For nodes operating in searching state, their
total communication load on visiting time information on
each cell of the AoI is given as

∑
i=1N

i
n . Nodes need to

update the visiting time information on cells that they have
actually visited, and they can exchange information via local
communications with nearby nodes to update their records.
Thus, the computational load of updating the visiting time
information is calculated as

∑
i=1(Nc + N i

nNc). Nodes in
searching state also exchange information of targets. The
computational load for sharing target information with nearby
nodes is calculated as

∑
i=1(N

i
nNa). The total computational

load for nodes in searching state is therefore calculated as∑
i=1(Nc +N i

nNc +N i
nNa). The worst case is that all nodes

in the AoI can connect with each other, which is calculated
as O[N2

s (Nc +Na)]. For nodes in monitoring state, they only
need to exchange target information with their peer nodes.
Therefore, the communication load is calculated as

∑
i=1N

i
n

and the computational load is given as
∑
i=1(N

i
nNa). The

complexity under the worst scenario is therefore equal to
O(N2

mNa) when all nodes connect with each other.
Since nodes under the control of the proposed semi-flocking

algorithm adopt the same mechanism to update their informa-
tion as that in [16] and computational loads are calculated
in the same way. However, there are nodes in traveling state
which need to store their off-line routing tables. It is not
necessary for these nodes to exchange information with other
nodes. They only need to access their off-line routing tables.
They need to read their off-line routing tables which record the
information of intersection points on the planned path. Let Nt
be the number of nodes in traveling state. Let N i

b be the size
of an off-line routing table for storing planned path of node i.
Furthermore, let Np denote the total number of patches of the
mobility map. Therefore, computational load of reading tables
can be identified as

∑
i=1N

i
b . The worst-case computational

load can be given as O(NtNp) which occurs when a planned
path connects all the patches in the AoI.

Compared with the algorithms presented in [15] and [16],
the main contributions of this paper are an A* IL path planning
algorithm and a state transition model for mobile nodes. The
proposed algorithm considers the cost of maneuvering nodes
in the AoI and incorporates path planning in its mechanism.
A path planning enabled semi-flocking approach for MSNs in
monitoring multiple moving targets is proposed in this paper.
An A*-based search algorithm is presented to rapidly generate
time-efficient paths based on a mobility map that incorporates
the speed constraints in the given AoI. Nodes are therefore
able to navigate away from obstacles, avoid slow areas, reach
targets via time-efficient paths, and form small groups around
targets to provide the required sensing coverage. On the other
hand, in order to improve coordination and cooperation among
nodes, a state transition model is designed for nodes to switch
among the searching state, traveling state, and monitoring
state.

VII. CONCLUSION

MSNs can monitor multiple moving targets in large sensing
areas. Many existing MSNs control algorithms, however, do

not consider the cost of maneuvering nodes in the AoI and
do not incorporate path planning in their mechanisms. In
this work, a path planning enabled semi-flocking approach
for MSNs in monitoring multiple moving targets is proposed
to tackle these challenges. An A*-based search algorithm is
presented to rapidly generate time-efficient paths based on a
mobility map that incorporates the speed constraints in the
given AoI. Nodes are therefore able to navigate away from
obstacles, avoid slow areas, reach targets via time-efficient
paths, and form small groups around targets to provide the
required sensing coverage. MSNs under the proposed algo-
rithms can detect multiple targets faster with lower traveling
costs and have a better practicability in real-life monitoring
applications.

REFERENCES

[1] H. Mahboubi, K. Moezzi, A. G. Aghdam, K. Sayrafian-Pour, and V. Mar-
bukh, “Distributed deployment algorithms for improved coverage in a
network of wireless mobile sensors,” IEEE Transactions on Industrial
Informatics, vol. 10, no. 1, pp. 163–174, 2014.

[2] Y. Zhang and Z. Wang, “Optimal RFID deployment in a multiple-stage
production system under inventory inaccuracy and robust control policy,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3230–
3242, 2018.

[3] Y. Toda and N. Kubota, “Self-localization based on multiresolution map
for remote control of multiple mobile robots,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 3, pp. 1772–1781, 2013.

[4] C.-F. Cheng and C.-W. Wang, “The target-barrier coverage problem in
wireless sensor networks,” IEEE Transactions on Mobile Computing,
vol. 17, no. 5, pp. 1216–1232, 2018.

[5] P. Singh, P. Agrawal, H. Karki, A. Shukla, N. K. Verma, and L. Behera,
“Vision-based guidance and switching-based sliding mode controller for
a mobile robot in the cyber physical framework,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 4, pp. 1985–1997, 2018.

[6] J. Chen, M. B. Salim, and M. Matsumoto, “A single mobile target
tracking in voronoi-based clustered wireless sensor network,” Journal
of Information Processing Systems, vol. 7, no. 1, pp. 17–28, 2011.

[7] M. Bocca, O. Kaltiokallio, N. Patwari, and S. Venkatasubramanian,
“Multiple target tracking with rf sensor networks,” IEEE Transactions
on Mobile Computing, vol. 13, no. 8, pp. 1787–1800, 2014.

[8] A. Milan, K. Schindler, and S. Roth, “Multi-target tracking by discrete-
continuous energy minimization,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 38, no. 10, pp. 2054–2068, 2016.

[9] S. Martı́nez and F. Bullo, “Optimal sensor placement and motion
coordination for target tracking,” Automatica, vol. 42, no. 4, pp. 661–
668, 2006.

[10] W. Zhang and G. Cao, “DCTC: dynamic convoy tree-based collaboration
for target tracking in sensor networks,” IEEE Transactions on Wireless
Communications, vol. 3, no. 5, pp. 1689–1701, 2004.

[11] P. M. Djuric, M. Vemula, and M. F. Bugallo, “Target tracking by
particle filtering in binary sensor networks,” IEEE Transactions on
Signal Processing, vol. 56, no. 6, pp. 2229–2238, 2008.

[12] Z. Wang and D. Gu, “Cooperative target tracking control of multiple
robots,” IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp.
3232–3240, 2012.

[13] H. P. Gupta, S. Rao, A. K. Yadav, and T. Dutta, “Geographic routing
in clustered wireless sensor networks among obstacles,” IEEE Sensors
Journal, vol. 15, no. 5, pp. 2984–2992, 2015.

[14] H. Mahboubi, W. Masoudimansour, A. G. Aghdam, and K. Sayrafian-
Pour, “An energy-efficient target-tracking strategy for mobile sensor
networks,” IEEE Transactions on Cybernetics, vol. 47, no. 2, pp. 511–
523, 2017.

[15] S. H. Semnani and O. A. Basir, “Semi-flocking algorithm for motion
control of mobile sensors in large-scale surveillance systems,” IEEE
Transactions on Cybernetics, vol. 45, no. 1, pp. 129–137, Jan 2015.

[16] W. Yuan, N. Ganganath, C.-T. Cheng, G. Qing, and F. C. Lau, “Semi-
flocking-controlled mobile sensor networks for dynamic area coverage
and multiple target tracking,” IEEE Sensors Journal, vol. 18, no. 21, pp.
8883–8892, 2018.

[17] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms
and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3,
pp. 401–420, 2006.

10

[18] H. Su, X. Wang, and Z. Lin, “Flocking of multi-agents with a virtual
leader,” IEEE Transactions on Automatic Control, vol. 54, no. 2, pp.
293–307, 2009.

[19] Y.-Q. Miao, A. Khamis, and M. S. Kamel, “Applying anti-flocking
model in mobile surveillance systems,” in International Conference on
Autonomous and Intelligent Systems (AIS). IEEE, 2010, pp. 1–6.

[20] N. Ganganath, C.-T. Cheng, and C. K. Tse, “Distributed antiflocking
algorithms for dynamic coverage of mobile sensor networks,” IEEE
Transactions on Industrial Informatics, vol. 12, no. 5, pp. 1795–1805,
2016.

[21] L. E. Parker, K. Fregene, Y. Guo, and R. Madhavan, “Distributed
heterogeneous sensing for outdoor multi-robot localization, mapping,
and path planning,” in Multi-Robot Systems: From Swarms to Intelligent
Automata. Springer, 2002, pp. 21–30.

[22] F. K. Karnadi, Z. H. Mo, and K.-c. Lan, “Rapid generation of realistic
mobility models for vanet,” in Wireless Communications and Networking
Conference. IEEE, 2007, pp. 2506–2511.

[23] W. Yuan, N. Ganganath, C.-T. Cheng, Q. Guo, and F. C. M. Lau, “A
consistent heuristic for efficient path planning on mobility maps,” in
International Symposium on A World of Wireless Mobile and Multimedia
Networks (WoWMoM). IEEE, 2017, pp. 1–5.

Wanmai Yuan received the B.Eng. degree in
communication engineering from Xidian University,
Xi’an, China, in June 2014, and the Ph.D. degree in
electronics and information engineering from Harbin
Institute of Technology, China in July 2019. He
was a recipient of the National Scholarship in 2018
during his Ph.D. studies. He also received the Ph.D.
degree in electronic and information engineering,
the Hong Kong Polytechnic University, Hong Kong
in Sep 2019. From 2018 to 2019, he was a Ph.D.
visiting student in the Department of Electrical and

Computer Engineering, University of Toronto. Since July 2019, he has been an
engineer in the China Academy of Electronics and Information Technology,
Beijing, China. His main research interests include flocking control and
formation control for UAVs.

Nuwan Ganganath received the B.Sc. (Hons) de-
gree with first class honors in electronics and
telecommunication engineering from the University
of Moratuwa, Sri Lanka, in 2010, the M.Sc. de-
gree in electrical engineering from the University
of Calgary, Canada in 2013, and the Ph.D. degree
in electronic and information engineering from the
Hong Kong Polytechnic University, Hong Kong in
2016. He is currently an Adjunct Research Fellow
at the School of Engineering at the University of
Western Australia, Australia.

Chi-Tsun Cheng received the B.Eng. and M.Sc.
degrees from the University of Hong Kong in 2004
and 2005, respectively, and the Ph.D. degree from
the Hong Kong Polytechnic University in 2009.
From 2010 to 2011, he was a Post-Doctoral Fel-
low at the Department of Electrical and Computer
Engineering, the University of Calgary. From 2012
to 2018, he was a Research Assistant Professor
at the Department of Electronic and Information
Engineering, the Hong Kong Polytechnic University.
Since June 2018, he has been a Senior Lecturer

at the Department of Manufacturing, Materials and Mechatronics, RMIT
University, Melbourne, Australia. He serves as Associate Editors for the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS II, IEEE ACCESS, and IEICE
NONLINEAR THEORY AND ITS APPLICATIONS. His research interests include
Wireless Sensor Networks, Internet of Things, Industry 4.0 Technologies,
Cloud Computing, and Additive Manufacturing.

Guo Qing received the B.Eng. degree in radio
engineering from Beijing University of Posts and
Telecommunications, Beijing, China, in 1985, and
the M.Eng. and Ph.D. degrees in information and
communication engineering from Harbin Institute of
Technology, Harbin, China, in 1990 and 1998. He is
currently a professor and the dean of the School of
Electronics and Information Engineering, Harbin In-
stitute of Technology. His research interests include
satellite communications, deep space communica-
tions,wireless transmission and broadband multime-

dia communication techniques.

Francis C.M. Lau received the BEng (Hons) degree
in electrical and electronic engineering and the PhD
degree from King’s College London, University of
London, UK. He is a Professor and Associate Head
at the Department of Electronic and Information
Engineering, The Hong Kong Polytechnic Univer-
sity, Hong Kong. He is also a Fellow of IET and a
Senior Member of IEEE. He is the co-author of two
research monographs. He is also a co-holder of five
US patents. He has published about 300 papers. His
main research interests include channel coding, co-

operative networks, wireless sensor networks, chaos-based digital communica-
tions, applications of complex-network theories, and wireless communications.
He was the Chair of Technical Committee on Nonlinear Circuits and Systems,
IEEE Circuits and Systems Society in 2012-13. He served as an associate
editor for IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II in
2004-2005 and IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I
in 2006-2007, and IEEE CIRCUITS AND SYSTEMS MAGAZINE in 2012-
2015. He has been a guest associate editor of INTERNATIONAL JOURNAL
AND BIFURCATION AND CHAOS since 2010 and an associate editor of
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II since 2016. He
served as a General co-chair of International Symposium on Turbo Codes and
Iterative Information Processing 2018.

Yanjie Zhao received the B.Sc. degree from Ts-
inghua University, China in 2006, the M.Sc. degree
from Colorado State University, United States in
2007, and the Ph.D. degree from Purdue Univer-
sity, United States in 2012, all in Physics. From
2012 to 2014, he was a Post-Doctoral Researcher
with Purdue University. He is currently the director
of Intelligent Systems Research Institute of China
Academy of Electronics and Information Technol-
ogy. He is also a member of advisory board of
Chinese National Next-Generation AI Project, com-

mittee of Intelligent Unmanned Systems of Chinese Institute of Electronics,
committee of Navigation Guidance and Control of Chinese Society of Aero-
nautics and Astronautics, committee of UAVs Autonomous Control of Chinese
Association of Automation, and the board of directors of Chinese Institute of
Command and Control.

