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ABSTRACT Takagi-Sugeno-Kang (TSK) fuzzy systems are well known for their good balance between
approximation accuracy and interpretability. In this paper, we propose a deep view-reduction TSK fuzzy
system termed as DVR-TSK-FS in which two powerful mechanisms associating with a deep structure are
developed: 1) during the multi-view learning in each component, a sample-distribution-dependent parameter
is defined to control the learning of the weight of each view. The parameter is not fixed by users, it is set
according to the feature space in advance such that the learnt weight of each view indeed reflects the amount
of pattern information involved in each view; 2) during the iteration of DRV-TSK-FS in each component,
weak views are automatically reduced by comparing the learnt weight with a fixed threshold which is
also automatically set according to the number of objects and the dimension of the feature space. 3) All
components are linked in a stacked way based on the stacked generalization principle such that the outputs
of all previous components are augmented into the current one which can help open the manifold structure of
the original feature space. DRV-TSK-FS is testified on a multi-view EEG dataset for epileptic EEG signals
recognition.

INDEX TERMS Multi-view learning, stacked generalization principle, view reduction, TSK fuzzy systems.

I. INTRODUCTION
Epilepsy is a finite episode of brain dysfunction caused by
abnormal discharge of cerebral neurons. With regards to the
clinical diagnosis of Epilepsy, electroencephalogram (EEG)
signals are often employed to decide its presence and type [1].
With the development of clinical decision systems (CDS),
how to design an effective CDS and hence automatically
detect seizures from EEG signals becomes very significantly
in clinical practice. As a result, many machine learning-
based approaches including SVM [2], fuzzy systems [3]–[7],
KNN [14]–[16], decision trees [17], [18] have been devel-
oped and successfully applied in epileptic EEG signals recog-
nition [3]–[7]. As stated in [4], two essential steps are required
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when a CDS works for EEG signals recognition. The first
one is to extract valuable features from EEG signals by
appropriate feature extraction approaches. The second one is
to design and train a classifier for EEG signals recognition
using the extracted features. From the above two steps, it is
obvious that there exist at least two main factors which may
affect the recognition performance. One is that sufficient
and effective features extracted from EEG signals may bring
positive affection to the recognition performance. Recently,
some studies focus on using different feature extraction
approaches to extract EEG features simultaneously, then
combining there different kinds of features together to drive
a multi-view CDS for EEG signals recognition. In [4], the
authors firstly employed different extraction approaches, e.g.,
WPD, STFT, KPCA [19]–[22] to extract EEG features to
construct multi-view EEG data. Then they introduced the
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FIGURE 1. An example of weak views.

Shannon entropy and developed a multi-view TSK fuzzy
system to recognize abnormal EEG signals based on multi-
view collaborative learning framework. Their experimental
results indicated that comparing with traditional single view
EEG data, multi-view EEG data contain more significant
and effective pattern information. When combining with
multi-view collaborative learning, promising performance
for EEG signals recognition is able to be expected. Besides,
in [2], multi-view data are obtained by explicitly considering
both the EEG reconstruction and seizure detection errors
to unleash the power of multi-channel information. Except
multi-view features, the performance and interpretability of
the adopted classifier also plays a significant role for EEG
signals recognition. Although some classical classifiers (e.g.,
SVM, KNN, C4.5) can perform well for classification tasks,
they are all non-transparent for users. In other words, they are
black boxes and work in a black way. Recently, TSK fuzzy
systems are widely used for EEG signals recognition because
of their promising performance and high interpretability. For
example, in [4]–[7], the authors proposed different kinds of
TSK fuzzy systems for EEG signals recognition.

Despite multi-view TSK fuzzy systems can generate
promising performance and good interpretability for EEG
recognition, there still exists several challenges to be
addressed. Firstly, it is well known that, some views extracted
from EEG signals may contain redundant information and
become irrelevant or noneffective (We call these views weak
views). If they are included in the recognition procedure,
then they may not help discriminate between patterns and
accordingly yield invalid recognition results. Fig.1 gives a
toy example to illustrate the negative influences from weak
views.

Fig.1(a) shows 400 objects distributed in a 3-dimentional
space that can be grouped into 2 classes. All objects
in Fig.1(a) are projected into three 2-dimentional spaces,
i.e., the XY space, the YZ space and the XZ space, respec-
tively. Therefore, we can consider each feature space as a
view and analysis the original data in Fig.1(a) from 3 views.
Obviously, it is hard to obtain effective pattern information

from the feature space in Fig.1(c) to classify objects into
2 groups. Hence, during the procedure of multi-view collabo-
rative learning of the 3 views, the second one in Fig1.(c) may
exert negative influences on the final classification result.

Secondly, in most TSK fuzzy systems, a fuzzy grid is
often employed to group the input space into different subsets
and generate fuzzy rules. However, such a grid can cause
the rule-explosion problem so that the interpretability will
be inevitably degraded with the increasing number of fea-
tures [8]. To solve the rule-explosion problem, hierarchi-
cal TSK fuzzy systems are often used. Generally speaking,
a hierarchical TSK fuzzy system is constructed by several
classical TSK fuzzy systems as components in a layer-by-
layer way. The original feature space is divided into differ-
ent parts as the input of each component [8]. In addition,
the output of a component in one layer is also taken as the
input of a component in the next layer. Although hierarchical
TSK fuzzy systems can solve the rule-explosion problem,
the output of each component is not endowed with explicit
physical meaning such that fuzzy rules in each component
become incomprehensible. This problem become severe with
the increasing number of layers in hierarchical TSK fuzzy
systems.

To handle the aforementioned challenges, in this study,
a novel deep view-reduction TSK fuzzy system termed
as DVR-TSK-FS is proposed. In DVR-TSK-FS, a sample-
distribution-dependent parameter is defined to control the
learning of the view weight during multi-view collaborative
learning in each component. This parameter is user-free and
set according to the feature space in advance such that the
learnt weight of each view indeed reflects the amount of
effective / valuable pattern information involved in each view.
Moreover, a view-reduction principle is set out that weak
views are automatically reduced by comparing the learnt
weight with a fixed threshold which is also automatically
set according to the number of samples and the dimension
of feature space. Besides, based on the stacked generaliza-
tion principle [23], we design a special hierarchical structure
in which each basic component (1-TSK-FS) is linked in a
stacked way such that the generalization capacity of DVR-
TSK-FS is enhanced. Moreover, unlike classic hierarchical
fuzzy systems in which the outputs of previous layers have
less physical meaning, DVR-TSK-FS can hide the outputs of
previous layers in certainly factors such that its high inter-
pretability keeps.

The rest paper is organized as follows. We prepare some
basic knowledge about TSK fuzzy systems and multi-view
EEG data in Section II. In Section III, DVR-TSK-FS is
designed. In Section IV, experimental results on epilepsy
EEG data are reported and the paper is concluded in the last
section.

II. PRELIMINARY
Since the basic component in DVR-TSK-FS is the classic
1-order TSK fuzzy system (1-TSK-FS) and DVR-TSK-FS is
a special hierarchical fuzzy system, here we briefly introduce
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the fuzzy rule and training of 1-TSK-FS, and three classic
hierarchical structures used in fuzzy systems.

A. 1-TSK-FS
Suppose we have a dataset χ = {xi}Ni=1, where xi =
[xi1, xi2, . . . , xid ]T ∈ Rd and N is the number of samples
invovled in χ , then the kth fuzzy rule in the feature space
of the 1-order TSK fuzzy system can be expressed as

If xi1 is Ak1 ∧ xi2 is A
k
2 ∧ . . . ∧ xid is Akd ,

then f k (xi)=pk0 + p
k
1xi1 + . . .+ p

k
dxid , k = 1, 2, . . . ,K .

(1)

In (1), Akj is a fuzzy set subscribed by the input feature xij
for the kth rule, ∧ is a operator for fuzzy conjunction and
K is the number of fuzzy rules. Each fuzzy rule is premised
on the feature space (xi = [xi1, xi2, . . . , xid ]T ∈ Rd ) and
maps the fuzzy sets in the feature space to a varying singleton
represented by f k (xi). After series of operation steps and
defuzzification procedures, the decision result of the 1-order
TSK fuzzy system can be formulated as

yo(xi) =
K∑
k=1

µk (xi)
K∑

k ′=1
µk
′ (xi)

f k (xi) =
K∑
k=1

µ̃(xi)f k (xi), (2)

where

µk (xi) =
d∏
j=1

µAkj
(xij). (3)

The Gaussian function is often employed as the fuzzy
membership function such that µAkj (xij) can be defined as

µAkj
(xij) = exp(

−(xij − ckj )

2δkj
), (4)

where ckj and δkj denote the kernel center and kernel width,
respectively.

From (2), we see that ckj and δ
k
j in the antecedent and p

k
=

[pk0, p
k
1, . . . , p

k
d ]
T are two kinds of parameters needed to learn

in the training procedure of 1-order TSK fuzzy system. Gen-
erally speaking, antecedent learning and consequent learning
are carried out independently. As for antecedent learning,
clustering techniques [24]–[28] are often used. For example,
if FCM is employed, ckj and δ

k
j can be caclulated as

ckj =
N∑
i=1

µikxij
N∑
i=1

µik , (5)

δkj = h
N∑
i=1

uik (xij − ckj )
2

N∑
i=1

uik , (6)

where µik denotes the fuzzy membership degree xi =
[xi1, xi2, . . . , xid ]T belonging to cluster k . h is a regularized
constant that is often set to 0.5 manually or determined by

cross-validation strategies. As for antecedent learning, sup-
pose parameters in antecedent are determined, let

xe = (1, (xi)T )T , (7)

x̃ki = µ̃
k (xi)xe, (8)

xgi = ((x̃1i )
T , (x̃2i )

T , . . . , (x̃Ki )
T )T , (9)

pk = (pk0, p
k
1, . . . , p

k
d )
T , (10)

pg = ((p1)T , (p2)T , . . . , (pK )T )T , (11)

then the decision result of the 1-order TSK fuzzy system can
be rewritten as

yo(xi) = pTg xgi. (12)

From (12), it is obvious that the consequent learning can be
considered as solving a linear regression problem. According
to different criteria, many solution strategies can be used.
In [2], pg is solved by the following objective function,

J1−order−TSK (pg) =
1
2
(pg)Tpg

+
ηpg

2

N∑
i=1

∥∥∥(pg)T xgi − yi∥∥∥2, (13)

where 1
2 (pg)

Tpg is a regularization item than can improve the
generalization ability of the 1-order TSK fuzzy system for

classification tasks.
N∑
i=1

∥∥(pg)T xgi − yi∥∥2 is the error item and

ηpg > 0 is used to control the the complexity of the 1-order
TSK fuzzy system and the tolerance of errors. By setting
∂J1−order−TSK (pg)/∂pg to 0, the optimal pg can be analyti-
cally obtained as

pg=

(
Ik(d+1)×k(d+1)+

N∑
i=1

xgi(xgi)T
)−1
×

(
ηpg

N∑
i=1

xgiyi

)
.

(14)

B. HIERARCHICAL STRUCTURES
As stated in the first section, hierarchical structures designed
for fuzzy systems aim at solving the rule-explosion prob-
lem. Generally speaking, a hierarchical fuzzy system is con-
structed by many low dimensional fuzzy systems termed
as basic components that are connected in a layer-by-layer
manner [13]. Although different kinds of hierarchical fuzzy
systems have been designed for classification or regression
tasks, their frameworks, i.e., the hierarchical structures can
be divided into three categories, i.e., incremental, aggregated,
and cascaded [29], [30] as illustrated in Fig.2. With regards
to the incremental structure, the original features are broken
down into several parts, then each part is taken as the input
to the low-dimensional fuzzy systems. Also, except the first
layer, the low-dimensional fuzzy systems in other layers
receive the outputs of the previous layers and take as their
inputs [8], see Fig.2(a) which shows a 2-input incremental
hierarchical structure. For the aggregated structure shown
in Fig.2(b), the original features are also broken down into
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FIGURE 2. Structures of hierarchical fuzzy systems.

several parts, then each part is taken as the input only to
low-dimensional fuzzy systems in the first layer. Outputs
from the low-dimensional fuzzy systems in the first layer
are taken as inputs to the low-dimensional fuzzy system in
the next layer. Such a structure can be extended to a larger
number of low-dimensional fuzzy systems in the first layer
and multiple layers. Fig.2(c) shows the cascaded structure
which is another typical hierarchical structure. In cascaded
structure-based fuzzy systems, all input features are presented
to the first component whose output are then taken as the input
to the next component in a layer-by-layer manner.

Although the three types of hierarchical fuzzy systems can
better handle the rule-explosion problem mentioned above,
we should keep in mind that the severe deterioration in the
interpretability is creeping in. Firstly, it is difficult to give
physical meaning to intermediate variables (yi in Fig.2). As a
result, we cannot easily interpret each fuzzy rule in which
intermediate variables are embedded. Secondly, although the
hierarchical fuzzy systems are able to significantly reduce the
number of fuzzy rules, the curse of dimensionality still exists.
For example, in Fig.2(a), the number of layers increases as the
number of input features increases. As a result, the increasing
number of layers further deteriorates the interpretability of a
hierarchical fuzzy system.

C. MULTI-VIEW EEG DATA
The original EEG data1 we used in this study are provided
by the University of Bonn which consist of five groups,
i.e., group A to group E, with each one containing 100 single
channel EEG segments of 23.6 duration. The sampling rate
is 173.6Hz. Segments in group A and group B are obtained
from healthy volunteer subjects and segments in groups C,
D and E are acquired from volunteer subjects with epilepsy.
Table 1 gives the detailed description about the epileptic
EEG data, and Fig.3 illustrates some representative original
epileptic EEG signals in five groups.

Since the original EEG data are highly stochastic, nonsta-
tionary, nonlinear and contains background noises, it has been
demonstrated that directly using original EEG data for recog-
nition may result in unstable and even bad performance [4].

1https://www.meb.uni-bonn.de/epileptologie/science/physik/eegdata.
html

TABLE 1. Detailed information about the epileptic EEG data.

FIGURE 3. Original signals in five groups.

FIGURE 4. Extracted features by using WPD, STFT and DPCA methods,
respectively.

Feature extraction methods are widely used for signals pro-
cessing. Generally speaking, there exists three main types of
features involved in signals that can be extracted and used for
pattern recognition, i.e.,

1) time-domain features, e.g., principle component fea-
tures;

2) time-frequency features, e.g., features obtained by
wavelet analysis;

3) frequency-domain features, Fourier transform features;
In this study, we aim at learning pattern information in EEG

data from multiple views. Thus, we employ different feature
extraction methods, i.e., WPD (wavelet packet decomposi-
tion) [22], STFT (short time Fourier transform) [21] and
KPCA (kernel principal component analysis) [20] to extract
different kinds of features to construct a multi-view epilep-
tic EEG dataset for our next experiments. Fig.4 gives the
extracted features using the three methods from Group A.
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FIGURE 5. Deep structure of DVR-TSK-FS.

III. DEEP VIEW-REDUCTION TSK FUZZY SYSTEM FOR
EPILEPTIC EEG RECOGNITION
In this section, a deep view-reduction TSK fuzzy system
(DVR-TSK-FS) with high interpretability is proposed for
epileptic EEG recognition.

A. NOTATION AND PROBLEM STATEMENT
Suppose we have a multi-view EEG training dataset χ
in which features in each view are extracted from origi-
nal EEG signals by different feature extraction algorithms.
The multi-view dataset consists of P views, and samples
and corresponding label vectors in each view are denoted
as X(p)

= {x(p)i }
N
i=1 and T(p)

= {t (p)i }
N
i=1, respectively,

where x(p)i = [x(p)i2 , x
(p)
i3 , . . . , x

(p)
id ]T , 1 ≤ p ≤ P. With the

multi-view EEG data, we expect to recognize the epileptic
subjects. To be specific, a special hierarchical (deep) fuzzy
system is designed in which each component denoted as
Cl, 1 ≤ l ≤ L is connected in a stacked way, where L is the
number of the components. Each component as the basic unit
is a 1-TSK-FS which can achieve multi-view collaborative
learning and weak view reduction. Besides, the intermediate
output of the proposed fuzzy system should be endowed with
physical meanings such that the proposed fuzzy system is
highly interpretable.

B. DEEP STRUCTURE
Based on the stacked generalization principle [23], the deep
structure of DVR-TSK-FS is shown in Fig.5.

In Fig.5, all components are concatenated in a stacked
manner according to the stacked generalization principle.
Specifically, the output of the first component (layer), i.e.,Y1
of component C1 is augmented into the original input fea-
ture spaces as the input to the next all components, i.e.,
C2,C3, . . . ,CL . Similarly, the output of the lth component,
i.e., Yl is augmented into the original input feature spaces
as the input to next all components, i.e., Cl+1,Cl+2, . . . ,CL .
Finally, the input feature space of component CL consists
of the original feature space x(p)i and the outputs of all pre-
vious components. In this way, comparing with the clas-
sic TSK fuzzy system only having a single component, the

generalization capability of DVR-TSK-FS is improved since
that the manifold structure of the original input space is
constantly opened by outputs of previous components.

In such a deep structure, the kth fuzzy rule of the lth
component Cl in view p can be written as

If x(p)1 is Ak1 ∧ x
(p)
2 is Ak2 ∧ . . . ∧ x

(p)
d is Akd ∧ y1 is

Aky1 ∧ . . . ∧ yl−1 is A
k
yl−1 ,

then f kl (x
(p)) = pk,(p)1 x(p)1 + . . .+ p

k,(p)
l−1 x

(p)
l−1 + r

k,(p)
l , (15)

where Akyi is a fuzzy subset for the output yi ∈ Yi from the
ith component in the kth fuzzy rule (i = 1, . . . , l − 1 ), k =
1, . . . , Kl , and Kl is the number of fuzzy rules in component
Cl . p

k,(p)
1 , pk,(p)2 , . . . , pk,(p)l−1 and rk,(p)l are the coefficients of the

consequent linear function of the kth fuzzy rule in view p.
From (15), we see that the outputs of the previous com-

ponents, i.e., y1, y2, . . . , yl−1 are involved in the antecedent
of the fuzzy rule. It seems that the fuzzy rule shown
in (15) becomes incomprehensible because the outputs
y1, y2, . . . , yl−1 have no physical meanings. However, such
an issue can be resolved by considering the component Cl
with the fuzzy rule shown in (15) as another equivalent TSK
fuzzy system with high interpretable fuzzy rules. The output
of the component Cl can be expressed as

yl =
Kl∑
k=1

f k,(p)l (x(p))(
d∏
i=1

µki (x
(p)
i )

l−1∏
j=1

µkyj (yj(x
(p)))). (16)

Please note, according the discussion in [29], we omit

the denominator
Kl∑
k=1

d∏
i=1
µki (x

(p)
i )

l−1∏
j=1
µkyj (yj(x

(p)) in (16) when

the Gaussian function is adopted as the fuzzy membership
function. It is easy to see that a new TSK fuzzy system can
also achieve the same output shown in (16) whose kth fuzzy
rule can be expressed as,

If x(p)1 is Ak1 ∧ x
(p)
2 is Ak2 ∧ . . . ∧ x

(p)
d is Akd ,

then f kl (x
(p)) = pk,(p)1 x(p)1 + . . .+ p

k,(p)
l−1 x

(p)
l−1 + r

k,(p)
l ,

with CF(x(p)) =
l−1∏
j=1

µkyj (yj(x
(p))). (17)
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In (17), we see that only the original features are involved
in the antecedent and the outputs of previous components
now are hidden in a function CF(x(p)) termed as the dynamic
certainty factor. As a result, the antecedent is still compre-
hensible. As a new concept, CF(x(p)) here is a function of the
input x(p), which can be interpreted as the confidence degree
that the fuzzy rule can act on x(p).

Therefore, based on the above equivalence between the two
fuzzy systems, the interpretability of DVR-TSK-FS can be
insured.

C. MULTI-VIEW LEARNING AND VIEW REDUCTION
With regards to multi-view learning for each component in
DVR-TSK-FS, it it is expected that for an unseen sample,
its decision result of each view should be as consistent as
possible. Therefore, the multi-view learning mechanism on
the multi-view EEG training dataset χ can be expressed as

2 =
α

2

P∑
p=1

N∑
i=1

∥∥∥∥∥∥(p(p)g )T x(p)gi −
1

P− 1

P∑
l=1,l 6=p

(p̃(l)g )T x(l)gi

∥∥∥∥∥∥
2

,

(18)

where x(p)gi denotes the input vector in view p mapped

from x(p)i through (9), p(p)g denotes the consequent param-
eter in view p. p̃(l)g can be taken as the prior knowledge
of each view that is obtained by (14). In (18), the item
1

P−1

P∑
l=1,l 6=p

(p̃(l)g )T x(l)gi represents the mean of the prior deci-

sion result of all views, (p(p)g )T x(p)gi denotes the expected deci-
sion result of the pth view. Therefore, the multi-view learning
mechanism can be implemented byminimizing (18) such that
the decision result of each view can be consistent. α in (18) is
used to control the degree of consistency between each view.
It is often determined by cross-validation accroding to the
corresponding EEG training dataset.

As we stated in the first section, weak views may exert
negative influences on the final decision results during the
multi-view learning procedures. In order to reduce weak
views, the variant Shannon entropy [9], [10] introduced to
learn the weight of each view. Comparing with the Shannon
entropy used in other weight learning strategies, the variant
one is very different in that it employs a sample-distribution-
dependent parameter to control the viewweight learning such
that the weight can reflect the amount of pattern information
involved in each view more veritably. The view reduction
mechanism can be formulated as

1 =
β

2

P∑
p=1

wpδp
N∑
i=1

∥∥∥(p(p)g )T x(p)gi − ti
∥∥∥2

+
N
P

P∑
p=1

wp log δpwp,

s.t.
P∑
p=1

wp = 1, 0 ≤ wp ≤ 1. (19)

In (20), we introduce a weight vector w =

[w1,w2, . . . , wP]T in which each element represents the
weight of each view. This first item in 1 is used to control
the training errors, and the second item is a variant Shannon
entropy used to learn the view weight. Here, please note
that comparing with the classic Shannon entropy, a sample-
distribution-dependent parameter δp is embedded to control
the weight learning. We say that δp is sample-distribution-
dependent, it means that δp should be derived from the sample
distribution in each view. In the field of probability statistics,
the deviation, variance and mean or their combinations are
commonly-used indicators used to measure the object dis-
tribution. For example, in [11], the ratio of the variance and
mean, i.e., σ 2/µ are used to measure the dispersion degree
of objects. Smaller dispersion degree indicates a compact
object distribution. In (20), we expect that the view having
large dispersion degree should be discarded. Therefore, in this
study, we set δp = µ/σ 2 to control the weight learning.
In order to reduce the weak views, we introduce a threshold

as the upper bound ofwp. The view reduction principle can be
asserted that when wp ≤ 1/

√
NP, the correpsonding view is

reduced. It is abvious that when the number of view P is very
big, it is more reasonable to use wp ≤ 1/P as the reduction
condition. However, when P is not very big, the reduction
condition wp ≤ 1/P is not suitable. As all we know that
1/P = 1/

√

P2 = 1/
√
PP, so in order to search for the

balance between the bigger P and the samller one, we use
N , i.e., the number of objects in each view to replace one
P. Thus, the the reduction condition becomes wp ≤ 1/

√
NP

which is also suitable for multi-view datasets with smaller P.

D. OBJECTIVE FUNCTION
Based on multi-view learning and view reduction, the objec-
tive function of each component in DVR-TSK-FS can be
formulated as follows,

J (p(p)g ,w)

=
1
2
min
p(p)g ,w

P∑
p=1

(p(p)g )Tp(p)g

+
α

2

P∑
p=1

N∑
i=1

∥∥∥∥∥∥(p(p)g )T x(p)gi −
1

P− 1

P∑
l=1,l 6=p

(p̃(l)g )T x(l)gi

∥∥∥∥∥∥
2

+
β

2

P∑
p=1

wpδp
N∑
i=1

∥∥∥(p(p)g,c)T x(p)gi − ti∥∥∥2
+
N
P

P∑
p=1

wp log δpwp,

s.t.
P∑
p=1

wp = 1, 0 ≤ wp ≤ 1. (20)

In order to search for the extremum of J (p(p)g ,w) subjected
to the condition ofwp, a Lagrangianmultiplier λ is introduced
and the corresponding Lagrangian objective function is given
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as

L = J (p(p)g ,w)+ λ(1−
P∑
p=1

wp). (21)

Let ∂L/∂p(p)g = 0 and ∂L/∂w = 0, we can get two updated
rules as

p(p)g =

(
δpwp

N∑
i=1

(x(p)gi )
T x(p)gi + βI((dp+1)K )×((dp+1)K )

+ α

N∑
i=1

x(p)gi (x
(p)
gi )

T

)−1

×

δpwp N∑
i=1

x(p)gi ti +
α

K − 1

P∑
l=1,l 6=p

N∑
i=1

x(l)gi p̃
(l)
g


(22)

wp =

1
δp
exp(−P

N∑
i=1

∥∥∥(p(p)g )T x(p)gi − ti
∥∥∥2/N )

P∑
h=1

1
δh
exp(−P

N∑
i=1

∥∥∥(p(p)g )T x(p)gi − ti
∥∥∥2/N )

. (23)

With above two updated rules in terms of p(p)g and wp,
a iteration strategy also used in FCM is employed to search
for their optimal values. Please note, some weak views may
be reduced during the iteration procedure. But we should keep
in mind that the objective function is subject to the condition
P∑
p=1

wp = 1. So, during the iteration procedure, we should

dynamically adjust wp by

w′p =
wp

P′∑
p′=1

wp′

, (24)

where P′ is the number of views after view reduction.
With the obtained p(p)g and wp by a EEG training dataset,

for an unseen sample in each component, its decision result
can be computed as

yi = f (xi) =
P∑
p=1

wp(p(p)g )T x(p)gi . (25)

E. DEEP LEARNING ALGORITHM
Since components in DVR-TSK-FS are concatenated in a
stacked way, we develop a deep learning algorithm, i.e., the
layer by layer learning for DVR-TSK-FS. The pseudocode of
the deep learning algorithm is listed in Algorithm 1.

IV. EXPERIMENTAL RESULTS
In this section, the multi-view epileptic EEG data we intro-
duced in Section II.C are used in the following experi-
ments. For comparison studies, two classical classification
algorithms, i.e., SVM [12] and 1-TSK-FS [6], two multi-
view classification algorithms i.e., MV-L2-SVM [2], and

Algorithm 1 Deep Learning Algorithm for DVR-TSK-FS
Input:
1. EEG training dataset χ = {X(p)

}
P
p=1 where X(p)

=

{x(p)i }
N
i=1 and the corresponding label vector T = {ti}Ni=1.

2. Number of components, i.e., the depth DP.
3. Number of fuzzy rules in each component, i.e., Kl , 1 ≤
l ≤ L.
4. Regularization parameters α and β in the objective
function of each component.
Output:
p(p)g and wp of each view in the last component.

1. Set l = 1 which indicates the current component.
2. Initialize Y to empty which represents the output of the
current component.
Repeat

3. Initialize the weight vectorw of current component
by setting wp = 1/P.

4. Compute δp by δp = µ/σ 2 for each view in
current component.
5.Use FCM to obtain the antecedent parameters, then
obtain the consequent parameters p̃g by (14) as
prior knowledge.
6. Compute p(p)g by (23).
7. Compute wp by (24).
8. If wp ≤ 1/

√
NP, then reduce view p and

set P = P− 1.
9. If step 6 is executed, then update wp by (25).
10. If the difference of J (pmg,c,w) bewteen
two iterations is less than ε, then the iteration stops,

set Y =
P∑
p=1

wp(p
(p)
g,c)T x

(p)
gi and augment Y into

current feature space; Otherwise, go to step 6 and
continue;

Until l = L

MV-TSK-FS [4] and a deep TSK fuzzy system D-TSK-
FS [13] are introduced.

A. SETUP
In our experiments, the multi-view EEG dataset is randomly
grouped into three partitions, the first one contains 20%
samples is used for 5 cross-validation to search for the optimal
parameters, the second one contains 60% objects is used
for model training with the optimal parameters obtained
in cross-validation stage, and the last one is used for test-
ing. In the testing procedure, each algorithm is repeatedly
executed 10 times and the average testing accuracy and
the corresponding standard deviation are reported. Param-
eters in all benchmarking algorithms are set according to
Table 2.

All benchmarking algorithms and DVR-TSK-FS are coded
in the MATLAB (version: 2012b) environment on a PC with
4 cores of I5-4950 with 32G of memory.
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TABLE 2. Search intervals of all bechmarking algorithms.

B. ON MULTI-VIEW EEG DATA
Based on the original 5 groups EEG data and three feature
extraction methods, we construct one multi-view EEG data
contain Group A and B as health subjects and Group C as
epileptic subjects.

The experimental results are observed from three aspects,
i.e., view reduction, interpretability and the deep structure.

In order to observe the view reduction in each component,
we select the first component, and print the iteration steps
on multi-view EEG data. Some key steps in terms of view
weights are shown in Table 3. From Table 3, we see that
the reduction threshold is 1/

√
300× 3 = 0.0333(the size

of training samples is 300 and the number of views is 3),
when the iteration count of DVR-TSK-FS reaches to 98,
the weight of the second view, i.e., the features extracted
by STFT, is smaller than 1/

√
NP such that the second view

should be reduced according to our view reduction principle.
In the following iterations, the weights of the remnant views
are adjusted by (25) to obey the condition ‘‘sum to one’’.

Therefore, we see that the weak view, i.e., the second
view is automatically reduced by our adopted view reduction
mechanism. With the trained component, the testing accu-
racy of this component is 83.43%. In addition, to empha-
size the power of view reduction mechanism, we also train
each component without view reduction mechanism. That
is to say, when the weight of one view is smaller than
1/
√
NP, we do not carry out view reduction. The testing

accuracy of the firstly component without view reduction
is 78.76% which is inferior to that of the first component
with view reduction. From the comparison study, we believe
that weak views indeed bring negative influences to the final
performance.

TABLE 3. Iteration results of DVR-TSK-FS in terms of the weight of each
view.

In order to observe the interpretability of DVR-TSK-FS,
Table 4 list the some trained fuzzy rules on the second and
third component for the first view. It is obvious that the output
from the first component is not involved in the antecedents
and hence does not complicate the interpretation of the con-
sequents of the fuzzy rules because it is hidden in CF of these
rules. Each row in Table 4 can be translated into a fuzzy rule
with a linear consequent with CF. For example, the first fuzzy
rule in component C1 can be expressed as
If x1 is A11(1.8762, 0.2134) ∧ x2 is A12(1.3431, 0.3767) ∧

x3 is A13(2.5637, 0.2342)∧ x4 is A14(2.2310, 0.1176) ∧ x5 is
A15(−2.1345, 0.7123) ∧ x6 is A

1
6(−2.1345, 0.2123)

then f 1(x) = 1.3066x1+1.3207x2−1.2970x3−0.5135x4+
1.8413x5−

1.3517x6 + 0.0141, with CF(x) = e
−

1
2

(
y1(x)−3.6782

0.6753

)2
.

Furthermore, in order to deeply observe the promising
performance of EEG signals recognition, we report the testing
accuracy of each component and introduce other benchmark-
ing approaches for comparison studies. Table 5 gives the
comparison results in terms of average training accuracy,
testing accuracy and their corresponding standard deviation.

In Table 5, since SVM and 1-TSK-FS are two single-view
classification algorithms, we report the results of them from
two aspects, i.e., the results on the original feature space
and the average results on all views. From Table 4, we see
that the classification performance of SVM and 1-TSK-FS
in the original feature space is better than that of average
of all views. This is because each view is considered as
contributing equally to the classification accuracy and hence
their performance on the second view significantly drags
down the average results. In MV-TSK-FS and DVR-TSK-FS,
the Shannon entropy and its variant are introduced to learn
the viewweight of each view, respectively. However, by com-
paring the weight vectors from MV-TSK-FS and DVR-TSK-
FS (in Table 2), we find that with the parameter δp used in
the Shannon entropy, the weight of the second view in DVR-
TSK-FS is much smaller than that inMV-TSK-FS.Moreover,
by introducing the reduction condition wp ≤ 1/

√
NP, the

second view is reduced. Also, we find that with the reduction
condition, the performance is enhanced compared with that
without the condition.

D-TSK-FS is also a deep-structure based fuzzy sys-
tem. However, by comparing the performance of each
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TABLE 4. Rules obtained from multi-view EEG data.

TABLE 5. Comparison results on the EEG multi-view dataset (The result in
parentheses is the standard deviation).

compoment (C1, C2, and C3) withDVR-TSK-FS, we find that
our approch DVR-TSK-FS performs better than D-TSK-FS.
This is because, in our experiments, D-TSK-FS dose not

adopt multi-view learning mechanism but only joints all
features from each view together for its recgonitoin tasks.
In addtition, in D-TSK-FS, only the output of the previous
component is agumented into the next one, not all the prvious
outputs. Therefore, the manifold structure cannot be opened
enough.

Therefore, from the experimental results on the multi-view
EEG dataset, we can draw the following conlusions:

(1) The parameter δp derived from the object distribu-
tion in each view can control the view weight learning in
an effective manner. That is to say, comparing with MV-
TSK-FS, the weight of each view in the proposed algorithm
matches the pattern information involved in each view more
successfully.

(2) The upper bound 1/
√
NP used in the reduction con-

dition is more reliable than 1/P. In this experiment, 1/P =
0.3333 is near to the weight of the third view. Although it can
also successfully reduce the second view, it does not reliable.

(3) The deep structure used in DVR-TSK-FS can insure its
generalization capacity.

V. CONCLUSION
In this paper, a novel deep view-reduction TSK fuzzy system
DVR-TSK-FS is proposed in which two effective mecha-
nisms associating with the deep structure are developed to
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insure its performance. In the first mechanism, a sample-
distribution-dependent parameter is defined to control the
learning of the view weight during the multi-view learn-
ing in each component. This parameter is user-free and set
according to the feature space in advance such that the learnt
weight of each view indeed reflects the amount of pattern
information involved in each view. The second mechanism
sets out a view reduction principle that weak views are auto-
matically reduced by comparing the learnt weight with a fixed
threshold which is automatically set according to the number
of objects and the dimension of feature space. Based on the
stacked generalization principle, all components are linked
in a stacked way. The proposed algorithm DVR-TSK-FS is
verified on a multi-view EEG dataset and its performance is
compared with other benchmarking algorithms.
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