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Background and purpose: Adaptive radiotherapy (ART) can compensate for the

dosimetric impacts induced by anatomic and geometric variations in patients with

nasopharyngeal carcinoma (NPC); Yet, the need for ART can only be assessed during the

radiation treatment and the implementation of ART is resource intensive. Therefore, we

aimed to determine tumoral biomarkers using pre-treatment MR images for predicting

ART eligibility in NPC patients prior to the start of treatment.

Methods: Seventy patients with biopsy-proven NPC (Stage II-IVB) in 2015 were enrolled

into this retrospective study. Pre-treatment contrast-enhanced T1-w (CET1-w), T2-w

MR images were processed and filtered using Laplacian of Gaussian (LoG) filter before

radiomic features extraction. A total of 479 radiomics features, including the first-order

(n = 90), shape (n = 14), and texture features (n = 375), were initially extracted

from Gross-Tumor-Volume of primary tumor (GTVnp) using CET1-w, T2-w MR images.

Patients were randomly divided into a training set (n = 51) and testing set (n = 19).

The least absolute shrinkage and selection operator (LASSO) logistic regression model

was applied for radiomic model construction in training set to select the most predictive

features to predict patients who were replanned and assessed in the testing set. A double

cross-validation approach of 100 resampled iterations with 3-fold nested cross-validation

was employed in LASSO during model construction. The predictive performance of each

model was evaluated using the area under the receiver operator characteristic (ROC)

curve (AUC).

Results: In the present cohort, 13 of 70 patients (18.6%) underwent ART. Average

AUCs in training and testing sets were 0.962 (95%CI: 0.961–0.963) and 0.852 (95%CI:

0.847–0.857) with 8 selected features for CET1-w model; 0.895 (95%CI: 0.893–0.896)

and 0.750 (95%CI: 0.745–0.755) with 6 selected features for T2-w model; and 0.984

(95%CI: 0.983–0.984) and 0.930 (95%CI: 0.928–0.933) with 6 selected features for joint
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T1-T2 model, respectively. In general, the joint T1-T2 model outperformed either CET1-w

or T2-w model alone.

Conclusions: Our study successfully showed promising capability of MRI-based

radiomics features for pre-treatment identification of ART eligibility in NPC patients.

Keywords: radiomics, nasopharyngeal carcinoma, adaptive radiation therapy, tumor shrinkage, magnetic

resonance imaging

INTRODUCTION

Due to the high proximity of the primary NPC tumor
to the surrounding critical organs (spinal cord, brainstem,
parotid glands) and metastatic neck lymph nodes, NPC is
rarely treated surgically; radiation therapy (RT) remains the
mainstay of NPC treatment (1). Intensity-modulated radiation
therapy (IMRT) with/without induction chemotherapy (IC)
or adjuvant chemotherapy (AC) is currently the standard of
care for NPC patients (1). In clinical practice, RT treatment
plans are tailor-made based on anatomic information of
individual patients from their pre-treatment planning computed
tomography (CT) images to maximize the radiation dose
to tumor while protecting nearby critical structures and
maintaining sufficiently high dose coverage to surrounding
nodal targets.

However, an abundance of research has shown that significant
anatomic and geometric variations are not uncommon
throughout the course of RT for NPC due to either body
weight loss (BW loss) or tumor regression (2–8). Radiation-
induced mucositis is a common and debilitating complication
for RT to HNC patients, which can lead to severe pain and
difficulty in eating, largely affecting one’s nutritional intake
and resulting in significant BW loss. A prospective study
reported a 37% of BW loss > 5 kg by the end of treatment
(9). Patients having significant BW loss tends to accompany

with reduced skin separation at various levels of cervical spine

and neck (10), causing positional variability due to possible

head movement inside the thermoplastic cast. Consequently,

such variations would leave the issue of whether the contour

deviations induced significant dose deviations in target or

organs at risk. For tumor regression, Hu et al. (6) conducted a

retrospective study and reviewed the planning CT and re-CT
images of 40 re-planned NPC patients and confirmed the
significant clinical-target-volume shrinkage of 35.1%. Murat
et al. (11) also reported median percentage change in GTV
of HNC patients for primary (26.8%), nodal (43.0%), and
total (31.2%) GTVs. Indeed, when significant tumor shrinkage
occurs, those critical organs might move into the original
high dose region, leading to deleterious dosimetric impact
on the surrounding organs (3, 4, 12) and/or insufficient dose
delivery to targets (4, 13). ART can compensate for these
dosimetric impact and maintain desirable therapeutic index.
The clinical and dosimetric benefits of ART for HNC and NPC
cancer patients have been widely reported (14–17). Yet, the
implementation of ART is limited by several reasons. First, the
choice to ART can be resource intensive and time-consuming

for repeat imaging, re-contouring, re-planning, and analyzing
dosimetric impacts between previous and new treatment plans,
adding significant clinical burden and cost of patient care to an
oncology center. Hence, performing ART on a patient basis is
clinically impractical, especially for some busy units. Second,
due to the nature of multifactorial ART eligibility, there is no
universal selection protocol for ART that can be applied to all
hospitals. In this regard, a huge amount of efforts has been
constantly made to identify possible ART criteria for HNC and
NPC cancer patients (5–7, 11, 18–21) to facilitate the clinical
application of ART. Despite that, the current ART practice in
most oncology centers, particularly for those busy units, is not
efficient. The need for ART of each patient can now be only
assessed during the RT treatment. Therefore, pre-treatment
identification of high-risk NPC patients for ART is crucially
favorable to achieve optimal personalized RT treatment, enabling
radiation oncologists to more effectively and accurately prescribe
ART for NPC patients and streamline resources management in
clinical settings.

Recently, the field of radiomics together with rapid machine
learning paradigms have increasingly gained popularity in
the community of medical research, paving the way toward
precision and personalized medicine (22). Radiomics, first
introduced by Lambin et al. (22), is now shifting the
role of medical imaging beyond the traditional diagnostic
purposes. It allows for transformation of digitally encrypted
medical images into mineable high-dimensional data, which
can then be quantitatively analyzed to decode concealed
genetic and molecular traits for decision making in oncology
(23). While the predictive powers of radiomics in both
cancer diagnosis and disease progression have been widely
investigated (24–28), an extremely limited effort has yet
been made to identify cancer patients for ART. Given the
evidence of significant tumor shrinkage between two CT
scans along RT treatment for re-planned NPC patients,
we hypothesize that radiomic features extracted from 3-
dimensional tumor volume contain predictive biomarkers for
tumor shrinkage following cancer treatment—an implication
for ART.

To our best knowledge, there is no research to include
radiomics in predicting ART eligibility for NPC patients
and its tumoral predictive biomarkers for ART has not
been explored before. The objective of our study was to
identify tumoral radiomic features using multi-parametric MR
images, which are capable of predicting the ART eligibility
for NPC patients. A study flow of current study is shown in
Supplementary Figure 1.
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METHODS AND MATERIALS

A Predefined Hypothesis
Radiomic features extracted from 3-dimensional tumor volume
contain predictive biomarkers for tumor shrinkage following
cancer treatment—an implication for ART.

Patients
Patient Source

The current research was approved by the Human Subjects
Ethics Sub-committee of the Hong Kong Polytechnic University
and Kowloon Central/Kowloon East Cluster Research Ethics
Committee of the Hospital Authority. This is a retrospective
study, based on analyses of anonymized radiographic data and
clinical data, the requirement for individual informed consent
was waived. A total of 100 newly diagnosed patients with biopsy-
proven (II-IVB) NPC (According to 7th edition of American
Joint Committee on Cancer/Union for International Cancer
Control TNM staging system) who received primary radiation
therapy with/without chemotherapy at the Department of
Clinical Oncology of Queen Elizabeth Hospital (QEH) between
April 2015 and February 2016 were retrospectively reviewed.
Based on the inclusion and exclusion criteria (IEC), 70 eligible
patients were enrolled in the current study and randomly
stratified into training (n = 51) and testing (n = 19) sets,
as illustrated in Figure 1 (Details of the IEC is described in
Supplementary Material).

Patient Data

Patient clinical data, including demographic information
(age, gender) and tumor characteristics (T stage, N stage,
histological subtype); imaging data (planning CT images, pre-
treatment CET1-w and T2-w MR images); treatment-related
data (contouring data, treatment machine, treatment strategies,
dose fractionation scheme); outcome data (re-plan status and any
replan-related medical records) were retrospectively collected.

Treatment

In general, patients with early-stage (I-II, n = 3) tumors were
treated with curative RT alone, while those with advanced-
stage (III-IVB, n = 67) were treated with radical concurrent
chemoradiotherapy (CCRT), with/without IC or AC. Pre -
treatment MRI and planning CT scans were performed within a
week prior to the start of IC treatment for target delineation and
during the last cycle of IC treatment, respectively. In our dataset,
7 out of 70 patients received IC, while only one underwent
ART procedures, who subsequently refused further IC after
completion of the first cycle due to repeated vomiting. See
Supplementary Material for details of the chemotherapy and
RT regimen.

Clinical Endpoint

The clinical endpoint of this study was defined as the re-plan
status of patients: whether or not a patient received ART during
RT treatment at the discretion of radiation oncologist.

FIGURE 1 | Inclusion and exclusion criteria used in the current study.
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Multifactorial ART Eligibility
A daily megavoltage CT (MVCT) or cone beam CT (CBCT) or
planar orthogonal X-rays was taken for all patients to correct
for positional variations and to assess anatomic or geometric
changes throughout the entire treatment chain. Additionally,
weekly records of body weight were made to assess whether
significant body weight loss (BWL > 10%) occurred.

The Radiation Oncology team reviewed daily scans on a
regular basis, considering BWL of individual patients. When
BWL > 10% occurred, possibly accompanied with noted change
in body or neck contour, significant lymph nodes regression
and/or loss of neck tissue, an adaptive review process was
initiated, where the original plan was re-calculated on the MVCT
scan for initial dosimetric evaluation to determine whether
further actions (re-CT and/or re-plan) or continuous monitoring
were appropriate. Patients who did not receive any actions from
the first review session were then proceeded with original plan
until the next review session for another dosimetric evaluation.
On plan review, radiation oncologist assessed the geometric,
volumetric and dosimetric variations of both target and organs
at risk (OARs) structures through both visual inspection and
dosimetric evaluation. The decision to generate a re-plan was at
the discretion of the treating radiation oncologist. Considerations
influencing ART implementation included risks of insufficient
primary and nodal targets coverage, overdose to critical organs
(such as spinal cord, optic chiasm, and brainstem), increase of
high skin dose areas over neck, and unfit of thermoplastic cast
for patient immobilization.

In our dataset, 39 (of 100) patients were initially enrolled into
the adaptive review processes, while only 16 ultimately received
re-planned procedures. Among the 16 patients, 13 were enrolled
in our study, the replans were mostly done during week 4–5 and
after the 20th fraction on average A diagram of leading causes
for ART implementation are illustrated in Figure 2. A detailed
qualitative summary of how those 39 patients were screened and
selected can be found in Supplementary Material.

MRI Acquisition and Segmentation
All 70 patients were scanned with 1.5-T MRI (Avanto, Siemens,
Germany) at QEH. We acquired T2-w and CET1-w Digital
Imaging and Communications in Medicine (DICOM) images
archived using Picture Archiving and Communication System
(PACs). The MR images acquisition parameters can be found
in Supplementary Material. Intravenous contrast enhanced
computed tomography (CT) simulation was performed at 3mm
intervals from the vertex to 5 cm below the sternoclavicular notch
with a 16-slice Brilliance Big Bore CT (Philips Medical Systems,
Cleveland, OH). All segmentations (tumor, nodal volume and
other organs-at-risk) were manually delineated on axial CT
slices by an experienced radiation oncologist (with >20 years
of experience), which was then fused with MR images for
further processing.

MRI Image Preprocessing
Before extracting radiomic features, all MR images were
processed using 3DSlicer (version 4.11.0). Isotropic resampling
was performed by linear interpolation to obtain a voxel size of

1 × 1 × 1mm to account for variations in scanning parameters
between studied MR series. MRI inhomogeneity correction was
applied to account for the locally varying intensity using N4ITK
algorithm. To ensure meaning comparison of the extracted
features values across all patients, intensity normalization was
conducted using brainstem as a reference ROI, which was chosen
because its signal intensity is comparatively homogeneous. The
existing contour of the brainstem structure for RT planning
purpose was modified to exclude air. Image discretization with
a fixed bin width of 5 to maintain constant intensity resolution
across resampled images. Apart from the original images, image
reconstructions were performed using Laplacian of Gaussian
(LoG) filter with sigma values of 2, 3, 4, 5mm to extract
features at multiple scales of resolution, from fine, medium
to coarse.

Feature Extraction and Preprocessing
A total of 479 radiomic features were extracted from GTVnp
on CET1-w and T2-w MR images, respectively, using
SlicerRadiomics in 3D Slicer (version 4.11.0). A representative
example of axial pre-treatment MR images with GTVnp contour
is shown in Figure 3. Extracted features included shape features
(n = 14), first-order intensity features (n = 90), and texture
features (n = 375) (See Supplementary Material for a detailed
listing of extracted features). All extracted radiomics features
were centered and scaled to a value with a mean of 0 and a
standard deviation of 1 (z-score transformation) before further
analysis using R software (version 3.5.2).

Feature Selection and Model Optimization
Methodology
To avoid over sensitive model, we removed highly inter-
correlated radiomics features. By using the R package “caret,”
we computed Pearson correlation coefficient (PCC) based on a
correlation matrix to quantify the pair-wise correlations. If two
radiomic features appeared a strong correlation with an absolute
correlation coefficient (r) ≥ 0.9, we removed the feature with
the largest mean absolute correlation. As a result, we obtained
a primary feature set of 53 from 479.

Following this, we applied Least Absolute Shrinkage and
Selection Operator (LASSO) algorithm in R package “glmet” to
select the most predictive radiomic features based on the ART
status of patients in the training set. The LASSO is typically
applied to select high-dimensional biomarkers, and coefficients
of the regression variables were penalized in the process of
regularization to minimize the prediction error. The ratio of
patients who did not receive ART (n = 57) to those who
did (n = 13) was 4, approximately. Considering the imbalance
data, we adopted our three-step feature screening strategy, as
illustrated in Figure 4, to construct CET1-w, T2-w, and joint
T1-T2 based radiomic models. The first two steps aimed to
further eliminate less/least predictive features in terms of their
frequency of occurrence among hundreds of generated models.
With the reduced features, we performed PCC with r ≥ 0.8
to avoid highly correlated features in our final models. Lastly,
model trainings were performed with reduced number of input
features using a double cross-validation approach, similar to the
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FIGURE 2 | An illustrative example of clinical decision on ART implementation.

FIGURE 3 | Axial pre-treatment morphological MR images of a 44-year-old man with undifferentiated carcinoma of NPC (T3N2M0). Features of radiomics were

extracted from the primary tumor area -GTVnp (red overlay). From left to right: CET1-w and T2-w MR image, respectively.

one adopted by Xu et al. (29) In short, 100 random sampling
was conducted to balance the class distribution within the cross-
validation partitions, which would result in a distribution of
AUC values across the generated models and hence allow us to
assess the model performance. A 3-fold nested cross-validation

was performed with 20 repetition to determine the optimal value
for the model tuning parameter (λ). As a result, a total of
2,000 models were generated for each input set of features (See
Supplementary Material for feature screening methodology). In
total, 8 sets of radiomic features with number of variables ranging
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from 3 to 10 were analyzed for the prediction capability in terms
of AUCs using box and whisker plots and 95 percent confidence
interval (CI).

Statistical Analysis
The statistical correlations between available clinical data and
replan status were assessed using univariate logistic regression.
All statistical analyses were performed using R software (version
3.5.2). The following R packages were used: The glmnet package
was used for LASSO logistic regression. The caret package was
used to perform Pearson correlation study. The ROCR package
was employed to perform ROC analysis. All statistical tests were
two-sided, and P-values of <0.05 were considered significant.

RESULTS

The demographic and tumor characteristics of 70 NPC
patients are summarized in Table 1. Thirteen (18.6%) patients
who underwent ART procedure were included. There is no
statistical association between the available clinical data and
re-plan incidence.

Figure 5 displays the AUC distributions for each feature
set (from 3 to 10 features). Figures 5A–C shows the box and
whisker plots of the three types of models (CET1-w, T2-w, and
joint T1-T2) for training set; Figures 5D–F are for testing set;
Figures 5G–I visualizes the range of 95% CI of AUCs in both
training and testing sets for the three types of models. The
optimal feature sets for each type of models were determined
considering the overall distribution of AUC values and its
stability.When adding onemore feature to the current feature set
made no/less difference to the AUC values, the current feature set
was considered as the optimal feature set that would give optimal
predictive performance of our models. Selected features for each
model are listed in Table 2.

Average AUC values in training and testing sets were 0.962
(95%CI: 0.961–0.963) and 0.852 (95%CI: 0.847–0.857) with
8 selected features for CET1-w model; 0.895 (95%CI: 0.893–
0.896) and 0.750 (95%CI: 0.745–0.755) with 6 selected features
for T2-w model; and 0.984 (95%CI: 0.983–0.984) and 0.930
(95%CI: 0.928–0.933) with 6 selected features for joint T1-T2
model, respectively.

DISCUSSION

We successfully revealed the predictive capability of MRI-based
radiomics in ART eligibility using our dataset. Eight features
were identified for CET1-w model, including 2 shape features
(sphericity, maximum 2D diameter slice) and 6 LoG-based
features which include 3 first-order features (kurtosis, skewness)
and 3 texture features (GLCM and GLDM). Six features were
selected for T2-w model, including 2 shape features (sphericity,
elongation) and 4 LoG-based features which include 1 first-order
feature (kurtosis) and 3 texture features (GLDM, NGTDM).
Six features were chosen for joint T1-T2 model, including 1
first-order feature (kurtosis) and 5 LoG-based features which
consist of 2 first-order features (kurtosis, skewness) and 3 texture
features (GLCM, GLDM), as shown in Table 2. With these

TABLE 1 | Patient characteristics in the present cohort.

Clinical

factor

Category Number

(Percent)

P-values

Gender Male 50 (71.4%) 0.2558

Female 20 (28.6%)

Age in

years

<51 21 (30%) 0.386

51–70 42 (60%)

>70 7 (10%)

T stage T1 2 (2.9%) 0.554

T2 2 (2.9%)

T3 50 (71.4%)

T4 16 (22.8%)

N stage N1 5 (7.1%) 0.859

N2 56 (80%)

N3 9 (12.9%)

Overall

stage

Stage II 3 (4.3%) 0.535

Stage III 43 (61.4%)

Stage IV 24 (34.3%)

Histology Type I 3 (4.3%) 0.827

Type II 1 (1.4%)

Type III 66 (94.3%)

Treatment EBRT-alone 14 (20%) 0.8411

CCRT 37 (52.9%)

CCRT + AC 11 (15.7%)

IC + CCRT 7 (10%)

Others 1 (1.4%)

Initial

weight

(kg)

(average

± SD)

Replan Group 61.6 ± 15.5 0.929

Non-replan Group 61.9 ± 12.2

EBRT, External Beam Radiation Treatment; CCRT, Concurrent Chemotherapy Radiation

Treatment; IC, Induction Chemotherapy; AC, Adjuvant Chemotherapy; Type I, Keratinizing

squamous cell carcinoma; Type II, Non-keratinizing differentiated carcinoma; Type III,

Non-keratinizing undifferentiated carcinoma.

selected features, we achieved average AUCs of 0.962 (0.852),
0.895 (0.750), 0.904 (0.930) in training (testing) set for CET1-
w, Tw-2 and joint T1-T2 models, respectively, representing a
promising result for pre-treatment prediction of ART eligibility
in NPC patients.

Multiple groups have confirmed that significant tumor
shrinkage occurs during RT, triggering the need for ART. Hu
et al. (6) reviewed the planning CT and re-CT images of 40
re-planned NPC patients and confirmed the significant clinical-
target-volume shrinkage of 35.1%. Murat et al. (11) reported
median percentage change in GTV of HNC patients for primary
(26.8%), nodal (43.0%), and total (31.2%) GTVs. Lee H et al.
confirmed average volume reduction of GTVnp of 45.9 cm3 (pre-
RT) to 26.7 cm3 (third week of RT) in 159 NPC patients. All these
studies have suggested that tumor shrinkage serves as a favorable
ART criterion. However, only a few studies have developed ART
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FIGURE 4 | Feature selection and model optimization methodology. Superscript “a”: T for training cohort; V for validation cohort. “b”: The number inside the

parentheses is either “1” or “0,” representing “re-planned” and “not re-planned” patients; Numbers in front of the parentheses indicate number of patients. “c”: 25

features remained in feature set 1c for CET1-w-based model; while 28 and 39 for T2-w-based and Joint T1-T2-based models, respectively. “d”: 16 features remained

in feature set 2 for CET1-w-beased model; while 13 and 22 for T2-w-based and Joint T1-T2-based models, respectively.

selection strategies based on the tumor volume reduction. Murat
et al. (11) developed a decision tree for tumor shrinkage for
HNC patients, incorporating initial target volumes and other
clinical factors; although an accuracy of 88% was reported in
predicting the tumor shrinkage in 48 patients, the validity was not
tested and some of the clinical factors used may not be available
in other clinics, such as tumor growth pattern (endophytic or
exophytic), hindering the generalizability of the decision tree.
Recently, Ramella et al. (30) explored the radiomic capability for
ART in lung cancer patients and reported that radiomic features
extracted from planning target volume (PTV) of lung cancer on
CT images were capable of distinguishing patients between ART
and non-ART group with AUC of 0.82, on the ground of tumor
shrinkage during treatment. To our best knowledge, this study
is the first to include radiomics in predicting ART eligibility for
NPC patients and its tumoral predictive biomarkers for ART has
not been explored before. Our promising results are also in line
with the work done by Ramella et al. (30)

In our experience, we observed that the joint T1-T2 radiomic
model outperformed either CET1-w or T2-w alone model
in terms of AUCs in both training and testing sets. From
Figures 5G–I, it can be observed that the joint T1-T2 model

gives a more consistent variation in 95% CI of AUCs against
different feature sets in both training and testing sets, suggesting
that joint T1-T2 model might be the preferable predictive system
among the others. Another interesting observation was that the
majority (5 of 6) of the selected features in the joint T1-T2 model
were from CET1-w images, suggesting that features from CET1-
w images might be more predictive than those from T2-w images.
A possible reason could be attributed to the inherent limitation
of LASSO; when pairwise correlations exist between predictors,
the LASSO picks one correlated predictor and ignores the rest.
To account for this, we performed another PCC with r ≥ 0.8
prior to part III in our feature selection methodology (Figure 4)
to avoid highly correlated features in our final models. Further
investigations on the feature selection methodology will be part
of our future studies.

On the other hand, NPC radiomics studies onMR images have
been widely studied, focusing mainly on prediction of prognosis
(disease progression) and treatment response to either induction
chemotherapy (IC) or chemo-radiotherapy, while prediction
of the need for replanning has not been previously reported.
Besides, each study developed a unique radiomic signature
for the same outcome prediction, which limits the feasibility
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FIGURE 5 | Distribution of AUC values in training and testing cohorts against different number of features in the constructed models from 100 resampled iterations of

20-repeated 3-fold cross validation (CET1-w model: first column, T2-w model: second column, and Joint T1-T2 model: third column). The box and whisker plots in

first (A–C) and second rows (D–F) display the AUC distributions with varying number of selected features in training cohort and testing cohort, respectively; the plots

in third row (G–I) displays 95% confidence interval and average AUCs for both cohorts against number of selected features in the models.

to directly compare all the resultant features between studies.
However, interestingly, categories of resultant features might
be different depending on prediction outcomes, which might
explain our results to some extent. For prognostic prediction,
texture features were obviously dominant in their final radiomic
signatures relative to first-order and shape features, and GLCM
(Gray-Level Co-occurrence Matrix) was the only shared-feature
category between studies. A possible rationale might be that
the texture features were considered to reflect intra-tumor
heterogeneity by depicting the spatial arrangement of voxels
(regularity) and variability of local intensity within tumor,
which was acknowledged as a characteristic of malignancy. For
prediction of treatment response, while GLCMwere still the only
common resultant feature category between studies, however,
first-order features were dominant in final radiomics signature.
Wang et al. investigated the capability of MRI-based radiomic
signatures to predict early response to IC for NPC patients
using T1-w, CET1-w, and T2-w MR images. Among the 15
features selected in their joint-T1-CET1-T2-w model, 7 were
first-order features, three were GLCM features, and the rest
were Gabor and wavelet features. Another radiomic study by
Hou et al. (31) exploring feasibility of CECT-based biomarkers
to predict therapeutic response of esophageal carcinoma to
chemo-radiotherapy reported that first-order features (skewness

and/or kurtosis) were identified as significant parameters for
differentiating SDs (stable disease) from PRs (partial response)
and SDs from CRs (complete response). In both studies,
the tumor response was assessed according to the Response
Evaluation Criteria in Solid Tumors (RECIST), which takes into
account the reduction of tumor size following treatment. Similar
to our study, we hypothesized that the image-based tumoral
biomarkers are predictive to tumor shrinkage.

In our results, shape features (e.g., Sphericity, Elongation,
Maximum 2D diameter slice) and/or first-order features (e.g.,
kurtosis and skewness) were generally dominant relative to
texture features in our models, which is consistent with
results from abovementioned radiomic studies for treatment
response prediction. Interestingly, kurtosis and/or skewness and
GLCM-based features are the common features shared in all
three models. Kurtosis and skewness measure the peakiness
and asymmetry of the histogram, respectively, while GLCM
features quantify the spatial gray-level variation within local
neighbors on a pixel basis. Nevertheless, the understanding of
the meaningfulness of these features, especially in relation to
the prediction outcome, is still largely unknown and deserves
further investigations.

This study has several limitations. Firstly, the heterogeneity
of image acquisition and reconstruction protocols and ART
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TABLE 2 | Table of selected features in CET1-w, T2-w, and joint T1-T2 radiomics models.

MRI series Selected radiomics features CET1-w model T2-w model Joint T1-T2 model

CET1-w Original shape Sphericity X

CET1-w Original shape Maximum 2D Diameter Slice X

CET1-w Log-sigma-2-0-mm-3D glcm MCC X X

CET1-w Log-sigma-2-0-mm-3D first-order Kurtosis X X

CET1-w Log-sigma-3-0-mm-3D first-order Skewness X X

CET1-w Log-sigma-4-0-mm-3D first-order Kurtosis X

CET1-w Log-sigma-5-0-mm-3D gldm Dependence Entropy X

CET1-w Log-sigma-5-0-mm-3D gldm Small Dependence Low Gray Level Emphasis X X

CET1-w Original first-order Kurtosis X

T2-w Original shape Sphericity X

T2-w Original shape Elongation X

T2-w Log-sigma-2-0-mm-3D gldm Large Dependence High Gray Level Emphasis X

T2-w Log-sigma-2-0-mm-3D glcm Imc1 X

T2-w Log-sigma-3-0-mm-3D ngtdm Strength X

T2-w Log-sigma-5-0-mm-3D first-order Kurtosis X

T2-w Log-sigma-3-0-mm-3D glcm Idn X

strategies in different medical centers limit the generalizability
of the identified models and reproducibility of the selected
features. In future study, we will perform testing on different
datasets obtained from other oncology departments with patients
undergoing MRIs on different scanners. Secondly, the rate of
adaptive replannings in the small cohort is relatively low. A
more convincible conclusion could be drawn by recruiting
larger cohorts with more balanced dataset between patients who
underwent replan and those did not, which will be part of
our future efforts. Lastly, the retrospective nature of this study
might account for the potential bias. However, the novelty of
this study was to highlight the capability of using pre-treatment
MRI radiomic features to predict which patients undergoing
radiotherapy for NPC were selected for ART. In future study,
radiomics features from other ROIs and other pertinent non-
radiomic clinical data, such as volumetric and dosimetric data
of tumor and nearby organs (e.g., lymph nodes and parotid
glands), and geometric relations among these structures, will be
incorporated into our radiomics models in future to yield a more
comprehensive prediction.

CONCLUSION

The present study successfully demonstrated promising
capability of MRI-based radiomics for pre-pretreatment
identification of ART eligibility in NPC patients. In particular,
the joint T1-T2 model with 6 selected radiomic features appears
to be the preferable predictive system over other studied models.
This would allow radiation oncologists to more effectively and
accurately prescribe ART on individual patient basis to achieve
true personalized radiotherapy for NPC patients, meanwhile
streamlining resources management in clinical settings. In
future work, multi-institution prospective studies with larger
patient sample are warranted to improve the clinical efficacy of
our models.
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