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ABSTRACT
Evaporation, one of the fundamental components of the hydrology cycle, is differently influenced
by various meteorological variables in different climatic regions. The accurate prediction of evapo-
ration is essential for multiple water resources engineering applications, particularly in developing
countries like Iraq where the meteorological stations are not sustained and operated appropriately
for in situ estimations. This is where advancedmethodologies such asmachine learning (ML)models
can make valuable contributions. In this research, evaporation is predicted at two different mete-
orological stations located in arid and semi-arid regions of Iraq. Four different ML models for the
predictionof evaporation– the classification and regression tree (CART), the cascade correlationneu-
ral network (CCNNs), gene expression programming (GEP), and the support vector machine (SVM) –
were developed and constructed using various input combinations of meteorological variables. The
results reveal that the best predictions are achieved by incorporating sunshine hours, wind speed,
relativehumidity, rainfall, and theminimum,mean, andmaximumtemperatures. The SVMwas found
to show the best performance with wind speed, rainfall, and relative humidity as inputs at Station I
(R2 = .92), and with all variables as inputs at Station II (R2 = .97). All the ML models performed well
in predicting evaporation at the investigated locations.
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1. Introduction

Evaporation is a key process in the hydrologic cyclewhich
has a direct effect on the planning and operation of water
resources (Penman, 1948; Stewart, 1984). Therefore, the
accurate quantification of evaporation is very important
to water managers and engineers (Qasem et al., 2019).
The rate of evaporation is extremely high in arid and
semi-arid environments, such as in Iraq (Sayl, Muham-
mad, Yaseen, & El-shafie, 2016). High evaporation rates
cause substantial volumes of water in reservoirs, natural
lakes, and river basins to vaporize into the atmosphere
(Boers, DeGraaf, Feddes, & Ben-Asher, 1986; Khan et al.,
2019). Hence, there is a need to consider the rate of
water loss from surface water bodies when designing and
operating dams and other hydraulic structures for irri-
gation and water resources management (Moazenzadeh,
Mohammadi, Shamshirband, & Chau, 2018). The impact
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of climate change on evaporation also highlights its
paramount importance in surface water balance (Sar-
tori, 2000); evaporative losses have been making this
issue more significant for water resources management
in recent years (Eames, Marr, & Sabir, 1997; Priestley &
Taylor, 1972).

Evaporation estimation can be accomplished using
direct or indirect approaches (Moran et al., 1996; Pen-
man, 1948). One direct method involves the measure-
ment of the evaporation rate from a Class A pan (with
a diameter of 1.22m and a depth of 0.25m), posi-
tioned 0.15m above the soil surface (Stanhill, 2002).
This approach not only provides accurate evapora-
tion estimates over time but is also easy and cheap,
as it does not require the installation of pans and
meteorological stations, which are often expensive (Ali
Ghorbani, Kazempour, Chau, Shamshirband, & Taherei
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Ghazvinei, 2018). However, the Class A pan approach is
restricted by its general implementation in several cli-
mate regionswhere climate characteristic varies fromone
to another.

The development of indirect estimation methods
based on the use of different meteorological variables
such as sunshine hours, wind speed, relative humidity,
rainfall, and the minimum, mean, and maximum tem-
peratures is often suggested for the estimation of evapo-
ration, especially whenworkingwith empirical and semi-
empirical models (Ali Ghorbani et al., 2018; Lu et al.,
2018). However, the major problem with using this form
of evaporation estimation is the dynamic nature of the
applied meteorological variables, owing to their non-
linearity, non-stationary, and stochastic features. It is thus
imperative to develop reliable and robust intelligent pre-
dictive models of evaporation. The development of such
models has become a major focus in water resources
management and engineering (Khan, Shahid, Ismail, &
Wang, 2018).

In recent years, a number of investigations into the
implementation of machine learning (ML) models for
evaporation estimation have been conducted across dif-
ferent regions (Abghari, Ahmadi, Besharat, & Reza-
verdinejad, 2012; Baydaroǧlu & Koçak, 2014; Di et al.,
2019; Fallah-Mehdipour, Bozorg Haddad, & Mariño,
2013; Fotovatikhah, Herrera, Shamshirband, Ardabili, &
Piran, 2018; Lu et al., 2018; Majhi, Naidu, Mishra, & Sat-
apathy, 2019; Moazenzadeh et al., 2018; Tabari, Marofi,
& Sabziparvar, 2010). Several versions of ML models
have been developed for evaporation modeling, includ-
ing evolutionary computing, classical neural networks,
kernel models, fuzzy logic, decision trees, deep learning,
complementary wavelet-machine learning, and hybrid
machine learning, among others (Danandeh Mehr et al.,
2018; Fahimi, Yaseen, & El-shafie, 2016; Jing et al., 2019;
Yaseen, Sulaiman, Deo, & Chau, 2019). The performance
of these models and their hybrid combinations has been
impressive in terms of prediction accuracy (Ghorbani,
Deo, Karimi, Yaseen, & Terzi, 2017; Yaseen et al., 2018).
However, most of these studies primarily focus on inves-
tigating the generalized capabilities of ML models in dif-
ferent climates, owing to the fact that each climate has its
own characteristics of stochasticity and non-stationarity.

ML models such as the classification and regression
tree (CART), the cascade correlation neural network
(CCNN), gene expression programming (GEP), and the
support vector machine (SVM) have achieved signif-
icant advancements in hydrologic modeling (Danan-
deh Mehr et al., 2018; Fahimi et al., 2016; Jing
et al., 2019; Yaseen et al., 2019). These models can
efficiently mimic and solve the stochasticity of dif-
ferent complex hydro-climatological processes. Recent

evaporation prediction studies have demonstrated a
noticeable achievement in better, more reliable general-
ized predictive models. This has also been the aim when
developing and implementing new evaporation predic-
tion methods, as the target is to achieve low prediction
errors.

In this context, the aim of this study is to investi-
gate the feasibility of the four different ML models listed
above for modeling the evaporation at two Iraqi mete-
orological stations located in Mosul and Baghdad. The
performances of the four appliedmodels are compared in
order to assess their prediction efficiencies and evaluate
the role of the various climatic factors in the prediction
of evaporation in arid and semi-arid regions.

2. Case study and data description

Iraq is mostly characterized by an arid to semi-arid cli-
mate, ranging from semi-humid in the north to semi-arid
in the south (Chenoweth et al., 2011). Iraq experiences a
lack of water resources and is susceptible to drought (Al-
Ansari, Ali, &Knutsson, 2014; Lelieveld et al., 2012). This
severely affects the socioecological system of the Tigris
basin, which has a population of over 18 million. Ris-
ing temperatures are associated with increasing scarcity
of surface water and decreasing water tables in aquifers,
which indicates that the current drought conditions may
intensify in the coming years. Temperatures and droughts
in the region are forecast as increasing steadily until they
reach unsustainable levels (Abbas, Wasimi, Al-Ansari,
& Sultana, 2018). Currently, Iraq loses about 61% of its
total precipitation to evaporation (Al-Taai &Hadi, 2018),
which has a significant impact on the country’s hydro-
logical cycle. Hence, it is necessary to make accurate esti-
mations of evaporation under various climates, especially
those of drought-prone Iraq (Abdullah,Malek, Abdullah,
Kisi, & Yap, 2015).

Drought is usually a direct outcome of the balance
between precipitation and temperature (Moazenzadeh
et al., 2018). The Tigris basin experiences an annual aver-
age rainfall ranging between 400 and 600mm, but it can
be as low as 150mm in the downstream and as high as
800mm in the upstream in some years. Based on the
data from Iraqi meteorological stations, both Baghdad
and Mosul have recorded high temperatures over the
period from 1999 to 2009. The mean July temperature
in Baghdad has ranged from 23.5 to 44.0°C, while the
annual rainfall and evaporation rates for the period are
244 and 3200mm, respectively. Mosul has experienced
a mean July temperature range of 24.8 to 43.0°C, with
annual precipitation and evaporation rates of 729 and
3900mm, respectively. Figure 1 shows the location of the
meteorological stations.
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Figure 1. Map of the selected study locations in Mosul (Station I) and Baghdad (Station II).

3. Appliedmachine learningmodels

3.1. CARTmodel

The CART is an ML approach that has been widely used
to develop regression and classificationmodels (Breiman,
Friedman, Olshen, & Stone, 1984). The CART structure
consists of a set of nodes, and each node contains a por-
tion of the data (Kumar, Pandey, Sharma, & Flügel, 2016).
A CART model is constructed via recursive partition-
ing: starting with a single root node, that node is split
into left and right child nodes (Pham, Bui, & Prakash,
2018). These child nodes can additionally be split in turn,
and themselves become parents of their own child nodes,
and so on. Three types of node are used: the root node,
the inner nodes, and the terminal nodes. The root node,
known as the ‘first parent’, is a parent only, the inner
nodes are both children and parents, and the terminal
nodes – as the last on their branches – are children only,
hence they are also referred to as leaf nodes. All data are
included in the root node. Two steps are carried out for
each split in the tree: the variable to be used for splitting is

selected, then the sets of variable values to be inherited by
the left child node and the right child node are defined.
The partitioning can then be drawn diagrammatically as
a tree (Figure 2(a)).

3.2. CCNNmodel

The CCNN (Fahlman & Lebiere, 1990) is a self-
organizing network which begins with only input and
output neurons. Every input is linked to every output,
and each connection is defined by an adjustable weight.
From this starting point the network is trained, a process
throughwhich neurons are selected from a pool of candi-
dates and added to a hidden layer. One neuron at a time is
added to the hidden layer, and once added these neurons
do not change. Because the CCNN is self-organizing and
grows during the training process, it is not necessary to
define the numbers of layers and neurons to be used in
the network. Variables are fed into the input layer, which
through the weighting in its connections to the output
layer along with a constant parallel input known as a bias
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Figure 2. Model structures for: (a) CART; (b) CCNN; (c) SVM.

value uses the neurons in the hidden layer to generate and
distribute values into the output layer. The network thus
uses feedback from the outputs in conjunction with the
neurons in the hidden layer to maximize the correlations
while minimizing the residual error. Figure 2(b) presents
the cascade architecture.

3.3. GEPmodel

Gene expression programming (GEP) is an evolution-
ary learning model introduced by Ferreira (2001) that is
made up of chromosomes. The expression tree consists
of two parts, the head and the tail, which are encoded in
a linear series of fixed-length chromosomes or genomes
and then represented as non-linear entities of various
shapes and sizes (Ferreira, 2006). Mathematical expres-
sions are automatically represented by a tree expression
that consist of nodes containing functions and leaves con-
taining variables and constants. The generated candidates
are assessed by using the root relative squared error as a
fitness function. The best candidates are then reassessed
by applying a modification evaluation cycle until the best

solution is achieved. Karva language is used to translate
the expression tree by reading it from left to right and
from top to bottom. AGEPmodel is developed using five
major steps: (1) identifying the set of independent vari-
ables to be utilized in individual programs; (2) defining
a set of functions and arithmetic operations; (3) select-
ing the fitness measure; (4) selecting the head length,
the number of genes, and the linking function; and (5)
selecting the genetic operators to be used (Ferreira, 2006).

3.4. SVMmodel

The SVM is a relatively new data-driven method of
applied mathematics learning theory that can be used
to unravel regression and classification issues (Vapnik,
1995). Classified as a new-generation learning machine,
the SVM uses a hyperplane to separate the data from
one dimension to high dimensional space and then solves
the regression problems using the following equation
(Raghavendra & Deka, 2014):

y = f (x) =
n∑
i=1

w × k(xi, x) + b, (1)

where w is the weight vector, b is the bias value, and
k(xi, x) is the kernel function. The values of the inter-
nal parameters are determined using the least squares
method by minimizing the sum of the squared devia-
tions. The most common regression modeling method
in SVM is called ε-SVM, the cost function for which is
formulated as follows:

|ε|ε = |y − f (x)|ε =
{

ε if y − f (x) ≤ ε

|y − f (x) − ε| otherwise
.

(2)
The goal of the cost function is to maximize the ε-

derivation. The minimization function can be explained
as:

Min
1
2
‖ w ‖2 + C

( l∑
i

ε∗
i +

l∑
i

εi

)
, (3)

which is subject to

yi − w, x − b ≤ ε + εi

w, x + b − yi ≤ ε + ε∗
i

εi, ε∗
i ≥ 0, (4)

where C is the cost factor and εi and ε∗
i are the slack

variables. Linear, polynomial, radial basis, and sigmoid
kernel functions can be used in the SVM algorithm. A
trial and error technique is employed to select the best
kernel function for the specified problem according to
the results. In the SVM model the predictors are called
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attributes, and a hyperplane known as a feature space is
used to transform these attributes. The task of selecting
the optimum representation is called feature selection,
and the set of features that describes a row of predictor
values is named a vector. The vectors that are close to
the hyperplane are known as support vectors. The model
accuracy depends on the choice of optimal parameters
for the kernel operation, like C, γ , etc. C is a trade-off
between an estimation error and the weight of the vector.
The SVM uses the cross-validation method to eliminate
overfitting. An example of a traditional SVM network is
shown in Figure 2(c).

3.5. Model development

Choosing the appropriate predictors is one of the most
important steps in building a robust predictive model
(Yaseen, El-shafie, Jaafar, Afan, & Sayl, 2015). In the
present study, four different ML models (the CART, the
CCNN, GEP, and the SVM) were selected for predict-
ing monthly evaporation. The suggested models were
developed using five different input combinations:

Model1(M1) : ETo = f (WS,RF), (5)

Model2(M2) : ETo = f (WS,RF,RH), (6)

Model3(M3) : ETo = f (WS,RF,RH,Tmin), (7)

Model4(M4) : ETo = f (WS,RF,RH,Tmin,Tmax), (8)

Model5(M5) : ETo = f (WS,RF,RH,Tmin,Tmax, Sh),
(9)

where ETo is the evaporation, WS is the wind speed,
RF is the rainfall, RH is the relative humidity, Tmin is
the minimum temperature, Tmax is the maximum tem-
perature, and Sh is the number of sunshine hours. The
hydrometeorological data were divided into two phases,
consisting of 80% training and 20% testing. The data
division was performed based on a trial and error proce-
dure through which the best prediction performance was
attained. There was no way to anticipate which settings
for each proposed model would be needed to obtain the
optimum prediction, so several models were developed
using a trial and error process and the results of these
models were compared in order to select the optimal set-
tings in each case. The GEP model requires the selection
of the functions set, population size, genes per chro-
mosomes value, gene head length, fitness function, and
linking function, and the genetic operators include the
mutation rate, inversion rate, gene transportation rate,
one-point recombination rate, two-point recombination
rate, gene recombination rate, IS transportation rate, and
RIS transportation rate. The SVM model requires the

selection of the parameters for the proposed kernel func-
tion. The CCNN model requires the selection of the
kernel function and the number of hidden neurons that
are created during the training process. TheCARTmodel
requires the selection of the minimum number of rows
per node, the minimum size node that can be split, and
themaximumnumber of tree levels. The predictivemod-
eling software DTREGwas used to develop themodels in
this study (Sherrod, 2003).

3.6. Prediction performancemetrics

The performance of the predictive models was assessed
using the following statistical metrics: the root mean
square error (RMSE), the mean absolute error (MAE),
the Nash–Sutcliffe coefficient (NSE), Willmott’s Index
(WI), Legate and McCabe’s Index (LMI), and the deter-
mination coefficient (R2) (Chai & Draxler, 2014; Legates
& McCave, 1999). The mathematical expressions of the
performance metrics are as follows:

RMSE =
√√√√ 1

N

n∑
t=1

(EToobs − ETopred)2[0,+∞], (10)

MAE = 1
N

n∑
t=1

|EToobs − ETopred|[0,+∞], (11)

NSE = 1 −
[∑N

i=1 (EToobs − ETopred)2∑N
i=1 (EToobs − ETopred)

2

]
[−∞, 1],

(12)

WI = 1 −

⎡
⎢⎢⎢⎣
∑N

i=1 (WLobs − WLpred)2∑N
i=1 (|ETof − EToo|

+|EToo − EToo|)2

⎤
⎥⎥⎥⎦ [0, 1],

(13)

LMI = 1 −
[∑N

i=1 |EToobs − ETopred|∑N
i=1 |EToobs − EToobs|

]
[−∞, 1],

(14)

R2 =

⎛
⎜⎜⎜⎜⎝

∑N
i=1(EToobs − EToobs)
(ETopred − ETopred)√ ∑N
i=1 (WLobs − WLobs)

2∑N
i=1 (WLpred − WLpred)

2

⎞
⎟⎟⎟⎟⎠

2

[0, 1], (15)

where EToobs and ETopred are the observed and predicted
evaporation processes, and EToobs and ETopred are the
mean values of the observed and predicted evaporation
processes.
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Table 1. The statistical performance metrics of the applied CART
model over the training and testing phases at Station I in Mosul.

Model Performance metrics

Training phase
RMSE MAE NSE WI LMI R2

M1 70.81 52.39 .75 .92 .56 .75
M2 53.11 37.42 .85 .96 .68 .85
M3 51.31 35.42 .86 .96 .70 .86
M4 48.35 31.38 .88 .96 .73 .88
M5 33.33 21.68 .94 .98 .82 .94

Testing phase
M1 67.70 51.34 .71 .92 .53 .80
M2 36.35 30.54 .91 .97 .72 .93
M3 91.89 56.65 .46 .86 .48 .58
M4 58.09 41.43 .78 .94 .62 .86
M5 48.89 37.61 .84 .96 .65 .87

Note: LMI = Legate and McCabe’s Index; MAE = mean absolute error; NSE
= Nash–Sutcliffe coefficient; R2 = determination coefficient; RMSE = root
mean square error; WI = Willmott’s Index. Bold font denotes lowest RMSE
value in each phase.

Table 2. The statistical performancemetrics of the applied CCNN
model over the training and testing phases at Station I in Mosul.

Model Performance metrics

Training phase
RMSE MAE NSE WI LMI R2

M1 41.67 20.38 .91 .97 .83 .91
M2 23.82 8.58 .97 .99 .92 .97
M3 44.81 29.81 .90 .97 .75 .90
M4 46.15 29.54 .89 .97 .75 .89
M5 45.78 29.71 .89 .97 .75 .89

Testing phase
M1 91.22 69.43 .48 .87 .36 .62
M2 52.64 40.12 .81 .95 .63 .86
M3 68.05 44.27 .70 .92 .59 .74
M4 68.05 44.27 .70 .92 .59 .74
M5 74.17 42.19 .64 .91 .61 .69

Note: LMI = Legate and McCabe’s Index; MAE = mean absolute error; NSE
= Nash–Sutcliffe coefficient; R2 = determination coefficient; RMSE = root
mean square error; WI = Willmott’s Index. Bold font denotes lowest RMSE
value in each phase.

4. Application and analysis

The performance of the four constructed ML models
was tested by predicting evaporation at two different
meteorological stations in Iraq. Station I (in Mosul) is
located in a semi-arid environment, whereas Station II (in
Baghdad) is located in an arid environment. Evaporation
was predicted using five different input combinations of
related meteorological variables (M1, M2, M3, M4, and
M5).

The performance of the four ML models during the
training and testing phases at Station I in Mosul is given
in Tables 1–4. The results show that during training the
CCNN model produced the most accurate prediction
with the lowest RMSE (23.83mm.d−1) and the highestR2
(.97) using only the three input variables of wind speed,
rainfall, and relative humidity. However, in general, the
best prediction capacity is attained when all the input
variables are used for the predictionmatrix (theM5 input

Table 3. The statistical performance metrics of the applied GEP
model over the training and testing phases at Station I in Mosul.

Model Performance metrics

Training phase
RMSE MAE NSE WI LMI R2

M1 70.81 52.39 .75 .92 .56 .75
M2 53.11 37.42 .85 .96 .68 .85
M3 51.31 35.42 .86 .96 .70 .86
M4 48.35 31.38 .88 .96 .73 .88
M5 44.46 28.66 .90 .97 .76 .90

Testing phase
M1 67.70 51.34 .71 .92 .53 .80
M2 36.35 30.54 .91 .97 .72 .93
M3 91.89 56.65 .46 .86 .48 .58
M4 58.09 41.43 .78 .94 .62 .86
M5 61.03 37.94 .75 .93 .65 .79

Note: LMI = Legate and McCabe’s Index; MAE = mean absolute error; NSE
= Nash–Sutcliffe coefficient; R2 = determination coefficient; RMSE = root
mean square error; WI = Willmott’s Index. Bold font denotes lowest RMSE
value in each phase.

Table 4. The statistical performance metrics of the applied SVM
model over the training and testing phases at Station I in Mosul.

Model Performance metrics

Training phase
RMSE MAE NSE WI LMI R2

M1 68.14 47.34 .76 .92 .60 .77
M2 51.01 33.40 .87 .96 .72 .87
M3 51.01 33.40 .87 .96 .72 .87
M4 47.72 31.37 .88 .96 .73 .89
M5 45.23 27.44 .89 .97 .77 .90

Testing phase
M1 61.15 47.88 .76 .93 .56 .80
M2 35.76 27.71 .91 .97 .74 .92
M3 73.41 40.10 .64 .90 .63 .69
M4 73.41 40.10 .64 .90 .63 .69
M5 58.20 33.77 .77 .94 .69 .79

Note: LMI = Legate and McCabe’s Index; MAE = mean absolute error; NSE
= Nash–Sutcliffe coefficient; R2 = determination coefficient; RMSE = root
mean square error; WI = Willmott’s Index. Bold font denotes lowest RMSE
value in each phase.

combination). This is clearly evidenced in the high corre-
lation of evaporationwith different climate variables such
as wind speed, rainfall, sunshine hours, humidity, and air
temperature. The second best model during the train-
ing process was the CART model, with the lowest RMSE
(33.33mm.d−1) and the highestR2 (.94) for theM5 input
combination. During the testing phase, all four models
attained their best performances for theM2 input combi-
nation, wherein just the wind speed, rainfall, and relative
humidity are used. The results also show that the CCNN
model performed best on all themetrics during the train-
ing phase, and the other three models tended to produce
performances that were relatively similar to each other.
However, the CART, GEP, and SVM models produced
very similar results for all the performance metrics dur-
ing the testing phase for the M2 input combination, and
their performance was found to be better than that of the
CCNNmodel in this phase.
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Table 5. The statistical performance metrics of the applied CART
model over the training and testing phases at Station II in Bagh-
dad.

Model Performance metrics

Training phase
RMSE MAE NSE WI LMI R2

M1 40.11 28.52 .94 .98 .81 .94
M2 44.13 32.13 .93 .98 .79 .93
M3 36.68 25.48 .95 .98 .83 .95
M4 32.95 23.46 .96 .99 .84 .96
M5 31.06 21.27 .96 .99 .86 .96

Testing phase
M1 86.04 65.10 .72 .92 .55 .74
M2 65.18 46.93 .84 .95 .67 .85
M3 53.76 40.03 .89 .97 .72 .92
M4 51.22 39.10 .90 .97 .73 .92
M5 49.38 36.81 .91 .97 .74 .94

Note: LMI = Legate and McCabe’s Index; MAE = mean absolute error; NSE
= Nash–Sutcliffe coefficient; R2 = determination coefficient; RMSE = root
mean square error; WI = Willmott’s Index. Bold font denotes lowest RMSE
value in each phase.

Table 6. The statistical performancemetrics of the applied CCNN
model over the training and testing phases at Station II in Bagh-
dad.

Model Performance metrics

Training phase
RMSE MAE NSE WI LMI R2

M1 73.54 56.31 .82 .95 .63 .82
M2 52.19 39.66 .91 .97 .74 .91
M3 46.73 34.53 .93 .98 .77 .93
M4 46.36 34.60 .93 .98 .77 .93
M5 43.37 32.01 .94 .98 .79 .94

Testing phase
M1 84.29 66.87 .73 .92 .53 .74
M2 57.46 45.78 .87 .96 .68 .89
M3 50.30 37.84 .90 .97 .73 .95
M4 47.49 37.92 .91 .97 .73 .95
M5 37.88 29.63 .94 .98 .79 .96

Note: LMI = Legate and McCabe’s Index; MAE = mean absolute error; NSE
= Nash–Sutcliffe coefficient; R2 = determination coefficient; RMSE = root
mean square error; WI = Willmott’s Index. Bold font denotes lowest RMSE
value in each phase.

For Station II in Baghdad, all the applied ML models
achieved their best performance during both the train-
ing and testing phases when the M5 input combination
was used (Tables 5–8). The results show that the CART
performed better than the other three models during the
training phase, whereas the SVMperformed the best dur-
ing the testing phase. In terms of the statistical metrics,
the SVM yielded the lowest RMSE (32.27mm.d−1) and
the highest R2 (.97).

Overall, the results from the two stations indicate that
the applied ML models achieved their best performance
in terms of the six metrics when all the climatological
information was incorporated, i.e. for theM5 input com-
bination. In other words, the results demonstrate that the
performance of these models increases as the number of
inputs into the models increases. Moreover, when com-
paring the results of the performance metrics from both

Table 7. The statistical performance metrics of the applied GEP
model over the training and testing phases at Station II in Bagh-
dad.

Model Performance metrics

Training phase
RMSE MAE NSE WI LMI R2

M1 83.38 65.69 .78 .93 .57 .78
M2 67.89 54.33 .85 .95 .64 .85
M3 67.89 54.33 .85 .95 .64 .85
M4 45.93 33.55 .93 .98 .78 .93
M5 45.94 33.91 .93 .98 .78 .93

Testing phase
M1 83.45 70.18 .74 .92 .51 .74
M2 64.84 53.94 .84 .95 .62 .89
M3 54.58 43.09 .89 .97 .70 .95
M4 48.10 36.64 .91 .98 .74 .96
M5 36.63 28.80 .94 .98 .80 .95

Note: LMI = Legate and McCabe’s Index; MAE = mean absolute error; NSE
= Nash–Sutcliffe coefficient; R2 = determination coefficient; RMSE = root
mean square error; WI = Willmott’s Index. Bold font denotes lowest RMSE
value in each phase.

Table 8. The statistical performance metrics of the applied SVM
model over the training and testing phases at Station II in Bagh-
dad.

Model Performance metrics

Training phase
RMSE MAE NSE WI LMI R2

M1 80.82 59.77 .79 .94 .61 .79
M2 52.86 37.47 .91 .97 .75 .91
M3 52.86 37.47 .91 .97 .75 .91
M4 40.11 28.52 .94 .98 .81 .94
M5 41.34 28.29 .94 .98 .81 .94

Testing phase
M1 81.74 66.42 .75 .92 .54 .75
M2 55.49 41.22 .88 .97 .71 .89
M3 45.38 34.03 .92 .98 .76 .95
M4 43.78 32.69 .92 .98 .77 .93
M5 32.27 24.75 .96 .99 .82 .97

Note: LMI = Legate and McCabe’s Index; MAE = mean absolute error; NSE
= Nash–Sutcliffe coefficient; R2 = determination coefficient; RMSE = root
mean square error; WI = Willmott’s Index. Bold font denotes lowest RMSE
value in each phase.

stations, the ML models tend to produce different results
for different stations, which indicates that the model per-
formance also depends on the climate of the investigated
area.

Figures 3 and 4 present box plots of the relative errors
computed for Stations I and II, respectively. The figures
show that the performances differ based on the employed
ML model, the input combinations, and the locations.
Higher relative errors are obtained when the minimum
number of inputs is used for constructing the predictive
models. The error decreases exponentially as the number
of inputs increases, which further supports the tabulated
results presented above.

Scatter plots are also used to compare the perfor-
mance of the ML models (Figures 5 and 6). The plots
show the agreement between the observed and predicted
evaporation using the determination coefficient (R2) and
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Figure 3. Relative error performance of the applied predictive models at Station I: (a) CART; (b) CCNN; (c) GEP; (d) SVM.
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Figure 3. Continued.
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Figure 4. Relative error performance of the applied predictive models at Station II: (a) CART; (b) CCNN; (c) GEP; (d) SVM.
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Figure 4. Continued.
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Figure 5. Scatter plot performance of the applied predictive models at Station I: (a) CART; (b) CCNN; (c) GEP; (d) SVM.
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Figure 5. Continued.
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Figure 6. Scatter plot performance of the applied predictive models at Station II: (a) CART; (b) CCNN; (c) GEP; (d) SVM.
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Figure 6. Continued.
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Figure 7. Taylor diagram visualizations for the performance of the applied predictive models at Station I: (a) CART; (b) CCNN; (c) GEP; (d)
SVM.

Figure 8. Taylor diagram visualizations for the performance of the applied predictivemodels at Station II: (a) CART; (b) CCNN; (c) GEP; (d)
SVM.
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Figure 9. Time series data visualization between the performance of the applied predictive models (dark blue lines) and the observed
evaporation process (black lines) at Station I: (a) CART; (b) CCNN; (c) GEP; (d) SVM.

the slope of the regression model. Generally, the results
show that all the models have the highest R2 for the M5
input combination, and the regression models best fit the
predicted observations for that combination.

Figures 7 and 8 exhibit the performance of the ML
models at Stations I and II, respectively, through Taylor
diagrams. The figures show a statistical summary of the
predicted and observed evaporation in accordance with
several statistical metrics, including the RMSE, standard
deviations, and correlation coefficients. The results here
demonstrate the superiority of the SVM model over the
other applied models.

Finally, the observed and predicted evaporation are
plotted as time series in Figures 9 and 10 for Stations

I and II, respectively. The black and dark blue lines
in the figures denote the observed and predicted time
series, respectively. It can be clearly seen that the pre-
dicted series fluctuate more compared to the observed
series when a lower number of input variables is used
for the development of themodels, whereas the predicted
series completely overlap the observed series when all the
meteorological variables are used as inputs.

Overall, these findings demonstrate that the applied
ML models produce more accurate results when a full
set of meteorological information is used. The predictive
performances vary for the different methods used for the
development of the models. Overall, the SVM achieves
the most accurate prediction performance for most of
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Figure 10. Time series data visualization between the performance of the applied predictive models (dark blue lines) and the observed
evaporation process (black lines) at Station II: (a) CART; (b) CCNN; (c) GEP; (d) SVM.

the cases. It is also important to note that the perfor-
mance of the models differs according to the climate of
the investigated region.

5. Conclusion

The prediction of evaporation is one of themost complex
tasks in hydrological engineering. In nature, evaporation
is associated with multiple climate variables and thus is
characterized by high non-linearity and stochasticity. For
a developing country like Iraq, evaporation monitoring
and measurement is limited due to the non-maintained
meteorological stations. Thus, the introduction of ML

technologies can contribute greatly by better modeling
this hydrological process. Four different versions of ML
models – the CART, the CCNN, GEP, and the SVM –
were developed for the prediction of evaporation at two
meteorological stations in Iraq located in different cli-
mates, Station I in Mosul and Station II in Baghdad.
Overall, the applied ML models demonstrate high per-
formance in simulating evaporation for both arid and
semi-arid climates. Among the fourMLmodels, the SVM
exhibits superior prediction performance. In quantitative
terms, at Station I, M2 was the best input combination
for the SVM, yielding an RMSE of 35.76mm.d−1, an
MAE of 27.71mm.d−1, and an R2 of .92 during testing.
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At Station II, M5 was the best input combination for the
SVM, yielding an RMSE of 32.27mm.d−1, an MAE of
24.75mm.d−1, and an R2 of .97 during testing. Based
on the attained prediction results, the predictive model
demonstrated better accuracy at Baghdad Station. This
can be justified due to the high climate stochasticity
at Mosul Station. Further work is needed to assess the
uncertainty in prediction due to themodel structures and
input combinations.
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