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Amorphization activated ruthenium-tellurium
nanorods for efficient water splitting
Juan Wang1,4, Lili Han2,4, Bolong Huang 3*, Qi Shao1, Huolin L. Xin 2 & Xiaoqing Huang1*

Pursuing active and durable water splitting electrocatalysts is of vital significance for solving

the sluggish kinetics of the oxygen evolution reaction (OER) process in energy supply. Herein,

theoretical calculations identify that the local distortion-strain effect in amorphous RuTe2
system abnormally sensitizes the Te-pπ coupling capability and enhances the electron-

transfer of Ru-sites, in which the excellent inter-orbital p-d transfers determine strong

electronic activities for boosting OER performance. Thus, a robust electrocatalyst based on

amorphous RuTe2 porous nanorods (PNRs) is successfully fabricated. In the acidic water

splitting, a-RuTe2 PNRs exhibit a superior performance, which only require a cell voltage of

1.52 V to reach a current density of 10 mA cm−2. Detailed investigations show that the high

density of defects combine with oxygen atoms to form RuOxHy species, which are conducive

to the OER. This work offers valuable insights for constructing robust electrocatalysts based

on theoretical calculations guided by rational design and amorphous materials.
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E lectrochemical water splitting, emerging as an attractive
technology for generating hydrogen (H2) and oxygen (O2),
provides a potential to address environmental degradation

and energy crises due to its pure and clean products1–4. Noble-
metal Pt and Ir/Ru are considered to be the benchmark catalysts
for the hydrogen evolution reaction (HER) and the oxygen evo-
lution reaction (OER), respectively5–7. However, a high voltage is
still needed to drive the reaction process because of the sluggish
kinetics for OER, especially in acidic conditions8–11. Significant
efforts have been undertaken to design novel catalysts to over-
come this obstacle, including heteroatoms doping, functionali-
zation, and so on12–16. Although much progress in developing
bifunctional electrocatalysts for alkaline water splitting has been
realized, the overpotential and corrosion resistance are still far
from satisfactory under harsh acidic conditions, which hamper
the development of proton exchange membrane water electro-
lyzers17–19.

Recent studies have been primarily focused on enhancing the
intrinsic activity to improve catalytic efficiency, such as phase and
interface engineering, creating grain boundaries and regulating
electronic structures20–24. It should be noteworthy that those
resulting catalysts are overwhelmingly based on crystalline
materials and tend to ignore their amorphous counterparts.
Amorphous materials are generally entities, in which the
arrangement of their internal atoms is not periodic but only bear
the local short-range order. The inherent disorderliness of
amorphous materials can produce abundant “dangling bonds”
and defects in the loosely bonded atomistic free-volume zones,
which can provide more active sites and thus improve catalytic
activity25–27. In addition, the unique structure and isotropic
properties endow amorphous materials strongly corrosion resis-
tance in both acidic and alkaline conditions, providing fresh
insights into the search for highly stable catalysts28,29. For
example, Zhang et al. prepared amorphous lithium-incorporated
palladium phosphosulfide nanodots (Li-PPS NDs) by electro-
chemically lithiated layered Pd3P2S8 crystal. Interestingly, this
amorphization process can activate the electrochemically inert
Pd3P2S8, thereby significantly enhances its HER activity30. The
obtained amorphous Li-PPS NDs also possess excellent stability
under the acidic condition that the decay of current density is
negligible after 10000 potential cycles. Inspired by the above,
catalyst designs based on amorphous materials are therefore an
attractive strategy for developing highly active and stable elec-
trocatalysts for water splitting under harsh environments.

Herein, guided by the theoretical mechanism study of the
intrinsic high electroactivity revealed in the amorphous structure,
the a-RuTe2 porous nanorods (a-RuTe2 PNRs) with bullet-like
outline have been designed and synthesized as robust water
splitting electrocatalysts. Density functional theory (DFT) calcu-
lations reveal that high amorphization degree renders the local
short-range disorder to be distinguished, which inevitably induces
distortion-strain effect (DS) and thus leads the system to be the
meta-stable state. Such energetic trend not only facilitates the
variation of local Te-coordination for flexible bonding but also
induces a medium-to-long range pπ coupling to efficiently
annihilate the notorious crystal-field-splitting effect of Ru for
highly active intra- and inter-orbital electron-transfer. From the
view of strong electron-lattice coupling effect, the short-range
disorder contributes to the intrinsic guarantee for high OER
activities within pH-universal conditions. As an electrocatalytic
result, the a-RuTe2 PNRs present a significantly improved OER
performance than its crystalline counterparts in harsh environ-
ments, especially in 0.5 M H2SO4. In detail, it is capable of deli-
vering an overpotential of as low as 245 mV for OER, far better
than those of crystalline RuTe2 PNRs (c-RuTe2 PNRs) and the
benchmark electrocatalyst Ir/C. By constructing a-RuTe2 PNRs as

a two-electrode system in the acidic electrolyte, only a cell
potential of 1.52 V is needed to generate 10 mA cm−2. Experi-
mental results demonstrate that the distorted Ru-Te bond can be
derived from the high density of defects. Additionally, the
RuOxHy species form by combining the defect with oxygen atoms
also contribute to the reaction process.

Results
DFT theoretical simulations. Although strain effect has been
utilized to enhance the electron transfer activity to facilitate the
electrocatalysis, the corresponding characterization still remains a
huge challenge in the amorphous materials. In order to investi-
gate the intrinsic activity of amorphous samples, we have carried
out DFT calculations to evaluate the OER process of amorphous
RuTe2 system before experiments. From the model, the weighted
average coordination (CN) of Ru is lowered (CN= 6 for crys-
talline RuTe2) staying between 4 (tetrahedral) and 6 (octahedral),
while Te sites are more flexible ranged from CN= 2 to CN= 6
with Te-Te bonds (Fig. 1a). The bonding and anti-bonding
orbitals near the Fermi level (EF) demonstrate a p-π electron-rich
character given by Te-sites, indicating the high electronic sensi-
tivities of Te to couple O-2p orbital for H2O activation (Fig. 1b).
The line-up of reciprocal, highly symmetrical points in both
crystalline and amorphous structures indicates the different
electron transfer paths within the Brillouin zone, supporting the
distinct electron transfer ability (Fig. 1c, d). As short-range Ru-Te
disordered, the intrinsic DS strengthens the driving force on the
electronic activities. The Lamé parameters reflect the correlation
within homogenous, isotropic, and continuum medium. With
increasing DS-effect, the instabilities of Ru-Te bonding environ-
ment are enlarged. However, as the energetic trend reflects, Te-Te
homopolar bond formation plays a key role in facilitating wider-
range relaxations towards higher stabilities, supporting the
dominant role of the highly sensitive p-π coupling in both
energetic performance and electronic activities (Fig. 1e). More-
over, the dielectric function of the amorphous structure is
obviously larger than the crystalline structure, especially the static
dielectric function ε1. The imaginary part ε2 of the dielectric
function of the amorphous reaches the first peak value at
0.440 eV, which is much smaller than 2.60 eV of the crystalline,
confirming the much smaller electron transition from the top of
valence band to the bottom of conduction band near the reci-
procal, highly symmetrical points (Fig. 1f).

To further distinguish the intrinsic difference in electronic
contribution of the crystalline and amorphous structures in
boosting the catalysis, the band structures are plotted. The
detailed theoretical derivation and discussion of the intrinsic
electronic contribution enhancement of the amorphous structure
in catalysis is provided in the Supplementary Note 1. Notably, the
crystalline structure shows an evident indirect band gap of
0.620 eV, which demonstrates the energy barriers for d-d and d-p
transitions (Fig. 1g). In comparison, the amorphous RuTe2
exhibits electron-rich feature crossing the Fermi level without any
energy gap, supporting the facile d-d electron transition for
achieving superior OER performance. Moreover, the forbidden
p-d electron transition in the crystalline structure has been loosen
by the amorphous structure due to the induced intrinsic DS effect
(Fig. 1h, i). Therefore, these results indicate that such different
electron transfer leads to the contrast selectivity of OER process.
Meanwhile, the projected partial density of states (PDOSs) reveal
that Ru-4d-t2g activity (valence-peak) and valence-band-centers
(EV− 1.2 eV and EV− 1.0 eV for amorphous and crystal system
respectively, EV= 0 for EF) remain while the DS-effect relaxes the
forbidden rule of intra-orbital eg-t2g electron-transfer, which
annihilates the gap between the eg-t2g splitting of the Ru-4d band
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in the amorphous structure. The distorted Ru-Te lattice increases
the homogeneity for efficient inter-d-orbital electron-transfer
ability among Ru sites (Fig. 2a). The surface Te-5p dominantly
occupies from EV− 4.5 eV to EF with the most overlapping with
Ru-4d, enhancing the activities of p-d coupled electron-exchange.

The stronger electron transfer between p-d than the p-p also
supports the anti-oxidation of the RuTe2. The enhanced bonding
and anti-bonding splitting effect of Te-5p band in the bulk region
with higher CN results in gradually inert and less overlapped with
Ru-4d (Fig. 2b). The surface Ru-4d band obviously merges the
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Fig. 1 Electronic structures comparison between the crystalline and amorphous RuTe2. a Local atomic configurations for the amorphous RuTe2. b The
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electronic occupations, resulting in the annihilation of the eg-t2g
splitting character on both surfaces octahedral and tetrahedral
bonding sites. Therefore, the surface distorted Ru-Te bonding
minimizes the crystal-field splitting effect for the surface Ru-sites
(Fig. 2c). The p-π orbital of H2O exhibits a substantial
overlapping with Te-5p bands showing a strong p-π coupling to
activate the H2O molecule for efficient splitting. From OH to O,
the p-π coupling becomes stronger with the increase of p-orbital
electronic activities. Further on the OOH, a slightly weaker
electronic activity is demonstrated due to the hydrogenation
effect for O-pπ passivation (Fig. 2d). The schematic diagram of
the electron transfer pathways has been presented to show the
enhanced electronic activity of the amorphous structure of RuTe2
in promoting the catalysis (Fig. 2e).

We move onto the OER pathways (Fig. 3a–c). In acidic
condition, the Ru-Te surface performs an excellent H2O splitting
with the substantially low activation energy for [*OH+H++e−].
The secondary de-hydrogenation performs at even lower
energetic level. This trend guarantees the potential determining
step to form OOH- favoring at a lower energy of 3.92 eV relative
to initial H2O level (Fig. 3a). In alkaline condition, the favorable
bonding of both OH and O facilitates the OOH formation with a
lower barrier of 1.52 eV (Fig. 3b). Under the U= 1.23 V potential,
the overpotentials (i.e. max{[barrier-1.23 eV]/e}) are 0.23 V
(acidic) and 0.29 V (alkaline), respectively (Fig. 3c). From local
structure perspectives, the H2O stabilizes between the Ru and
Te sites, while OH, O, and OOH uniquely adsorbs on distorted
Te sites, where the local Te-CN flexibly varied (Fig. 3d). We
confirm that OER performance originates from surface DS-effect,
which sensitizes Te-pπ coupling and annihilates the crystal-field

splitting effect of Ru for highly active intra- and inter-orbital
electron-transfer (Fig. 3e).

Catalyst synthesis and characterization. To realize the highly
electroactive amorphous surface for OER as the theoretical pre-
dictions, we present the fabrication strategy with the rational
design by following the guidance of the DFT calculations. We
have successfully designed, prepared and compared RuTe2 PNRs
in both amorphous and crystalline conditions. The pristine
amorphous RuTe2 PNRs were prepared by a simple hydrothermal
process, in which potassium tellurite (K2TeO3) and hex-
aammineruthenium (III) chloride (Cl3H18N6Ru) were used as
metal precursors31. High-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM) image shows
that the products exhibit one-dimensional (1D) nanorods struc-
ture with high dispersion (Fig. 4a). TEM images show that the
nanorods have a porous structure and bullet-like profile with the
average diameter and length of 17.0 ± 1.8 nm and 99.7 ± 5.8 nm,
respectively (Supplementary Fig. 1). The Ru/Te molar ratio was
determined to be around 1:2 by inductively coupled plasma
atomic emission spectrometry (ICP-AES) and scanning electron
microscopy energy-dispersive X-ray spectroscopy (SEM-EDS).
No significant diffraction peaks were observed by powder X-ray
diffraction (PXRD) (Fig. 4b), demonstrating that the RuTe2 PNRs
are amorphous, corresponding to the high-resolution TEM
(HRTEM) and selected area electron diffraction (SAED) (Sup-
plementary Fig. 2). STEM-EDS element mappings reveal that the
Ru and Te are evenly distributed along the RuTe2 PNRs (Fig. 4c).
Subsequently, the RuTe2 PNRs were loaded on VC-X72 carbon
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(Supplementary Fig. 3) and then thermally treated under air
atmosphere32,33, where only a broad carbon peak can be found in
their XRD pattern, demonstrating that the RuTe2 PNRs still
maintain an amorphous structure (denoted as a-RuTe2 PNRs)
(Supplementary Fig. 4). HAADF-STEM and TEM images show
that the PNRs keep 1D porous nanorod profile with a slight
increase in diameter and length. As revealed by the atomic-
resolution HAADF-STEM image, the atoms exhibit a random
distribution without significant periodicity, proving the structural
disorder of a-RuTe2 PNRs (Fig. 4d). Moreover, only blurred areas
with no clear long-range ordered atomic arrangements can be
observed from HRTEM, further demonstrating the amorphous
feature of a-RuTe2 PNRs (Fig. 4e). SAED pattern also reveals a set
of distinct rings composed of diffraction spots (Fig. 4f), being in
agreement with the XRD results. The structural model of RuTe2
PNRs with the amorphous feature was successfully described
(Fig. 4g), where the Ru and Te atoms exhibit a random
arrangement with isotropic, short-range order in atomistic free-
volume zones. STEM-EDS element mappings reveal that the Ru
and Te are still distributed uniformly throughout the whole PNRs
(Fig. 4h).

The highly crystalline RuTe2 PNRs (denoted as c-RuTe2 PNRs)
were obtained by thermal treating RuTe2 PNRs under controlled
thermal treatments34. PXRD pattern shows two main peaks at
31.29° and 43.37°, corresponding to the (111) and (211) planes of
RuTe2 (PDF#88-1380), respectively (Fig. 5a). The crystal
characteristics and long-range order of c-RuTe2 PNRs can also
be demonstrated by atomic-resolution HRTEM image (Fig. 5b).
Significantly, a large number of regularly arranged atoms can be

observed by HRTEM and their interplanar spacing is 0.208 nm,
corresponding to the (211) plane of RuTe2 (Fig. 5c). SAED
pattern also reveals a set of distinct rings composed of diffraction
spots (inset in Fig. 5c), being assigned to the (111) and (211)
planes. Surprisingly, the morphology and composition of c-RuTe2
PNRs are largely maintained, indicating that the controlled
thermal treatments only affect the crystallinity but hardly cause
morphology and composition changes (Supplementary Fig. 5).
The structural model of c-RuTe2 PNRs presents a long-range
ordered anisotropy with a regular orthorhombic structure
(Pnnm) (Fig. 5d and Supplementary Fig. 6). STEM-EDS elements
mappings show that the Ru and Te are uniformly distributed
within the whole PNRs (Fig. 5e).

Evaluation of electrochemical activity. We performed OER and
HER measurements of a-RuTe2 PNRs and c-RuTe2 PNRs under
the universal pH range. Commercial Ir/C and Pt/C were tested
under the same conditions for comparison. As expected, the a-
RuTe2 PNRs show enhanced electrocatalytic performance than
that of their crystalline counterparts. In detail, as shown in
Fig. 6a, the a-RuTe2 PNRs exhibit the best OER activity with a
low overpotential of 245 mV at 10 mA cm−2 in 0.5 M H2SO4,
which is superior to those of c-RuTe2 PNRs (442 mV) and Ir/C
(323 mV). Obviously, compared with Ir/C (297 mV) in 1.0 M
KOH, only an overpotential of 285 mV is required for a-RuTe2
PNRs, while the c-RuTe2 PNRs need a higher overpotential of
458 mV under the same conditions, which is highly consistent
with the theoretical predictions (Fig. 6b and Supplementary
Table 1). Importantly, the a-RuTe2 PNRs not only present
excellent electrocatalytic performance in the strong acidic and
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alkaline media but also exhibit outstanding activities in 0.05 M
H2SO4 and 0.1 M KOH (Supplementary Fig. 7). Additionally, the
HER activities of various catalysts were investigated. We can see
that the HER performance of a-RuTe2 PNRs is significantly better
than that of c-RuTe2 PNRs, and even exceed that of Pt/C as the
applied voltage increasing (Fig. 6c and Supplementary Table 2).
Although all catalysts show similar catalytic activity in 1.0 M
KOH at the beginning, the overpotential of a-RuTe2 PNRs is
markedly lower than those of c-RuTe2 PNRs and Pt/C with
increasing voltage (Fig. 6d). Similarly, robust HER activity in
0.05M H2SO4 and 0.1 M KOH can also be observed for a-RuTe2
PNRs (Supplementary Fig. 8). To further analyze the electro-
catalytic activity of various catalysts, we summarize the over-
potential at a current density of 10 mA cm−2 in different
electrolytes (Fig. 6e). Evidently, the OER and HER properties of
a-RuTe2 PNRs are superior to those of c-RuTe2 PNRs, Ir/C and

Pt/C, especially in the acidic environment. Tafel slopes of various
catalysts were also summarized in Supplementary Figs. 9, 10, in
which the a-RuTe2 PNRs show the smallest Tafel slope in dif-
ferent pH ranges, representing the fastest reaction kinetics. To
evaluate the number of active sites, the copper underpotential
deposition (Cu UPD) method was performed35,36. Compared
with c-RuTe2 PNRs, an increase in the number of active sites can
be observed for a-RuTe2 PNRs, and thus exhibiting improved
catalytic activity (Supplementary Fig. 11). Cyclic voltammetry
curves were performed in Supplementary Fig. 12, no redox peaks
appeared for a-RuTe2 PNRs during OER process, demonstrating
that their self-oxidation is negligible. Faraday efficiency (FE) of
OER and HER are more than 95%, indicating that the high
currents are almost entirely originated from the process of water
splitting (Supplementary Fig. 13). In addition, the HER and OER
polarization curves of a-RuTe2 without iR correction are also
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performed as reference (Supplementary Fig. 14), where the a-
RuTe2 PNRs exhibit excellent OER and HER activities under
different conditions.

Considering the superior HER and OER activities of a-RuTe2
PNRs in acidic condition, a two-electrode device for acidic overall
water splitting was constructed. Figure 7a displays the polariza-
tion curves of a-RuTe2 PNRs, Pt/C and Ir/C in 0.5 M H2SO4. At
left, the a-RuTe2 PNRs exhibit a slightly improved HER activity
compared with Pt/C. However, at right, the OER activity of a-
RuTe2 PNRs is significantly better than that of Ir/C. The voltage
difference (ΔV) between HER and OER at the current density of
10 mA cm−2 is 1.51 V. When a-RuTe2 PNRs were employed as
both anode and cathode catalysts in 0.5 M H2SO4, only a cell
voltage of 1.52 V is needed to achieve 10 mA cm−2, which is
much better than that of Ir/C||Pt/C (Fig. 7b). Most importantly,
the cell voltage of a-RuTe2 PNRs||a-RuTe2 PNRs for water
splitting at 10 mA cm−2 even surpasses most reported electro-
catalysts (Fig. 7c and Supplementary Table 3). The chronoam-
perometry curve was then carried out to evaluate the long-term

stability of a-RuTe2 PNRs||a-RuTe2 PNRs (Fig. 7d). Compared
with Ir/C||Pt/C, the a-RuTe2 PNRs||a-RuTe2 PNRs exhibit
improved stability in acidic condition (24 h). Detailed character-
izations were carried out to further understand the enhanced
activity and stability of a-RuTe2 PNRs for water splitting in acidic
conditions (Supplementary Fig. 15, 16). We can see that the
porous morphology and bullet-like outline were largely main-
tained while Ir/C and Pt/C were severely agglomerated (Supple-
mentary Figs. 17, 18). The amorphous feature of a-RuTe2 PNRs
can also be largely maintained. Additionally, the a-RuTe2 PNRs
can maintain excellent chemical stability even under 5.0 M H2SO4

at 60 °C for 1 h (Supplementary Fig. 19). Therefore, the a-RuTe2
PNRs not only exhibit excellent chemical corrosion resistance but
also present superior electrochemical stability.

Mechanistic investigations. To further explore the reasons
for the significant activity difference of a-RuTe2 PNRs and c-
RuTe2 PNRs, electrochemically active surface area (ECSA) was
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calculated (Supplementary Fig. 20 and Supplementary Table 4).
Apparently, an improved ECSA that represents more exposed
active sites can be observed for a-RuTe2 PNRs, which may be
caused by the distortions of Ru-Te bond that derived from the
high density of defects in amorphous materials. This finding will
also verify the previous theoretical investigations on the local
electronic structures. Positron annihilation spectroscopy (PAS)
and corresponding lifetime parameters were then performed
(Fig. 8a and Supplementary Table 5). We can see that the a-RuTe2
PNRs exhibit a significantly prolonged lifetime (τ1 and τ2) than
their crystalline counterparts, mainly due to high density of
defects that changed the electron density. To prove this con-
jecture, electron spin resonance (ESR) measurement was also
carried to probe the unpaired electrons that generated by defects

(Fig. 8b), in which a pair of sharp peaks can be clearly observed
for a-RuTe2 PNRs when compared with c-RuTe2 PNRs, sup-
porting the presence of a high density of defects in the a-RuTe2
PNRs. In fact, the presence of defective sites can not only affect
the electronic distribution caused by the distortion of Ru-Te bond
but also combine with oxygen atoms to form RuOxHy species
which are conducive the reaction process37. Therefore, X-ray
photoelectron spectroscopy (XPS) was employed to measure the
chemical composition and electronic configuration. As shown in
Fig. 8c, compared with c-RuTe2 PNRs, a significantly enhanced
peak area of RuOxHy species can be observed for a-RuTe2 PNRs,
indicating that the presence of defects was filled with oxygen and
then to form OH species. The increased OH species in a-RuTe2
PNRs can also be demonstrated by O 1s XPS (Fig. 8d), in which
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the relative peak area of M-OH species increase, whereas the M-
O-M species decrease. In view of the experimental results and
theoretical analysis, possible OER mechanisms under pH-
universal conditions have been depicted in Fig. 8e. As illu-
strated, for acidic OER process, water molecule preferentially
splitting on the catalyst's surface and then gradually dehy-
drogenate to form M-OOH* intermediate. Finally, O2 is suc-
cessfully released directly from the surface and the active site
continues to proceed with the catalytic reaction. Under the
alkaline condition, the dissociated OH− is adsorbed on the cat-
alyst's surface and then form M-OH* intermediate. Subsequently,
the M-OH* combines with OH− to release water molecule and
then becomes M-O*. The metastable M-O* intermediate will
soon combine with OH− to generate M-OOH* and eventually
releases O2.

Discussion
In summary, theoretical calculations have supplied an insightful
understanding of the intrinsic high electroactivity that direc-
tionally guide the experimental synthesis of the a-RuTe2 PNRs as
the efficient water splitting electrocatalysts. DFT calculations
reveal that the local flexible Te-bonding configurations are yiel-
ded from a strong p-d transfer induced p-π sensitivity enhance-
ment, which renders the stabilization of distortion-strain as well
as elevates electronic activities near the Fermi level through an
effective annihilation of the crystal-field-splitting effect of Ru-
sites. Within this trend, the local distorted Ru-Te lattice increases
the homogeneity for efficient inter-d-orbital electron-transfer
ability among Ru sites. Therefore, the short-range disorder pro-
motes the electron-lattice coupling effect but also boosts OER
catalysis within pH-universal conditions. As a result, the a-RuTe2
PNRs exhibit superior HER and OER activities than those of their
crystalline counterparts. More importantly, a relatively low cell
potential of 1.52 V has been achieved for reaching the current
density of 10 mA cm−2 in water splitting, representing much
enhanced activity under acidic conditions. Detailed investigations
show that the generation of distorted Ru-Te bonds is attributed to
the extensive defects in the amorphous structure. These defects
will be substituted by oxygen atoms to form RuOxHy species that
will promote the catalytic activity. Our work provides a feasible
strategy in amorphous catalysts design and investigation that
offers valuable insight to the development of a new generation of
catalysts, which will broaden the horizon of future electrocatalyst
studies in energy applications.

Materials and methods
Chemicals. Potassium tellurite (K2TeO3, 99.5%) was purchased from Aladdin-
reagent Inc. Hexaammineruthenium (III) chloride (Cl3H18N6Ru, Ru 32.1%) was
purchased from Alfa Aesar. Poly (vinylpyrrolidone) (PVP, average M.W. 58000,
K15-19) was purchased from J&K Scientific Ltd. Ammonia solution (NH3·H2O,
AR), hydrazine hydrate aqueous solution (N2H4·H2O, AR) and isopropanol (IPA,
AR) were purchased from Sinopharm Chemical Reagent Co., Ltd. Argon (Ar,
99.999%) was purchased from WuGang Gas Co., Ltd. (Shanghai, China). Pt/C
(20 wt% Pt on Vulcan black) was purchased from Shanghai Hesen Electric Co., Ltd.
Ir/C (20 wt% Ir on Vulcan black) was from Premetek Co., Ltd.

Synthesis of RuTe2 PNRs. 3.6 mg Cl3H18N6Ru (11.6 µmol), 6.0 mg K2TeO3

(23.6 µmol) and 65.0 mg PVP (1.1 µmol) were dissolved in 2 mL H2O. After a few
minutes of sonication, 2.0 mL NH3·H2O and 1.0 mL N2H4·H2O were quickly
injected into the above mixture. The mixture solution was then transferred into
Teflon-sealed autoclave and maintained at 180 °C for 3 h. The RuTe2 PNRs were
obtained by washed several times with ethanol/acetone solution.

Synthesis of a-RuTe2 PNRs and c-RuTe2 PNRs. RuTe2 PNRs were deposited on
VC-X72 carbon (Ru loading of 20 wt%, determined by ICP-AES) in ethanol
solution by sonicating for 30 min. The resulting products were separated by cen-
trifugation and washed several times using ethanol/acetone solution. The products
were annealed at 250 °C in air for 5 h to yield a-RuTe2 PNRs. The c-RuTe2 PNRs

were obtained by annealing treatment at 250 °C in Ar for 5 h and then at 250 °C in
air for 1 h.

Characterization. Low-magnification transmission electron microscopy (TEM)
was performed on a HITACHI HT7700 at 120 kV. High-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) and HRTEM was
recorded on a FEI Talos F200X S/TEM with a field-emission gun at 200 kV. ESR
spectra were collected on JEOL JES-X320. XPS was performed on SSI S-Probe XPS
Spectrometer. Powder X-ray diffraction (PXRD) patterns were collected on X’Pert-
Pro MPD diffractometer (Netherlands PANalytical) with a Cu Kα X-ray source
(λ= 1.540598 Å).

Electrochemical measurements. Electrochemical measurements were performed
on CHI660 workstation (Chenhua, Shanghai) by using the three-electrode system.
Graphite rod and saturated calomel electrode were used as counter and reference
electrode, respectively. To prepare the catalyst ink, 2 mg catalysts were added into a
mixture solution including 800 µL IPA, 200 µL H2O and 5 µL Nafion. After 30 min
sonication, 20 µL catalyst ink was deposited on glassy carbon electrode (diameter
5 mm, area: 0.196 cm2) as a working electrode. Polarization curves were then
performed in a broad pH range, including 0.5 M H2SO4, 0.05 M H2SO4, 0.1 M
KOH and 1.0 M KOH, after a continuous cyclic voltammetry. All polarization
curves in this study are the average of the stable polarization curves scanned in
three experiments. The solution resistance (Rs) is ~6Ω in 0.5 M H2SO4, ~39Ω in
0.05 M H2SO4, ~36Ω in 0.1 M KOH and ~5Ω in 1M KOH. The Tafel slopes were
derived from polarization curves and 95% iR compensation in all the solutions.
Long-term stability for water splitting was tested by using a two-electrode system.
The underpotential deposition (UPD) method was used to qualify active sites. The
number of active sites can be calculated with the equation: n=QCu/2F, where Q is
the UPD Cu stripping charge (QCu, Cuupd → Cu2+ + 2e−) and F is the Faraday
constant. The Faraday efficiency (FE) measurements were conducted on an H-cell
reactor where each chamber of ~60 mL was filled with 30 mL of 0.5 M H2SO4

solution and the two chambers were separated by an anion exchange membrane
(Nafion 117). The Ar (30 sccm) was applied throughout the HER and OER mea-
surements. Chronoamperometry measurements were carried out at the voltage that
the current density reached 10 mA cm−2. The reactor was directly connected to the
gas chromatograph (GC Agilent 7890B). The FE of a product was calculated as
follows: FE= eF × n/Q, where e is the number of electrons transferred of the
product, Q is the total charge in HER and OER process, n is the number of moles
of the product and F is the Faraday constant.

Computational details. Rotationally invariant DFT+U calculations within
CASTEP code has been performed38,39. The algorithm of Broyden-Fletcher-
Goldfarb-Shannon (BFGS) has chosen for all related ground state geometry opti-
mization, especially for the interfacial relaxation. The cutoff energy of plane-wave
basis sets for total energy and valence electronic states calculations has been set to
750 eV. The PBE exchange-correlation functional is selected for DFT+U calcula-
tions. The applied U values in this work are 2.38 and 0.36 eV for Ru and Te,
respectively. To improve the convergence quality of the transition metal compound
system, the ensemble DFT (EDFT) method of Marzari et al. is used during the
electronic-minimization process40.

To approach a realistic local short-range ordered structure, a fixed volume NVT
ensemble has been used for ab-initio molecular dynamics (AIMD) to conduct an
analogue anneal-to-quench process from 1600 to 300 K. All of these AIMD
simulations have been performed onto an expanded supercell of crystalline RuTe2
lattice with a density of 6.036 g/cm3 (8.303 g/cm3 for crystalline). The original
crystalline RuTe2 unit-cell lattice has been imported from the database with group
symmetry of PNNM and experimental lattice parameters (a= 5.38 Å, b= 6.49 Å,
and c= 4.08 Å). The geometry optimization is also applied to the randomly
selective trajectories of the MD process. The weighted average coordination (CN)
of Ru is lowered (CN= 6 for crystalline RuTe2) staying between 4 (tetrahedral) and
6 (octahedral), while the Te sites are more flexible ranged from CN= 2 to CN= 6
containing Te-Te bonds. Considering the DFT computational cost, the Monkhost-
Pack reciprocal space integration was performed using Gamma-center-off special
k-points with a mesh of 2 × 2 × 2, which was guided by the initial convergence
test41. With these settings, the overall total energy for each step is converged to less
than 5.0 × 10−7 eV per atom. The Hellmann-Feynman forces on the atom were
converged to less than 0.001 eV/Å.

The Ru, Te, O, and H norm-conserving pseudopotentials are generated using
the OPIUM code in the Kleinman-Bylander projector form, and the non-linear
partial core correction and a scalar relativistic averaging scheme are used to treat
the mixed valence Co spin-orbital coupling effect42–44. We chose the projector-
based (4d, 5s, 5p), (5s, 5p), (2s, 2p), and (1s) states to reflect the valence states of Ru,
Te, O, and H atoms, respectively. The RRKJ method is chosen for the optimization
of the pseudopotentials45.

To achieve the mass and electron conservation, the key adsorbates and co-
reactants are both considered in the calculation of the energetic diagram for the
water splitting reactions. For each intermediate, we have fully considered the
possible diffusions on the surface to locate the most stable adsorption site and
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corresponding coordination number (CN) environment in the complicated
amorphous structure modelling.

For the acidic OER, the acidic OER reactions are as below.

2H2O
� ! OH� þH2Oþ Hþ þ e�ð Þ ð1Þ

OH� þH2Oþ Hþþe�ð Þ ! O� þH2Oþ 2Hþþ2e�ð Þ ð2Þ

O� þH2Oþ 2Hþþ2e�ð Þ ! OOH� þ 3Hþþ3e�ð Þ ð3Þ

OOH� þ 3Hþþ3e�ð Þ ! O2 gð Þ þ 4Hþþ4e�ð Þ ð4Þ
On the contrary, the OER process in alkaline medium renders reactions are as
below.

4OH� ! OH� þ 3OH� þ e� ð5Þ

OH� þ 3OH� þ e� ! O� þ 2OH� þH2Oþ 2e� ð6Þ

O� þ 2OH� þH2Oþ 2e� !� OOHþ OH� þ 2H2Oþ 3e� ð7Þ

�OOHþ OH� þ 2H2Oþ 3e� ! O2 þ 2H2Oþ 4e� ð8Þ

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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