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ABSTRACT
The possible changes in precipitation of Syrian due to climate change are projected in this study.
The symmetrical uncertainty (SU) and multi-criteria decision-analysis (MCDA) methods are used to
identify the best general circulation models (GCMs) for precipitation projections. The effectiveness
of four bias correctionmethods, linear scaling (LS), power transformation (PT), general quantilemap-
ping (GEQM), and gamma quantile mapping (GAQM) is assessed in downscaling GCM simulated
precipitation. A random forest (RF)model is performed to generate themultimodel ensemble (MME)
of precipitation projections for four representative concentration pathways (RCPs) 2.6, 4.5, 6.0, and
8.5. The results showed that the best suited GCMs for climate projection of Syria are HadGEM2-AO,
CSIRO-Mk3-6-0, NorESM1-M, and CESM1-CAM5. The LS demonstrated the highest capability for pre-
cipitation downscaling. Annual changes in precipitation is projected to decrease by−30 to −85.2%
for RCPs 4.5, 6.0, and 8.5, while by < 0.0 to −30% for RCP 2.6. The precipitation is projected to
decrease in the entire country for RCP 6.0, while increase in some parts for other RCPs during wet
season. The dry season of precipitation is simulated to decrease by−12 to−93%, which indicated a
drier climate for the country in the future.

ARTICLE HISTORY
Received 2 September 2019
Accepted 17 October 2019

KEYWORDS
precipitation projection;
general circulation model;
random forest; symmetrical
uncertainty; Syria

1. Introduction

Climate change has increasingly led to more frequent
floods, heatwaves, droughts and so on, and has affected
many sectors including water resources, health, environ-
ment, agriculture, power, and security (Ahmed, Shahid,
& Nawaz, 2018; Alamgir et al., 2019, 2015; Mohsenipour,
Shahid, Chung, & Wang, 2018; Pérez-Ruiz et al., 2018;
Shahid et al., 2017; Shiru, Shahid, Alias, & Chung, 2018).
Consequently, economies are being affected and human-
itarian crises have sprung up in some parts of the globe,
especially in arid and semi-arid environments, which
are comparatively more vulnerable to climate variabil-
ity (Ahmed, Shahid, & Nawaz, 2018; Ahmed, Shahid,
Sachindra, Nawaz, & Chung, 2019; Hadi Pour, Abd
Wahab, Shahid, & Wang, 2019; Khan et al., 2019). For
example, prolonged droughts between 2007 and 2010 in
Syria due to the changing climate have been reported
to be a catalyst for the Syrian unrest (Kelley, Mohtadi,
Cane, Seager, & Kushnir, 2015). The droughts aggravated
a water crisis, leading to severe agricultural and livestock
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losses for about 1.3 million people, out of which 800,000
were affected severely (St. Cyr, 2005). It also resulted in
the exodus of people from the afflicted villages to the
cities (Solh, 2010).

As the impacts of the changing climate have intensi-
fied around the globe, understanding the future changes,
particularly on regional scales, is important for the devel-
opment of adaptation and mitigation measures (Bouwer,
2011; Met Office Hadley Centre, 2011; Szerszynski &
Urry, 2010). General circulation model (GCM) simula-
tions of the future climatic variables are applicable for
this purpose (Wilby et al., 1998; Wilby & Wigley, 1997).
However, local or regional application of GCMs have the
shortcoming of uncertainty due to their coarse spatial
resolution, hence they are discouraged from being used
directly (Onyutha, Tabari, Rutkowska, Nyeko-Ogiramoi,
& Willems, 2016; Sa’adi, Shahid, Ismail, Chung, &
Wang, 2017). Through the downscaling technique, a bet-
ter resolution output of the GCMs which are usable
locally/regionally for climatic studies and policymaking
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can be obtained (Ahmed, Shahid, Nawaz, & Khan, 2018;
Hadi Pour et al., 2019; Shiru, Shahid, Chung, Alias, &
Scherer, 2019a). As GCMs are produced by different
organizations, there is a spatial variation in their perfor-
mance across the globe (Chen, Brissette, Lucas-Picher, &
Caya, 2017), subjecting a user to select models uncriti-
cally from the suite of ones available for climate projec-
tion. Therefore, rather than the downscaling of a single
model for climate projection, the downscaling of a num-
ber of models systematically selected by the exclusion
of the least realistic ones is commonly practiced to cre-
ate an ensemble model so as to lessen uncertainties in
projections (Ahmed et al., 2019; Lutz et al., 2016).

The selection of models for climate downscaling is
often conducted in two main ways, namely, the envelope
and the past performance approaches (Chen, Brissette,
& Leconte, 2011; Chen, Brissette, Chaumont, & Braun,
2013; Pryor et al., 2012). The selection of climate models
in the past performance approach is based on the abil-
ity of the models to replicate the ongoing climate, while
the collection of models that cover a broad spectrum of
projections is considered in the envelope approach (Pour,
Shahid, Chung, & Wang, 2018). The past performance
approach has the strength to cover all ranges of projec-
tions for an ensemble selected from the available GCM
pool, so when they are used for selection, there is no
need to use the envelope approach. The filter and wrap-
per methods of feature selection are usually used for this
purpose, (Khan et al., 2018; Lutz et al., 2016; McSweeney,
Jones, Lee, & Rowell, 2014) considering different skill
metrics, statistical indices, or their combination using
multi-criteria decision analysis (MCDA). Entropy based
feature selection methods can be used in the ranking of
GCMs as it has the ability to measure the average infor-
mation of one variable about another (Khan et al., 2018;
Pour et al., 2018). Therefore, the variability in seasonal
and annual observed precipitation for an area, simu-
lated by different GCMs in combination with an MCDM
technique, can be used for their rankings.

The statistical and dynamical approaches of down-
scaling are the two main methods of climate downscal-
ing. Compared to the dynamical downscaling, statistical
downscaling has the advantages of computational effi-
ciency, cost effectiveness, and flexibility, and is there-
fore commonly used (Khan et al., 2018; Pour, Harun, &
Shahid, 2014; Shiru et al., 2019a). Of the two statistical
downscaling methods mainly used, namely the model
output statistics (MOS) and the perfect prognosis (PP),
the MOS has the ability to account for inherent errors
and biases in GCMs, and has frequently been used in cli-
matic downscaling (Eden&Widmann, 2014; Sa’adi et al.,
2017). The MOS can also better simulate precipitation
mean and variability which are most required for impact

assessment (Ahmed, Shahid, Nawaz, & Khan, 2018; Pour
et al., 2018).

While there is the likelihood of an increase in runoff
in some areas, like the higher latitudes resulting from
increased precipitation due to changes in climate, there
is the possibility of increased droughts in other areas
(Alkhalaf, Solakova, Zelenakova, & Gargar, 2018). Syria,
a country already prone to droughts, may face more
severe impacts from the changes in climate. This will
affect agricultural production and may exacerbate the
humanitarian crisis already existing in the country. Few
studies (Terink, Immerzeel, & Droogers, 2013) used the
A1B GHG emission scenario, which is a scenario of
the four IPCC report families (A1, A2, B1, and B2)
for climate projection in the Middle East and North
African (MENA) region including Syria until 2050. It
was revealed that precipitation would decrease over
Syria. With the availability of more improved climate
simulations, like the Coupled Model Intercomparison
Project phase 5 (CMIP5), further studies of the area are
paramount for the development of longer term adapta-
tion and mitigation measures to combat climate change
and achieve sustainability in the water resources and
agriculture of the country.

In recent times, improved machine learning meth-
ods, including artificial neural networks (ANN), entropy
based models, random forest (RF), and so on, as well
as statistical techniques, have enhanced hydrological and
climatological studies (Fotovatikhah et al., 2018; Ghor-
bani, Kazempour, Chau, Shamshirband, & Ghazvinei,
2018; Moazenzadeh, Mohammadi, Shamshirband, &
Chau, 2018; Wang, Chau, Qiu, & Chen, 2015). In the
present study, symmetrical uncertainty (SU), an entropy-
based method, was used in the ranking of a total of 20
GCMs based on their capability to imitate the histori-
cal precipitation of Syria. An MCDA tool was afterwards
employed and systematically applied using a novel multi-
criterion perspective for the identification of the most
suitableGCMs to create an ensemble for Syria for the pro-
jection of the possible changes in the precipitation char-
acteristics over the Syrian region. The selected GCMs
were downscaled using four bias correction methods.
Themost appropriate bias correctionmethod was identi-
fied based on a set of statistical and graphical evaluation
criteria. The selected bias correction model was used to
correct the biases of the selected GCM projections. The
multi model ensemble (MME) of the projections was
generated for all the four representative concentration
pathways (RCPs) RCP 2.6, RCP 4.5, RCP 6.0, andRCP8.5
using random forest regression (Breiman, 2001). Finally,
the precipitation of Syria was projected for the periods
2010–2039, 2040–2069, and 2070–2099, and for all RCPs
at 76 grid points.
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Figure 1. Geographical position and elevation of Syria.

2. Study area and data

2.1. Study area

Syria (Latitude: 32°−38°N; Longitude: 35°-43°E), cov-
ering an area of 185,180 km2, is located in the Middle
East. The country is bordered by the Mediterranean Sea
and Lebanon to the west, Turkey to the north, Jordan to
the south, and Iraq to the east. The topography of the
country is characterized by a narrow coastal plain in the
west, mountains in the west, and a desert plateau to the
east (Figure 1). The climate of the country is mostly the
desert type. Precipitation in Syria ranges between 350

and 800mm/yr in the northwest and decreases in the
south to less than 100mm/yr (Figure 2a). Precipitation
usually occurs in winter (wet season) between Novem-
ber and April, while the rest of the year is mostly dry.
Although the northwest part that borders the Mediter-
ranean is fairly green, most parts of the country consist
of arid plateau. Important agricultural areas in the coun-
try are Al-Jazira in the northeastern part and Hawran in
the south. The largest river in the region, the Euphrates,
crosses the country through the eastern part. The range of
the mean monthly temperature of Syria varies from 7°C
in January to 28°C in August. Spatially, the temperature
ranges between 13°C in the southwest to more than 20°C
in the east (Figure 2b).

2.2. Data

2.2.1. Observed precipitation data
In Syria, there are insufficient long-term records of cli-
matic observations for hydro-climatological investiga-
tions. Gridded climate data offer a reliable use for the
purpose of climate research in such areas. Among these
data, gauge-based data are more preferred due to their
availability for a longer time span and higher spatial
resolution (Shiru, Shahid, Chung, & Alias, 2019b). The
Deutscher Wetterdienst’s Global Precipitation Climatol-
ogy Center (GPCC) full data reanalysis product (Becker
et al., 2013; Schneider et al., 2014) was used as the refer-
ence data in this study. GPCC data has the advantage of:

Figure 2. Geographical distribution of (a) mean annual precipitation and (b) annual average temperature prepared frommonthly GPCC
and CRU data respectively for Syria during 1971–2000.
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(1) time series completeness after January 1951; (2) hav-
ing its derivation from the highest number of observation
records; (3) good data quality for hydrological studies;
and (4) usage for a wider period of study due to a longer
time span (Ahmed et al., 2014; Ahmed, Shahid, Chung,
Ismail, & Wang, 2017; Spinoni, Naumann, Carrao, Bar-
bosa, & Vogt, 2014). The monthly GPCC precipitation at
76 grid points within Syria for a time span of 1961–2005
was used in this study. The GPCC precipitation data has
been widely validated and used in many studies around
the globe (Dinku, Connor, Ceccato, & Ropelewski, 2008;
El Kenawy & McCabe, 2016; Sarmadi & Shokoohi, 2015;
Shiru et al., 2019c). In the neighboring country of Iraq,
GPCC was found to have an overall best performance
in replication of the observed properties of rainfall in
the country compared to six other precipitation data
products.

2.2.2. Historical temperature data
The monthly average gridded daily mean temperature
data of the Climatic Research Unit (CRU) (Harris, Jones,
Osborn, & Lister, 2014) of the East Anglia University at
0.5° spatial resolution (76 grid points covering Syria) for
the period 1961–2005 was also used in this study along
with GPCC precipitation for the selection of GCMs. The
CRU temperature is prepared from gauged data gath-
ered from more than 4000 stations distributed across
the globe. The quality of collected data is assessed using
both manual and semi-automatic procedures. The first
was the intensive checking of the data for consistency,
and the second involved the removal of the stations or
months with large errors during the interpolation pro-
cess. The CRU data has been widely validated and used
for climatic studies due to its performance (Qutbudin
et al., 2019; Sa’adi, Shiru, Shahid, & Ismail, 2019; Shiru

et al., 2019c; Ying et al., 2009). CRU temperature data has
been used in the Middle East and found suitable for cli-
mate research (Pu & Ginoux, 2016; Rahman, Almazroui,
Islam, O’Brien, & Yousef, 2018). The number of gauges
per grid for Syria for the GPCC and CRU precipitation
and temperature data respectively are given in Figure 3.

2.2.3. CMIP5 datasets
The Coupled Model Intercomparison Project phase 5
(CMIP5) has a set of globally coordinated GCM simula-
tions developed by different climate modeling organiza-
tions. In comparison to the CMIP3, the CMIP5 is much
improved (Taylor, Stouffer, &Meehl, 2012). In the present
study, 20 CMIP5 monthly simulations of GCMs were
selected on the basis of their availability for all RCPs for
Syria. A description of selected GCMs is given in Table 1.

3. Methods

Although the aim of the present study was to project
precipitation for Syria, the selection of GCMs for both
precipitation and temperature were considered. This is
because temperature and precipitation are important cli-
matic variableswhich can affect each other, and both have
impacts simultaneously on the characteristics of disas-
ters such as flood and drought. Therefore, it is expected
that the selected GCMs in this study would be able
to project the climate of Syria and can be applied for
future studies requiring both rainfall and temperature.
Therefore, GCMs were selected based on their ability
to simulate both precipitation and temperature. Selected
precipitation GCMs were then used for the precipitation
projection of Syria. The procedure used for the selection
of GCMs and the projection of spatio-temporal changes
in the precipitation of Syria is outlined here:

Figure 3. Number of gauges per grid in and around Syria used for the preparation of (a) GPCC and (b) CRU data.
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Table 1. Developing organization and the resolution of GCMs used in this study.

No. Institution Model name Resolution (°, Lon× Lat)

1 Beijing Climate Center, China Meteorological BCC-CSM1-1 2.8× 2.8
2 Administration BCC-CSM1.1(m) 1.125× 1.125
3 National Center for Atmospheric Research, USA CCSM4 1.25× 0.95
4 CESM1-CAM5 1.25× 0.95
5 Commonwealth Scientific and Industrial Research

Organization, Australia
CSIRO-Mk3-6-0 1.875× 1.875

6 The First Institute of Oceanography, SOA, China FIO-ESM 2.8× 2.8
7 Geophysical Fluid Dynamics Laboratory, USA GFDL-CM3 2.5× 2.0
8 GFDL-ESM2G 2.5× 2.0
9 GFDL-ESM2M 2.5× 2.0
10 NASA Goddard Institute for Space Studies GISS-E2-H 2.5× 2.0
11 GISS-E2-R 2.5× 2.0
12 Met Office Hadley Centre, UK HadGEM2-AO 1.875× 1.25
13 Met Office Hadley Centre, UK HadGEM2-ES 1.875× 1.25
14 Institut Pierre-Simon Laplace, France IPSL-CM5A-LR 3.75× 1.875
15 IPSL-CM5A-MR 2.5× 1.25
16 The University of Tokyo, National Institute for MIROC5 1.4× 1.4
17 Environmental Studies, and Japan Agency for MIROC-ESM 2.8× 2.8
18 Marine-Earth Science and Technology MIROC-ESM-CHEM 2.8× 2.8
19 Meteorological Research Institute, Japan MRI-CGCM3 1.25× 1.25
20 Norwegian Meteorological Institute, Norway NorESM1-M 2.5× 1.875

(1) The re-gridding of the 20 GCM simulations to a 0.5o
grid in order to have the same resolution as that of
the GPCC and CRU data;

(2) The use of the past performance approach for the
preparation of a sub-ensemble or a subset of GCMs;

(3) Comparison of the four widely used bias correction
methods and selection of the best and highest per-
forming bias correctionmethod to correct the biases
in GCMs precipitation at each grid, taking GPCC
precipitation as the base;

(4) Generate MME of GCM simulations using RF in
order to reduce uncertainty in projection;

(5) Evaluate spatio-temporal changes in precipitation in
Syria during 2010–2039, 2040–2069, and 2070–2099.

The methods applied in selecting the GCMs and the
downscaling are given in the next sections.

3.1. GCM ensemble selection

Selecting the most appropriate GCMs for climatic stud-
ies is imperative for the development of reliable poli-
cies for the mitigation of the impact of climate change
for an area. Due to numerous GCMs with a varying
range of uncertainties available from different organiza-
tions/modeling centers at various resolutions, selection
can be challenging. A systematic aggregation of a multi
model ensemble (MME) for the projection of climate
can reduce the uncertainties existing in the individual
GCMs (Knutti, Furrer, Tebaldi, Cermak, & Meehl, 2010;
McSweeney et al., 2014). Therefore, in this study, the
most suitable GCMs for the formation of MME for the

projection of precipitation in Syria were selected. The
procedure for this selection is given as follows:

(1) Re-grid GCM simulation of precipitation and tem-
perature for the period 1961–2005 to GPCC/CRU
resolution (0.5°) for compliance;

(2) Estimate the SUof eachGCMbased on their capabil-
ity to construct GPCC precipitation and CRU daily
mean temperature at each grid point for the period
1961–2005;

(3) Estimate GCM ranking using scores ranking pattern
aggregation at all grids over Syria using MCDM;

(4) Delineate GCM ensemble based on ranking in sim-
ulating precipitation and temperature.

In this study, model selection was conducted consid-
ering precipitation and temperature as they have strong
relationships, and it would be logical to choose the same
GCMs for climatic projections for an area. Hence, a
model’s selection in this study is not only based on the
scores and rankings of the precipitation, but those of the
temperature as well.

The next sections discuss the methods involved
in the ranking of the GCMs and the scoring tech-
niques applied in selecting the most suitable ones using
MCDA.

3.1.1. Symmetrical uncertainty
Symmetrical uncertainty (SU) has its basis in the the-
oretical conception of information entropy. It can be
used to assess the input feature’s influence on model out-
comes, hence is applicable inGCMclassification based on
goodness evaluation (Jiang, Ding, Ma, & He, 2008). The
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mutual information (MI) concept is used for the associa-
tion assessment of two variables. Let M and N be GPCC
precipitation and GCM historical precipitation simula-
tion respectively at a grid location. If σ (M) and σ (N) are
the probability density functions (PDFs) and σ (M, N)
is the joint PDF of M and N, then the MI between M
and N is (Senthamarai Kannan & Ramaraj, 2010; Singh,
Kushwaha, & Vyas, 2014):

MI(M,N) =
∑

p(M,N) log
σ(M,N)

σ (M).σ(N)
(1)

Common information in two precipitations is estimated
by MI as the difference between entropy sums and their
joint entropy:

MI(M,N) = H(M) − H(M,N) (2)

where, H(M) and H(M, N) are Shannon’s entropy of
M and the joint entropy of M and N, respectively. The
MI estimated by Equation (1) indicates the MI between
GPCC and GCM precipitations. The MI will be zero
if the variables are independent of each other, while
a higher than zero MI is an indication that there is
some sort of similarity between the GPCC and GCM
precipitations.

There is a bias of MI towards the variable with large
values. It is possible to avoid by the use of SU which
is the ratio of MI to the sum of the entropies of GCM
precipitation and GPCC precipitation:

SU(M,N) = 2.
MI(M,N)

H(M) + H(N)
(3)

Complete similarity exists between GPCC and GCM
precipitation when the SU is 1, while an SU equal
to 0 means no similarity (Shreem, Abdullah, & Nazri,
2014).

3.1.2. Ranking of GCMs usingMCDA
Information aggregation from various sources using
MCDM is found efficient in the ranking of alternatives
(Salman et al., 2019; Xiao-jun et al., 2014). In this study,
GCM ranking was conducted based on their scores gen-
erated using the SU method and an MCDM approach.
This involves a payoff matrix, whereby the grid point
numbers at which a certain rank is achieved by a GCM is
observed in thematrix. This study involves 20GCMs and,
thus, the payoffmatrix dimension was 20 by 20 where the
ranks were between 1 and 20. The model performance is
quantified based on the occurrence frequency of GCM
at all grid points over Syria. This means the higher the
frequency of occurrence of a model at the different grid
points within the study area, the higher its general perfor-
mance for the total grid points of the study area. Similarly,

a higher frequency of occurrence of a particular model
gives it higher weight, and hence a higher ranking among
other models. For example, if a GCM obtained rank of
1, 2, 3, . . . , n at X1, X2, X3, . . . Xn grid point respec-
tively, the score of theGCM is estimated as:X1 (1/1)+X2
(1/2)+X3 (1/3)+ . . . . Xn (1/n). For example, if a GCM
obtains a rank of 1 at n grid points, it gets a score of (n/1),
if it obtains second rank at m grid points, it gets another
(m/2) score, and so on. The total score is estimated from
all the ranks a GCM gets.

3.2. Correction of biases in GCMs

Over the last few decades, several bias correction tech-
niques have emerged. Amongst the ones widely used
are the quantile mapping (QM), general quantile map-
ping (GQM), power transformation (PT), and lin-
ear scaling (LS) methods as they are simple to apply
and have good correction abilities (Noor et al., 2019).
Therefore, performance of these methods was com-
pared according to their capability to correct biases in
GCM precipitation for the period 1961–2005 in ref-
erence to the GPCC precipitation. Their performances
were assessed using standard statistical indices, namely,
modified index of agreement (MD), relative standard
deviation (RSD), percentage of bias (Pbias), normalized
root mean square error (NRMSE%), and volumetric effi-
ciency (VE). The biases of the ensemble GCMs were
then corrected using the best performing bias correction
method.

3.3. Precipitation ensemble projections

The variance in the MME average is possible to pre-
serve by the regression-basedMME and, thus, it has been
widely used for this purpose in recent times. However,
there is a lack of ability by multiple linear regressions
to define the nonlinear association existing between the
dependent and the independent variables, even when
the linear relationship is significant. Such nonlinearity
can be modeled using RF (Li, Heap, Potter, & Daniell,
2011) and hence was applied in this study for the con-
version of the selected GCM precipitation into a single
precipitation series. RF has advantages – like robustness,
which can avoid over-fitting, and operational and analyt-
ical flexibility – and as such was used in this study for
the generation of ensemble projection for different RCPs.
The spatial and temporal precipitation variation of Syria
was evaluated from the MME precipitation projection
for 2010–2039, 2040–2069, and 2070–2099, against the
GPCC precipitation for 1971–2000.
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Figure 4. GCM ranking according to their performance in replicating (a) the precipitation and (b) the temperature of the study area. The
color bar represents the number of grid points.

4. Application results and analysis

4.1. Ranking of GCMs

GCM rankings based on their capacity in the replication
of precipitation and temperature using SU and MCDA
respectively is shown in Figure 4a and 4b respectively.
The x-axis represents the ranks of the GCMs while the
y-axis numbers indicate the GCM numbers as given in
Table 1. Figure 5 shows MIROC5 (16) attained the high-
est ranking for themost number of grids for precipitation
followed by CSIRO-MK3.6.0 (5), HadGEM2-AO (12),
GFDL-CM3 (7), and so on. In the case of temperature,
HadGEM2-ES (13) attained the highest rank at most of
the grid points.

The score obtained for each of the GCMs for pre-
cipitation and temperature based on their rankings
are shown in Figure 5, which reveals that the high-
est ranking models for precipitation are MIROC5,
CSIRO-MK3.6.0, HadGEM2-AO, GFDL-CM3, CESM1-
CAM5, and NorESM1-M, while the highest ranking
ones for temperature are HadGEM2-ES, NorESM1-M,
CCSM4, HadGEM2-AO, CESM1-CAM5, and MIROC-
ESM. However, some GCMs like MIROC5, even though
they rank high for precipitation, showed very low perfor-
mance for temperature.

The spatial patterns showing the performances of
the different GCMs used in this study are presented
in Figure 6a and 6b for precipitation and temperature
respectively. Figure 5a shows IPSL-CM5A-MR was
ranked top at most of the northwest and central areas,
and some parts of the northeast and southwest. In the

Figure 5. The score of the 20 models obtained using SU and
MCDA for precipitation and temperature.

northeast of the country, HadGEM2-AO showed a bet-
ter performance. CSIRO-MK3.6.0 was seen as best in
the south and in some parts of the northeast and north-
west. For temperature, NorESM1-M was found best in
the southwest and at a few other locations in Syria.
CCSM4 was ranked top in the northwest and some grids
in the east. MIROC-ESM was ranked top at some grids
in the southwest while HadGEM2-AO and HadGEM2-
ES was ranked top for most other locations in the
country.

The ranking of the GCMs based on precipitation and
temperature are presented in Table 2. As some models



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 97

Figure 6. Spatial ranking of the models by SU for (a) precipitation and (b) temperature.

Table 2. The scores and ranks achieved by the GCMs for precipitation and temperature.

Precipitation Temperature

Model Model score Rank Model Model score Rank

MIROC5 52.5 1 HadGEM2-ES 45.6 1
CSIRO-Mk3.6.0 42.6 2 NorESM1-M 27.1 2
HadGEM2-AO 31.5 3 CCSM4 24.4 3
GFDL-ESM2G 17.4 4 HadGEM2-AO 23.7 4
CESM1-CAM5 8.0 5 CESM1-CAM5 14.2 5
NorESM1-M 6.3 6 MIROC-ESM 13.3 6
BCC-CSM1.1(m) 3.0 7 CSIRO-Mk3.6.0 7.7 7
BCC-CSM1-1 1.7 8 FIO-ESM 5.0 8
GISS-E2-H 1.2 9 IPSL-CM5A-MR 2.4 9
GFDL-CM3 1.1 10 MIROC-ESM-CHEM 2.1 10
CCSM4 0.7 11 BCC-CSM1-1 2.0 11
IPSL-CM5A-MR 0.2 12 GFDL-ESM2G 1.3 12
FIO-ESM 0.0 13 GFDL-ESM2M 1.0 13
GFDL-ESM2M 0.0 14 BCC-CSM1.1(m) 0.5 14
GISS-E2-R 0.0 15 MIROC5 0.3 15
HadGEM2-ES 0.0 16 MRI-CGCM3 0.2 16
IPSL-CM5A-LR 0.0 17 GFDL-CM3 0.0 17
MIROC-ESM 0.0 18 GISS-E2-H 0.0 18
MIROC-ESM-CHEM 0.0 19 GISS-E2-R 0.0 19
MRI-CGCM3 0.0 20 IPSL-CM5A-LR 0.0 20

rank very high for one variable and very low for the
other, e.g. MIROC5 was ranked very high for precipi-
tation but very low for temperature, the top 50th per-
centile GCMs were considered as the GCMs that have
the capability to simulate the climate (both rainfall and
temperature) of the study area (Khan et al., 2018). There-
fore, any GCM for each of the variables that falls at
the bottom 50th percentile was considered to have less

skill in simulation. In order to select the same model
for precipitation and temperature, only those existing
for the precipitation and temperature of the 50th per-
centile models for each variable were considered. There-
fore, CSIRO-Mk3.6.0, HadGEM2-AO, CESM1-CAM5,
and NorESM1-M (in bold in Table 2) were selected as
the most suitable GCMs for the climate simulation of
Syria.
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Table 3. The evaluationmetrics of the four bias correctionmethods used in the study. The bold
number represents the best statistics.

GCM Bias correction method NRMSE PBIAS RSD MD VE

HadGEM2-AO LS 96.1 0.0 0.88 0.61 0.35
GEQM 97.3 −4.9 0.88 0.59 0.27
PT 101.0 0.0 0.99 0.60 0.30

GAQM 99.4 0.20 0.93 0.60 0.28
GCM 94.3 −31.3 0.79 0.60 0.41

CSIRO-Mk3.6.0 LS 94.4 0.0 1.12 0.55 0.33
GEQM 93.0 −3.9 0.77 0.61 0.27
PT 94.7 0.0 0.92 0.62 0.32

GAQM 93.7 0.7 0.86 0.61 0.28
GCM 131.1 51.4 1.42 0.58 0.07

NorESM1-M LS 96.9 0.0 1.04 0.64 0.34
GEQM 100.2 −91.5 0.01 0.64 0.02
PT 107.0 0.0 0.90 0.52 0.26

GAQM 99.4 0.4 0.91 0.59 0.25
GCM 111.3 5.5 1.16 0.57 0.26

CESM1-CAM5 LS 90.3 0.0 1.04 0.66 0.4
GEQM 100.2 −100.0 0.0 0.66 0.0
PT 91.4 0.0 0.95 0.64 0.35

GAQM 92.2 −0.1 0.94 0.64 0.34
GCM 105.6 5.6 1.18 0.62 0.35

Note: LS: Linear Scaling; GEQM:General quantilemapping; PT: Power transform; GAQM:Gammaquantilemapping;
GCM: General circulation model.

Figure 7. Scatter plots of the downscaled and GPCC precipitation for (a) the entire year, the (b) wet season, and (c) the dry season.

4.2. Performance assessment of bias correction
methods

For the evaluation of the performances of the bias cor-
rection methods, the monthly mean precipitation of the
selected models was compared with those of the GPCC
precipitation using five different statistical indices. The
results obtained for each of themethods and theGCMare
presented in Table 3. The performances of the bias cor-
rection method vary for the different models. However,
in order to choose the same bias correction approach for
the downscaling of all GCMs, the most capable method
for all GCMs in terms of all statistics was explored. The
table shows LS as the best for correcting the biases in the
GCM precipitation of Syria.

4.3. Performance evaluation of downscaled
precipitation

The performance of the downscaled GCM precipitation
using LS was first assessed using scatter plots and PDF
plots. This was done for both wet and dry seasons and
for the year-round precipitation in Syria. The downscaled
and the GPCC precipitation relationships for the entire
year, as well as the wet and dry seasons, are depicted
in Figure 7a, b, and c, respectively. Good estimates of
the downscaled precipitation to that of the GPCC were
observed, indicating the efficiency of the LS method for
the correction of the biases in the GCMs.

The PDFs of the downscaled precipitation of GCMs
and the GPCCprecipitation were also compared to assess
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Figure 8. PDFs of GPCC and downscaled precipitation for (a) the entire year, (b) the wet season, and (c) the dry season.

Figure 9. Boxplots of the monthly GPCC precipitation compared to those of the downscaled precipitation. The black line is the median
values of the observed precipitation (GPCC) while the red is the median of the downscaled precipitation.
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the performance of LS bias correction methods in repli-
cating variance, average, and distribution. The PDFs for
theGPCC and the downscaledGCMprecipitation for the
entire year, as well as the wet and dry seasons, are given
in Figure 7. Figures show similarity in the shapes of the
PDFs of GCMs and the GPCC, which proves the ability
of LS in correcting the biases in the GCMs (Figure 8).

The LS performance in downscaling GCM precipita-
tion was also assessed through comparison of the box-
plots of the monthly averages of the GPCC and down-
scaled GCM precipitation. The boxplots for each of the
GCMs and the GPCC are presented in Figure 9. Figures
show close matching of precipitation in different GCMs
with the GPCC precipitation indicating the ability of the
LS in correcting the biases in the GCMs.

4.4. Precipitation projection

The MME precipitation for RCP 2.6, RCP 4.5, RCP 6.0,
and RCP 8.5 were used in this study to show the spatio-
temporal changes in precipitation in Syria. SelectedGCM
precipitation was downscaled at all the 76 grid points
of Syria. The projected precipitation MME was com-
puted for all the grids for different RCPs using RF. Results
obtained from theMMEmeans projections for precipita-
tion are discussed later in this article.

4.4.1. Multi-model ensemblemean of precipitation
The scatter plot of the GPCC precipitation and the
MMEmean precipitation for the period 1961–2005 aver-
aged for all the 76 grid points for Syria is presented in
Figure 10. A good association between the GPCC and the
MME precipitation was observed, indicating the strength
of the RF in the computation of the MME. At each of
the grid points, the correlation coefficients between the
estimated MME and the observed data falls at the value
of 0.94 at least. The estimated MME from RF can be
said to improve the projection accuracy as it reduces the
uncertainties associated with individual GCMs.

4.4.2. Changes in geographical distribution of annual
precipitation
The spatial pattern of the percentage precipitation
changes expected over Syria during 2010–2039, 2040–
2069, and 2070–2099 in comparison to GPCC precipi-
tation during 1971–2000 are presented in this section.
Assessment of the changes was done for the entire year
and for both wet and dry seasons for all RCPs.

Figure 11 presents the expected annual changes (%)
in precipitation for the country. Maps show that parts
of the northwest and southwest, mostly the coastal areas
of the country, would have the highest decreases in pre-
cipitation in the range of −30 to −85.2% under RCPs

Figure 10. Scatter plot of the areal average of GPCC and MME
mean precipitation during 1961–2005.

4.5, 6.0, and 8.5 during the three considered periods.
The same areas showed a precipitation decrease in the
range of 0.0 to −30% under RCP 2.6. Increases in pre-
cipitation ranging from 6 to 87.3% were observed at the
places next to this area in the same region. The precipita-
tion was projected to decrease in the entire eastern part,
except in some patches where precipitation was projected
to increase up to 18%.

The geographical distribution of the changes (%) in
precipitation during the wet season in Syria is presented
in Figure 12 for different RCPs and periods. Under RCP
2.6, a decrease in precipitation (0.0–−25%)was projected
for the entire country for all the periods except at a few
grid points. Increases in precipitation were observed for
RCP 4.5 and RCP 8.5 in most parts of the northwest and
the southwest next to the coastal area. The coastal areas,
however, showeddecreasing precipitation for theseRCPs.
Decreases in precipitation up to−40%were observed for
RCPs 4.5 and 8.5 in the east of the country. Under RCP
6.0, precipitation was found to decrease at different rates
in the entire country ranges from < 0.0 in the north-
west and southwest to −55% in the east, and −90% in
the coastal areas.

The spatial changes (%) in rainfall during the dry
season are presented in Figure 13. Though rainfall occur-
rences are low during the dry season, the projection of
rainfall during the different periods under different RCPs
indicated a drier condition in all parts of the country.
As in the entire year and wet season, the coastal areas of
Syria showed the highest percentage decreases in rainfall
(> −90%) followed by the eastern parts (−45 to−75%).
The least changes in rainfall were observed in the areas
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Figure 11. Geographical distribution of the changes (%) in annual mean precipitation for different RCPs and future periods.

next to the coast in the northwest and the southwest of
the country.

5. Discussion and conclusions

The climatic variables are changing in many regions
of the globe, including Syria, due to global warming,
which has an impact on many sectors of our existence
(Ahamed et al., 2019; Mathbout, Lopez-Bustins, Martin-
Vide, Bech, & Rodrigo, 2018; Nashwan, Shahid, & Abd
Rahim, 2018; Salman et al., 2017). There have been
reports of the aggravation of the impacts of climate
change, especially in areas that are prone to disasters like
droughts, among which Syria belongs. Understanding
the dynamics of the possible alteration in climate vari-
ables and how they may influence disasters is therefore

pivotal for the development of resilience. The selec-
tion of suitable GCMs for Syria was conducted in this
study for ensemble projection of climate. Of a total of
20 GCMs, four were selected by combining SU and a
MCDM approach. Four bias correction techniques were
compared in terms of their abilities to downscale the pre-
cipitation of selected GCMs. The MME average of the
downscaled precipitation projection was made using RF.

It was revealed that CSIRO-Mk3.6.0, HadGEM2-AO,
CESM1-CAM5, and NorESM1-M are the models best
suited for Syria for precipitation projection based on their
skill. As the GCMs were identified based on their abil-
ity to mimic observed precipitation and temperature,
those can be used for the evaluation of the impact of
climate change in Syria. The appraisal of the four bias
correction methods showed that linear scaling followed
by power transformation is the most efficient method
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Figure 12. Geographical distribution of the changes (%) in wet season precipitation for different RCPs and future periods.

for precipitation downscaling in Syria. The study also
revealed the capability of non-linear regression for the
preparation of MME.

Annual precipitation was projected to decreasemostly
in the coastal areas, while projected to increase next to
those areas. The eastern parts would mostly experience a
decrease in precipitation in the range of 0.0–−30%. Per-
centage decreases in precipitation were projected to be
higher for RCPs 4.5 and 8.5 for the period 2070–2099,
while the increase in precipitation in the northwest and
southwest were noticed least for RCP 2.6 for the consid-
ered periods compared to other RCPs.

Changes in percentage precipitation during the wet
season were observed to decrease most for RCP 6.0
(−70% in the east). The precipitation was generally

projected to decrease in the coastal areas for all RCPswith
the lowest decrease for RCP 2.6. Increases in precipitation
(up to 76%)were projected at some areas in the northwest
and southwest for RCPs 4.5 and 8.5. Increases ranging
from 0.0 to 20% in these areas and in the northeast were
projected for RCP 2.6. Overall, precipitationwas found to
decrease during the dry seasonwith the highest decreases
in the coastal areas and in northeast.

The data and methods applied in the study are care-
fully selected based on an extensive literature review. The
methodologies were compared, after which the high per-
forming methods were selected for the application and
preparation of results. The quantification of uncertain-
ties relating to data and methodology applied were not
assessed in this study. Nevertheless, it cannot be ruled
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Figure 13. Geographical distribution of the changes (%) in dry season rainfall for different RCPs and future periods.

out that these are not in existence considering uncer-
tainties inherent from the GCMs and other data during
their various processes of preparation. Future study can
be conducted on uncertainties associated with precipita-
tion projected in this study.However, it can be sufficiently
said that the results and approaches presented in this
study can be a guide to the likely expected changes in
precipitation in the future.

The findings from this study have revealed the impor-
tance of this study of Syria. It has shown that the
country, which has witnessed severe and prolonged
droughts in the past, may experience more severe
droughts in the future due to a decline in precipi-
tation. This will aggravate the water crisis and agri-
culture, which is an essential source of livelihood for
most of the rural population. With the same GCMs

selected in this study for precipitation and tempera-
ture projection, a similar study can be conducted in the
future on the projection of temperature change in Syria.
The findings of this study can be utilized for the for-
mulation of climate change adaptation and mitigation
strategies.
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