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Abstract
Depression is the most devastating mental disorder and one of the leading contributors to the global medical burden. Current
antidepressant prescriptions present drawbacks, including treatment resistance, delayed onset of treatment response, and side effects.
The rapid and long-lasting antidepressant effect of ketamine has brought hope to treatment-resistant major depressive disorder
patients. However, ketamine has undesirable addictive properties and is a drug of abuse. There is an urgent need, therefore, to
develop novel pharmacological interventions that could be as effective as ketamine, but without its side effects. Adiponectin, a
pleiotropic adipocyte-secreted hormone, has insulin-sensitizing and neurotrophic properties. It can cross the blood-brain barrier and
target multiple brain regions where the adiponectin receptors are detected. Emerging evidence has suggested that adiponectin and
the adiponectin receptor agonist, AdipoRon, could promote adult neurogenesis, dendritic and spine remodeling, and synaptic
plasticity in the hippocampus, resulting in antidepressant effects in adult mice. By summarizing the most recent clinical and animal
studies, this review provides a timely insight on how modulating the adiponergic system in the hippocampus could be a potential
therapeutic target for an effective and fast-acting antidepressant response.
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Depression is the worldwide, leading cause of years lived with
disability, accounting for almost 10% of the total disability in
2010 [1, 2]. This devastating disorder imposes a huge economic
burden on patients and the healthcare systems [3, 4].
Therapeutic effects of the currently available antidepressant
treatments are limited considering their low response rates (~
50%) and delayed therapeutic effects [5, 6]. The delayed anti-
depressant response is alarming due to an increased risk for

suicidal behavior during the first month of antidepressant treat-
ment [7]. Also, about 20% of the depressed patients remain
treatment-resistant, failing to respond to at least four drug trials
and two drug classes [4]. Among those, suicidal ideation in-
creases from 6 to 15% and the average response rate is lowered
to 36% [4]. With the unmet need for antidepressant treatments,
there is an urge to develop novel antidepressant drugs.

Currently, depression is considered as a neurocognitive dis-
order with associated impairments in adult neurogenesis and
neural circuits [8–10]. This emerging conceptualization of de-
pression has guided the development of a novel class of antide-
pressants targeting structural and functional neuroplasticity.
Ketamine, an N-methyl-D-aspartate (NMDA)−receptor antago-
nist [11], induces a rapid and long-lasting antidepressant re-
sponse in treatment-resistant patients with major depressive
disorder (MDD) [12]. It acts by increasing glutamatergic trans-
mission [13], synaptogenesis [14], synaptic plasticity [15], and
neurotrophic factor expression [16] in key brain regions medi-
ating mood regulation, such as the prefrontal cortex (PFC) and
the hippocampus. However, its side effects have limited its
clinical application [17].

Adiponectin is an adipocyte-secreted hormone that can
cross the blood-brain barrier. It can act on its specific receptors
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in the hypothalamus to increase food intake and decrease en-
ergy metabolism [18]. Besides, adiponectin receptors are also
present in several brain regions, including the hippocampus
and the medial PFC [19]. Notably, intracerebral (i.c.v.) recom-
binant adiponectin infusion promotes dendritic arborization,
spinogenesis, and neurogenesis in the hippocampal dentate
gyrus (DG) [20], modulates hippocampal synaptic plasticity
[21, 22], and elicits antidepressant response in normal mice
[19]. Remarkably, it was recently demonstrated that the sys-
temic administration of AdipoRon, a selective agonist of
adiponectin receptors, can elicit an antidepressant response
in depressed mice [23]. AdipoRon can bypass the blood-
brain barrier [24], indicating its direct effect on the brain.
The modulation of the adiponectin signaling pathways, there-
fore, has unmasked a novel antidepressant strategy.

In this review, we summarize the pieces of evidence show-
ing the effects of the adiponergic system on modulating
neuroplasticity in the central nervous system.

Adiponectin

Adiponectin is the most abundant plasma protein in the circu-
lation. It is released by mature white adipocytes and takes up
about 0.01% of the total plasma proteins in human [25].
Adiponectin circulates as a trimer, hexamer, and high-
molecular weight multimers, which are the major forms in
mammals (Fig. 1) [26, 27]. Still, only trimer and hexamer are
permeable to the blood-brain barrier and their concentrations in
the cerebrospinal fluid compared to serum levels are

Fig. 1 Adiponectin structure and its receptors. A full-length adiponectin
(~ 30 kDa) consists of a globular domain, a collagenous domain, a
species-specific domain, and a signal peptide. Oligomerization facilitates
the formation of the trimer, hexamer, and high-molecular weight (HMW)

adiponectin. Full-length adiponectin can undergo proteolytic cleavage,
whose proteolytic fragment corresponds to the globular adiponectin.
AdipoR1 has a greater affinity for the globular form, whereas AdipoR2
has a moderate affinity for both globular and full-length forms
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approximately 1- to 4000-fold [18]. There are two adiponectin-
specific receptors identified: adiponectin receptor 1 (AdipoR1)
and receptor 2 (AdipoR2) [28]. AdipoR1 and AdipoR2 have
differential affinities for different adiponectin oligomeric forms.
AdipoR1 has a greater affinity for the globular form, whereas
AdipoR2 has a moderate affinity for both globular and full-
length forms [28]. AdipoR1 is highly expressed in brain struc-
tures like the hippocampus, the PFC, the amygdala, the hypo-
thalamus, and the ventral tegmental area [18, 19, 29], whereas
AdipoR2 is more restricted to regions such as the hippocampal
DG [30] and hypothalamus [18].

Adiponectin acts on the liver, the muscle, the heart, the
adipocyte, and the blood vessel with antidiabetic, anti-inflam-
matory, antiatherogenic, and cardiovascular protective proper-
ties [31–34]. In the brain, adiponectin promotes food intake
through the activation of its receptors in the hypothalamus
[18]. Paradoxically, increased adipocyte size does not increase
adiponectin secretion in obesity [35, 36], mainly due to hyp-
oxia, cellular inflammation, and nutrient deprivation in the
oversized adipocytes. The increase in pro-inflammatory cyto-
kines suppresses adiponectin synthesis, leading to
hypoadiponectinemia. Noticeably, hypoadiponectinemia is

observed in type 2 diabetes mellitus (T2DM) [37], in which
the adiponectin level also correlates with the comorbid depres-
sive symptom severity [38]. Metabolic and mood disorders
are, therefore, intertwined by the adiponergic system.

Changes in Peripheral Adiponectin Levels
in Patients with Depression

An association among peripheral adiponectin levels andMDD
has been suggested in different populations and health condi-
tions (Table 1). A study consisting of cross-sectional (n = 575)
and longitudinal (n = 262) analyses has shown that current
episode ofMDD, symptom severity, and history of depression
in middle-aged women were all linked to the low adiponectin
levels over a 5-year follow-up [39]. In depressed women, the
adiponectin levels were sharply reduced by 25% and remained
low over a 24-h period when measured hourly [40]. The cor-
relations between low adiponectin levels and depression se-
verity were also shown in men [41] and elderly patients [42].
This adiponectin-depression relationship was briefly summa-
rized by a recent meta-analysis, illustrating a significant

Table 1 Changes in peripheral adiponectin levels in patients with depression

Authors (year) (ref) Study design Population Associations

Sex (n)a Associated condition Depression indices Adiponectin levels

Everson-Rose et al. (2018) [39] Cross-sectional ♀ (575) – Current depression
Symptom severity
History of depression

↓

Cizza et al. (2010) [40] Case-control ♀ (23) – History of depression
Cumulative duration of depression

↓

Leo et al. (2006) [41] Case-control ♀ ♂ (32)b – Current depression
Symptom severity

↓

Diniz et al. (2012) [42] Case-control ♀ (37)
♂ (10)

Elderly subjects Current depression
Symptom severity

↓

Laake et al. (2014) [43] Cross-sectional ♀ (793)c

♂ (976)
T2DM Current depression ↓ (trend p = 0.09)

Herder et al. (2017) [44] Cross-sectional ♀ (55)
♂ (84)

T1DM Symptom severity No association

♀ (97)
♂ (198)

T2DM Symptom severity ↓

Herder et al. (2018) [38] Cross-sectional ♀ (227)
♂ (162)

T1DM Symptom severity No association

♀ (88)
♂ (116)

T2DM Symptom severity ↓

Yang et al. (2018) [45] Cohort ♀ (117)
♂ (138)

Ischemic stroke Poststroke depression at 3 months ↓ at baseline

Fábregas et al. (2016) [46] Cohort ♀ (26)
♂ (24)

Hepatitis C MDD at 3 months ↓ at baseline

Tunçel et al. (2016) [47] Case-control ♀ (23)
♂ (7)

Adolescents (11–18 y.o.) Current depression No association

Rebelo et al. (2016) [48] Cohort ♀ (177) Pregnant women Perinatal depression No association

a Total n number for cross-sectional and cohort studies, n number of cases for case-control design
b Individual numbers of males and females are not reported
c From the total sample of 1769 subjects (male and female), 1227 were included in the analysis
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decrease in the adiponectin levels in depressed patients com-
pared to controls, in both males and females [49].

Adiponectin is also known as an anti-inflammatory cyto-
kine. Metabolic disorders and cardiovascular diseases are
marked by altered adiponectin levels [50, 51]. Coincidentally,
depression is often comorbid with these disease states [52]. A
large cross-sectional study (n = 1227) reported a correlating
trend (p = 0.09) of the reduced adiponectin levels in early-
stage T2DM and the severity of depression [43]. This associa-
tion was later confirmed by two other studies, in which both
high molecular weight to total adiponectin ratio [44] and total
adiponectin concentrations [38] were correlated with the sever-
ity of depression in T2DM, but not in T1DM. In ischemic
stroke patients, lower adiponectin levels at admission increased
three times the risk of developing post-stroke depression [45].
In hepatitis C patients, higher adiponectin levels were associat-
ed with a lower incidence of MDD [46].

Interestingly, in consonance with the heterogeneity of de-
pressive disorders, peripheral adiponectin levels might not be
a ubiquitous biomarker for all depressive states. Depressed
patients at the adolescent age ranging from 11 to 18 years
old displayed comparable adiponectin levels to healthy age-
matched controls [47]. Additionally, adiponectin levels in-
creased along with the pregnancy and the postpartum period,
but with no correlation with the incidence of depressive symp-
toms [48]. This idea is also illustrated in rodent studies using
different depressed animal models. Mice subjected to chronic
unpredictable mild stress [53] or chronic corticosterone ad-
ministration in drinking water [23, 54] did not reduce periph-
eral levels of adiponectin. However, the depressed mouse
model induced by chronic social defeat stress had a signficant
reduction in peripheral adiponectin levels, which was inverse-
ly correlated to the increased severity of depressive behavior
[19, 55]. These differences in rodent studies are likely due to
the variations in the paradigms used for inducing depressive-
like behaviors.

In summary, the evidence so far has suggested that de-
creased peripheral adiponectin levels can potentially be linked
to major depressive disorder and depression co-morbid with
some metabolic and cardiovascular disorders.

Central and Peripheral Modulations
of the Adiponergic Pathway
on Antidepressant Effects

The effects of antidepressant treatments over peripheral
adiponectin levels are controversial in clinical studies. A short
treatment period of 4 to 5 weeks by several classes of antide-
pressant drugs did not largely affect [47, 56, 57], but with
chances of reducing [58], adiponectin levels in depressive
patients. On the other hand, MDD-remitted patients who had
undergone selective serotonin reuptake inhibitor (SSRI) or

serotonin-norepinephrine reuptake inhibitor (SNRI) treat-
ments for at least 6 months showed increased levels of
adiponectin and decreased levels of tumor necrosis factor al-
pha (TNF-α) when compared to healthy, matched controls
[59]. Nonetheless, the improvements in depressive symptoms
after long-term non-pharmacological, behavioral-cognitive
therapy for T1DM and T2DM with comorbid depression
and distress were not associated with increased adiponectin
levels in the 12-month follow-up [60]. The fact that
adiponectin is the most abundant plasma protein may hinder
the detection of subtle changes in adiponectin levels, leaving
only substantial alteration in the peripheral adiponectin levels
as statistically detectable.

From another perspective, manipulation of peripheral
adiponectin levels appears to elicit antidepressant effects in
rodents. Rosiglitazone is a known effective antidiabetic agent,
selectively agonizing the peroxisome proliferator-activated re-
ceptor gamma (PPARγ), an upstream positive regulator of
adiponectin [61]. Rosiglitazone cannot bypass the blood-
brain barrier. Systemic administration of rosiglitazone resulted
in adiponectin-dependent antidepressant response in mice
[55]. Moreover, systemic administrations of rosiglitazone
within 24 h significantly increased peripheral adiponectin
levels, which was necessary and sufficient to elicit an antide-
pressant response [55].

Besides, rodent studies have not only demonstrated the
necessity of adiponectin in exercise- and environment-
induced antidepressant effects [54, 62, 63] but also hint on
the fact that increased adiponectin level in the central nervous
system is associated with the antidepressant response.
Particularly, voluntary wheel running for 14 days induced
antidepressant effects in wild-type mice with increased
adiponectin concentrations in the hippocampal DG, but not
in the serum [60]. Similarly, environmental enrichment
prevented anxiety and depression-like states in chronically-
stressed mice with a four-fold increase in the cerebrospinal
adiponectin levels, whereas plasma adiponectin levels
remained unchanged [54]. These animal studies have shed
light on the possible roles of the adiponergic system in induc-
ing antidepressant effects [64, 65].

Importantly, direct activation of the central adiponergic
pathway shows antidepressant effects. Central activation of
the central adiponergic pathway by overexpressing
adiponectin [62] or i.c.v. infusion of recombinant adiponectin
consistently elicited antidepressant responses [19, 54, 63].
Strikingly, these animal studies have also shown that the
adiponectin-induced antidepressant response was observable
within hours.

AdipoRon is an orally active molecule that selectively ag-
onizes the AdipoR1 and AdipoR2 [24]. As adiponectin, it
exerts antidiabetic [24], anti-inflammatory [66], and cardio-
vascular protective properties [67]. AdipoRon can also bypass
the blood-brain barrier [23] and act on brain regions like the
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hippocampus [30] and the ventral tegmental area [29].
Congruently, chronic administration of AdipoRon promoted
hippocampal adult neurogenesis and results in antidepressant
response in several animal models of depression [23].
Altogether, this data indicate that targeting adiponectin recep-
tors and activating the adiponergic pathway are potential strat-
egies for developing antidepressant drugs.

Potential Mechanisms of the Antidepressant
Effects of Adiponectin

Effects of Adiponectin on Neurogenesis

In the adult mammalian brain, the sub-granular zone of the
hippocampal DG contains a reservoir of neural stem cells.
Granule neurons are continuously generated from these pro-
genitors via adult hippocampal neurogenesis [68–73], which
can integrate into the existing neural circuit [74–77].
Conventionally, depression is closely related to brain structure
integrity [78], increased cellular stress [10], and increased
dendritic and spine atrophy [10]. It was further postulated that
adult hippocampal neurogenesis could antagonize stress and
depression [79]; concurrently, antidepressant drugs are effec-
tive in promoting adult hippocampal neurogenesis [80–83].
Given so, the endeavor to reveal the role of adiponectin in
structural plasticity were made thereafter.

Current opinion towards adiponectin is far more than an
adipocyte-secreted endocrine hormone, but a neurotrophic
factor, such that disruption of the adiponectin signaling path-
way in the hippocampus impairs neurogenesis and cognitive
functions [20, 62, 84]. The neurotrophic effect of adiponectin
was first demonstrated in adult hippocampal stem cells, which
expressed both AdipoR1 and AdipoR2 [85]. Adiponectin pro-
moted proliferation, but not differentiation nor survival,
in vitro via the p38 mitogen-activated protein kinases
(MAPK)/glycogen synthase kinase (GSK)-3β/β-catenin sig-
naling pathway [85]. An adiponectin null mutant had reduced
cell proliferation, differentiation, and survival in the hippo-
campus [20], whereas infusing adiponectin [20] or overex-
pressing adiponectin [62] in the mouse brain could promote
cell proliferation in the hippocampal DG.

Physical exercise promotes adult neurogenesis in the hippo-
campus [86, 87]. It induces the release of neurotrophic factors
such as the brain-derived neurotrophic factor (BDNF) [88, 89]
and the insulin-like growth factor-1 (IGF-1) [90]. Rodents per-
form better in spatial recognition [91, 92] and have better exec-
utive functions [93] after exercise. In the study dissecting the
role of adiponectin in exercise-induced antidepressant effect,
the exercise-induced adult hippocampal neurogenesis was
abolished in adiponectin-deficient mice [62]. The role of
adiponectin as a mediator in exercise-promoted adult hippo-
campal neurogenesis is re-confirmed using streptozotocin to

induce diabetes in adiponectin-deficient mice. Exercise could
restore impaired hippocampal neurogenesis in wild-type diabet-
ic mice, but not in adiponectin-deficient diabetic mice [84]. The
neurogenic effects are possibly mediated by activating the
AdipoR1/APPL1/AMPK pathway as shown by Yau and col-
leagues [62].

Effects of Adiponectin on Dendritic Complexity
and Spinogenesis

Synaptic connections between neurons are predominantly tied
up by dendritic spines. Spinogenesis is precisely regulated in
response to stress, which consequently promotes rewiring of
the neural network [94]. Depression is associated with den-
dritic spine pathology in the hippocampus [95–97].
Spinogenesis is often dysregulated in chronically stressed an-
imals [98, 99]. Antidepressants can reverse spine and dendrite
atrophy in animal models of depression [100, 101], leading to
the idea that dendritic and spine atrophy could contribute to
symptoms of depression [9, 102, 103]. Therefore, unraveling
the role of adiponectin in spinogenesis can shed light on
depression.

In addition to the data above, adiponectin promotes den-
dritic growth, arborization, and spine remodeling in the hip-
pocampal DG [20]. Adiponectin null mutants had a reduced
dendritic length, branching, and spine density of granule neu-
rons, particularly in granule neurons generated during embry-
onic development [20], whereas i.c.v. infusion of adiponectin
for a week promoted spinogenesis and dendritic complexity in
adult-born granule neurons [20]. Moreover, upregulating
AdipoR1/Nogo-66 receptor 1 (NgR1) signaling pathway by
an adiponectin homolog, osmotin, could also enhance neurite
outgrowth and synaptic complexity in the hippocampus in an
Alzheimer’s disease mouse model [104].

Adult hippocampal neurogenesis is impaired by stress and
depression, whereas multiple rodent studies have demonstrat-
ed the neurogenic and antidepressant effects of adiponectin.
The accumulated evidence has suggested that enhanced struc-
tural plasticity may be a critical factor in the adiponectin anti-
depressant properties.

Effects of Adiponectin on Synaptic Plasticity

Altered synaptic integrity underlies the structural changes,
specifically reduced white matter integrity [78] and the mean
hippocampal volume [105], reported in MDD patients. MDD
patients have fewer spines in the PFC as well as reduced
expression of genes participating in synaptic plasticity [106].
Such disturbance in synaptic integrity could deter synaptic
transmission. Long-term potentiation (LTP) and long-term de-
pression (LTD) are standard evaluations of synaptic plasticity
[107]. Chronic stress, a conventionally accepted risk factor for
depression [108], impairs hippocampal LTP [109, 110] and
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facilitates LTD [111] in various stress-induced depressed ro-
dent models.

Conversely, chronic treatment with standard antidepres-
sants prevents stress-induced hippocampal LTD [111] and
stress-induced disturbances in synaptic proteins, such as
PSD-95 and synapsin I [112]. Considerably, a single dose of
ketamine induces fast antidepressant response and restores the

LTP and NMDAR-dependent excitatory postsynaptic current
in depressed mice [110]. Altogether, it indicates that altered
synaptic plasticity plays a significant role in the depression
pathophysiology and, concurrently, represent a potential target
for rapid-acting antidepressants.

The effect of adiponectin on modulating synaptic plasticity
is summarized in Table 2. At present, bidirectional effects of

Table 2 Effects of adiponectin on synaptic plasticity

Authors (year)
(ref)

Subjects (age) Methods Site Electrophysiological
findings

Behavioral outcomes

Weisz et al.
(2017) [22]

Adult and young mice
(C57BL/6J)

Extracellular recording and
whole-cell patch clamping

CA1 ↓ Paired-pulse ratio
↓ Long-term potentiation
↓ AMPA/NMDA ratio (on-

ly in adult mice)

N/A

Sun et al.
(2018) [29]

Adult mice
(C57BL/6J)

In vivo single-unit electrophysiological
extracellular recording

VTA ↓ Population activitya

↓ Average spontaneous
firing rate

Reduced the expression of
anxiety-like behaviors

Zhang et al.
(2017) [30]

Adult mice
(C57BL/6J)

Whole-cell patch clamping DG ↓ Number of action
potential

↑ Rheobase current
↑ Negative resting

membrane potential

Improved contextual fear
memory extinction

Pousti et al.
(2018) [21]

Adult rats (Wistar) In vivo extracellular recording DG ↑ Long-term potentiation
↑ Paired-pulse ratio
↑ Baseline
Prevented long-term de-

pression

N/A

a The number of spontaneously active neurons recorded per track

Fig. 2 Proposed beneficial effects of adiponectin in depression. A large body of clinical research have been implicating low peripheral adiponectin levels
with depression, and so antidepressant effects of adiponectin may be linked to its effect on promoting neuroplasticity.
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activating the adiponectin receptors on synpatic plasticity have
been found. i.c.v. adiponectin infusion increased LTP and
prevented LTD in the DG [21]. However, incubation of acute
hippocampal slices with AdipoRon further dampened LTP in
the Cornu Ammonis 1 (CA1) [22]. Factors affecting the
adiponectin receptor-mediated synaptic transmission are not
completely understood. The differential expressions of
AdipoR1 and AdipoR2 across several brain structures [19]
may indicate that they play different roles in synaptic transmis-
sion. AdipoRon could increase extinction learning with a de-
crease in DG neuron intrinsic excitability through an AdipoR2-
dependent mechanism [30]. Congruently, ventral tegmental ar-
ea (VTA) infusion of AdipoRon prevented stress-induced anx-
iety-like behavior with a reduction in dopaminergic neuron ac-
tivity, which was mediated by AdipoR1-dependent activation
[29]. Further investigations on the mechanisms of actions will
ultimately demonstrate the adiponectin signaling pathwaymod-
ulating synaptic plasticity in the brain.

Conclusion and Perspectives

Antidepressant effects of adiponectin have been shown in de-
pressed rodent models. So far, it has been reported that
adiponectin mediates physical exercise and enriched
environment-induced antidepressant response, likely due to
its promoting effects on adult hippocampus neurogenesis or
neurotrophic properties. Animal studies have demonstrated a
region-specific effect of AdipoR1 and AdipoR2 on anxiety-
like behaviour and fear memory extinction, respectively. The
findings of AdipoR1/2-dependent modulation of synaptic
plasticity and neuronal excitability have suggested differential
roles of AdipoR1 and AdipoR2 in the brain. So far, accumu-
lating evidence has suggested that changes in functional
neuroplasticity following adiponectin signaling activation
could also underly its antidepressant effects as reported from
the current literature (Fig. 2).

This is in consonance with the current systemic conceptu-
alization of depression in terms of its neuroplasticity changes
[8–10] that, when counteracted, may result in sustained anti-
depressant responses. Nevertheless, adiponectin is also a met-
abolic regulator with insulin-sensitizing, anti-inflammatory,
and cardioprotective properties, bridging the correlation be-
tween depression and metabolic disorders. Hence, it is tempt-
ing to think that targeting the adiponergic systemmay not only
induce a rapid and sustained antidepressant effect but also
regulate the metabolic dysfunction commonly associated with
depression.

Even though experimental studies have just started
unraveling the adiponectin mechanisms of action in
neuroplasticity, and some antagonisms remain to be explained,
the adiponergic system stands as a promising antidepressant

target with fast response, small side effects, and capability of
improving the comorbid metabolic syndromes.
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