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ABSTRACT Takagi-Sugeno-Kang (TSK) fuzzy systems are well known for their good balances between
approximation accuracy and interpretability. Among a wide variety of existing TSK fuzzy systems, most of
them are driven by special knowledge since the learned parameters of each fuzzy rule are totally different.
However, common knowledge is equally important and useful in practice and hence a TSK fuzzy system
embedded with common knowledge should be more intuitive and interpretable when tackling with real-
world problems. In this paper, we propose a common and special knowledge-driven TSK fuzzy system
(CSK-TSK-FS), in which the parameters corresponding to each feature in then-parts of fuzzy rules always
keep invariant and these parameters are viewed as common knowledge. As for its modeling, except the
gradient descent techniques and other existing training algorithms, we can obtain a trained CSK-TSK-FS
from a trained GMM or a trained FLNN because the proposed fuzzy system CSK-TSK-FS is mathematically
equivalent to a special GMM and a FLNN. CSK-TSK-FS has three characteristics: (1) with the classical
centroid defuzzification strategy, the involved common knowledge can be separated from fuzzy rules such
that the interpretability of CSK-TSK-FS can be enhanced; (2) it can be trained quickly by the proposed
LLM-based training algorithm; (3) the equivalence relationships among CSK-TSK-FS, GMM and FLNN
allow them to share some commonality in training such that the proposed LLM-based training algorithm
provides a novel fast training tool for training GMM and FLNN. Experimental results on UCI, KEEL and
epileptic EEG datasets demonstrate the promising classification of CSK-TSK-FS.

INDEX TERMS Common knowledge, FLNN, GMM, LLM, special knowledge, TSK fuzzy systems.

I. INTRODUCTION
Epilepsy is a finite episode of brain dysfunction caused
by abnormal discharge of cerebral neurons. With regards
to the clinical diagnosis of epilepsy, electroencephalogram
(EEG) signals are often employed to decide its presence and
type [3]. Many machine learning approaches including SVM,
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approving it for publication was Yongqiang Cheng.

fuzzy systems, KNN, decision trees [1]–[3], [39] have been
developed and successfully used for epileptic EEG signals
recognition. Among these machine learning approaches, the
Takagi–Sugeno–Kang (TSK) fuzzy system is a fuzzy rule-
based inference system [1]–[3], which have been most used
for EEG signals recognition and other applications [46]–[48]
because of its strong approximation capability and good
interpretability. Generally speaking, a TSK fuzzy system,
e.g., zero-order-TSK [4] or one-order-TSK [4] can be taken
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as a knowledge-driven model in which the knowledge is
scattered in each fuzzy rule. Undoubtedly, the knowledge is
the cornerstone of strong approximation capability and good
interpretability of TSK fuzzy systems. More specifically,
we can consider the knowledge as the parameters learned
in each fuzzy rule and hence the types of knowledge are
decided by the way the parameters presented in fuzzy rules.
If a TSK fuzzy system is considered as an expert sys-
tem, then each fuzzy rule can be taken as an expert with
different/special knowledge. Based on the special knowledge,
for a problem that is as the input, the expert system can output
a decision result effectively in most cases. However, although
the special knowledge is effective in driving an expert system,
the common knowledge between experts sometimes is also
useful for the deduction of an expert system. In clinical diag-
nosis, the common knowledge between medical experts can
help them make a more accurate clinical diagnosis decision.
For instance, the common knowledge ‘‘diabetic eye disease is
most likely caused by retinopathy’’ can help medical experts
earn reputations in the clinical diagnosis of eye disease.
Therefore, from the perspective of the application, construct-
ing a TSK fuzzy system with special knowledge associating
with common knowledge is very significant.

As we stated before, knowledge is represented by parame-
ters learned in each fuzzy rule. That is to say, the difference
between a TSK fuzzy system only with special knowledge
and a TSK fuzzy system with both special and common
knowledge is their different combination modes of input
features. In [5], the authors carry out the existing simple
regression models on about 60 real-world datasets, the con-
clusion hints us that the mode of knowledge presentation
(the combination mode of input features) in a simple regres-
sion model can be flexible and varied.

Therefore, in this paper, inspired by the conclusion in [5]
and considering the requirements of the application in real-
world, we re-design the mode of knowledge presented in the
classical one-order TSK fuzzy system and propose a novel
TSK fuzzy system, termed as CSK-TSK-FS that is driven
by common and special knowledge. Our CSK-TSK-FS is
different from the classical one-order TSK fuzzy system.
As for the classical one-order TSK fuzzy system, learned
parameters in each fuzzy rule are special, and hence, we also
consider one-order TSK fuzzy systems as special knowledge-
driven fuzzy systems. But for the proposed fuzzy system
CSK-TSK-FS, except for special knowledge, common
knowledge is also embedded as realized by the parameters
involved in one-order parts of then-parts of fuzzy rules.
In other words, parameters involved in one-order parts always
keep invariant for all fuzzy rules.

With the embedded common knowledge, CSK-TSK-FS
becomes more interpretable as a result having its fuzzy rules
shortened implicitly. More importantly, its modeling is no
longer limited by traditional algorithms as the proposed fuzzy
system CSK-TSK-FS is mathematically equivalent to a spe-
cial Gaussian mixture model (GMM) [6] and a functional
link neural network (FLNN) [7] such that the algorithms

of modeling GMM and FLNN can also be transferred
to CSK-TSK-FS.

The contributions of this paper can be summarized as the
following three aspects:

1) A novel TSK fuzzy system embedded with common
knowledge and special knowledge is proposed. Com-
pared with the classical one-order TSK fuzzy system,
the proposed one is more interpretable because the
common knowledge in the then-parts of fuzzy rules
can implicitly shorten the length of fuzzy rules, at least
to a certain extent. Besides, the performance of the
proposed TSK fuzzy system can be guaranteed by the
conclusion deduced in [5] that the combinationmode of
input features in a simple regression model is flexible.

2) We reveal a relationship between the proposed fuzzy
system CSK-TSK-FS and GMM with a certain con-
straint. Thus, from a trained GMM, we can obtain
the proposed fuzzy system. In other words, we find
a new training algorithm for the proposed fuzzy sys-
tem. In addition, we also find that the Gaussian
FLNN is mathematically equivalent to the proposed
fuzzy system, so through the proposed fuzzy system,
we establish a relationship between GMM and FLNN,
and accordingly extend their training algorithms,
respectively.

3) An LLM-based fast learning algorithm for
CSK-TSK-FS is proposed. In other words, we also
develop a new learning algorithm for GMM and FLNN
because of their equivalence relations.

The following sections are organized as: section II gives
some preliminaries; Section III gives the detail information
about CSK-TSK-FS and reveals the relationship between it
and GMM and FLNN; Section IV reports the experimental
results and section V concludes our works.

II. PRELIMINARY
Since the proposed fuzzy system CSK-TSK-FS can be
viewed as a special GMM [6] and a Gaussian FLNN [7],
we prepare some preliminaries about the TSK fuzzy system,
GMM and FLNN in this section.

A. TSK FUZZY SYSTEM
TSK fuzzy systems are fuzzy rule-driven inference sys-
tems in which the most commonly used fuzzy rules, e.g.,
the kth, can formally consist of their respective if-parts and
then-parts, i.e.,

If ω1 is �k
1 ∧ ω2 is �k

2 ∧ . . . ∧ ωd is �k
d ,

then φk (ω) = ρk0 + ρ
k
1ω1 + . . .+ ρ

k
dωd ,

k = 1, 2, . . . ,K , (1)

where�k
i is a fuzzy subset subscribed by feature ωi involved

in the feature space denoted as ω = [ω1, ω2, . . . , ωd ]T ,
K is the total number of fuzzy rules, and notation
∧ represents a fuzzy conjunction operator. Each fuzzy rule
is premised on the feature space and maps fuzzy sets
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FIGURE 1. Framework of a special knowledge-driven TSK fuzzy system.

�k
= [�k

1, �
k
2, . . . , �

k
d ] from the feature space �k

⊂ Rd

to a linear function or a constant here represented by φk (ω).
Usually, the defuzzification process is achieved by a straight-
forward weighted summation. Therefore, the output γ o for a
potentially new sample ω can be formulated as

γ o =

K∑
k=1

(
νk (ω)/

K∑
m=1

νm(ω)

)
φk (ω)

=

K∑
k=1

ν̃k (ω)f k (ω). (2)

In (2), νk (ω) and ν̃k (ω) denote the compatibility and the
normalized compatibility of ω associating with the fuzzy
set �k of the kth fuzzy rule, respectively, which can be
computed as

νk (ω) =
d∏
i=1

ν�ki
(ωi) and ν̃k (ω) = νk (ω)/

K∑
m=1

νm(ω).

(3)

The Gaussian membership function is often considered as
the fuzzy membership function used in (3) which can be
formulated as

ν�ki
(ωi) = exp

(
−1/2((ωi − cki )/(δ

k
i ))

2
)
, (4)

where ck = [ck1, c
k
2, . . . , c

k
d ] and δ

k
= [δk1 , δ

k
2 , . . . , δ

k
d ] in

each rule represent the kernel center vector and the kernel
width vector needed to be learned in the if-parts. Fig.1 shows
the framework of a knowledge-driven TSK fuzzy system in
which the parts in the shaded rectangle can be considered as
knowledge. Generally speaking, parameters involved in each
fuzzy rule are different from those of others, hence we call
parameters involved in each fuzzy rule special knowledge and
accordingly the classical TSK fuzzy system shown in Fig.1 is
a special knowledge-driven TSK fuzzy system. However,
as the application scenarios we stated in the first section,
a special knowledge-driven TSK fuzzy system sometimes
cannot solve a real-world problem interpretably.

Usually, the learning process of the classic TSK fuzzy
system can be divided into two parts, the if-parts learning
and the then-parts learning. Also, they are often achieved
in a separate manner. As for the if-parts learning, cluster-
ing algorithms [10]–[13] are usually adopted. For example,

by introducing FCM [11], cki in ck and δki in δk can be
computed by

cki =
N∑
j=1

ujkωji/
N∑
j=1

ujk , (5)

δki = h
N∑
j=1

ujk (ωji − cki )
2/

N∑
j=1

ujk , i = 1, . . . , d,

k = 1, . . . ,K , (6)

where ujk denotes the fuzzy membership degree ofωj belong-
ing to the kth cluster, and h is a scale parameter which can be
set manually. As for the then-parts learning, the commonly
used optimization strategy is the quadratic programming (QP)
with different criteria, e.g., the least square criterion [14],
ε-insensitive criterion [15] and L1-Norm penalty [15],
ε-insensitive criterion and L2-Norm penalty [16] and so on.
In additional to QP, the gradient descent-based approaches
sometimes are used.

Whether it is QP, gradient descent, or FCM, they are less
efficient in the face of large-scale datasets. Therefore, a high-
efficiency optimization algorithm is desired in TSK fuzzy
system modeling.

B. GAUSSIAN MIXTURE MODEL
GMM (Gaussian mixture model) is one type of mixture
distributions where its each component is a normal compo-
nent. For an arbitrary random variable ω in d dimensional
feature space, the Gaussian mixture probability density func-
tion (PDF) [6] can be formulated by

2(ω; κ, θ ,4) =

C∑
c=1

κcϒ
d (ω; θc,4c). (7)

In (7), C is the total number of components, and κ =
[κ1, κ2, . . . , κC ] is a weight vector in which each element
represents the weight of each component, where 0 < κc < 1,
C∑
c=1

κc = 1. θ = [θ1, θ2, . . . , θC ] is a d × C matrix in which

each element is the mean vector,4 = [41,42, . . . ,4C ] is a
d×Cd matrix in which each element4c denotes a covariance
matrix. ϒd (ω; θc,4c) is the multivariate (d-dimensional)
normal density of the component c, which can be expressed
as

ϒd (ω; θc,4c) = (2π)−
d
2 |4c|

−
1
2

× exp
{
−
1
2
(ω−θc)

T 4−1c (ω−θc)

}
,

(8)

where |4c| and 4−1c are the determinant and inverse of 4c,
respectively.

In [17], the authors demonstrate that radial basis func-
tion (RBF) networks are universal approximators. In fact, an
RBF network is merely a linear superposition of RBFs,
of which Gaussian functions are a particular type. In [18],
the authors further prove the ability of RBF networks with
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FIGURE 2. Structure of the Gaussian FLNN.

superposition of Gaussian functions under the conditions that
the functions to be approximated are imposed with some con-
straints like non-continuity. Combining the above theoretical
analysis results together, it is obvious that aGMMcan achieve
approximation of any probability distribution with arbitrary
accuracy if its parameters are set appropriately.

C. FUNCTIONAL LINK NEURAL NETWORK
FLNN (functional link neural network) is a special sin-
gle layer neural network in which the hidden layer is
replaced by higher-order representations of its input features.
FLNN overcomes some disadvantages which are usually
contained inmultilayer networks such as initial weight depen-
dence, weight inference, saturation and overfitting. More-
over, although FLNN is a single layer neural network, it is
still able to handle non-linear separable classification tasks.
Basically, the architecture of FLNN is a flat network without
any hidden layer, which accordingly makes the parameters
learning algorithm less complicated. Many simple learning
algorithms, e.g., BP [19], artificial bee colony [20], adaptive
learning [21], and pseudoinverse [22] have been proposed for
FLNN and its variants learning.

Suppose that the Gaussian function is taken as a high
order representation of FLNN, Fig.2(a) illustrates the Gaus-
sian FLNN and the corresponding flat structure is shown
in Fig.2(b).

The output of the Gaussian FLNN can be formulated as

γ o=

K∑
k=1

ϑd+k2
(
ω|θk , ξ k

)
+ϑ1ω1+ϑ2ω2 + . . .+ ϑdωd .

(9)

III. CSK-TSK-FS: THE PROPOSED COMMON AND
SPECIAL KNOWLEDGE-DRIVEN
TSK FUZZY SYSTEM
In this section, we will incorporate common knowledge into
the classical one-order TSK fuzzy system and accordingly
propose the new common and special knowledge-driven TSK
fuzzy system CSK-TSK-FS. Simultaneously, we will mathe-
matically analyze its equivalences betweenGMMand FLNN.
Lastly, we present a fast training algorithm for CSK-TSK-FS.

A. ARCHITECTURE OF CSK-TSK-FS
The structure of the proposed fuzzy system CSK-TSK-FS is
illustrated in Fig.3, where an input sample in the d dimen-
sional feature space is expressed as ω = [ω1, ω2, . . . , ωd ]T ,

FIGURE 3. Structure of CSK-TSK-FS.

and ck = [ck1, c
k
2, . . . , c

k
d ] and δ

k
= [δk1 , δ

k
2 , . . . , δ

k
d ], k =

1, 2, . . . ,K are the kernel center vector and the kernel width
vector needed to be learned in the if-parts of each fuzzy
rule. Comparing Fig.3 with Fig.1, the distinctive character-
istic of CSK-TSK-FS is that there exists a common part
(i.e., the parameters ρ1, ρ2, . . . , ρd ) in all fuzzy rules.
Based on the structure illustrated in Fig.3, the kth fuzzy

rule of CSK-TSK-FS can be formulated as

If ω1 is �k
1 ∧ ω2 is �k

2 ∧ . . . ∧ ωd is �k
d ,

then φk (ω) = ρk0 + ρ1ω1 + . . .+ ρdωd ,

k = 1, 2, . . . ,K . (10)

In (10), we can see that for each fuzzy rule, the
parameters ρ1, ρ2, . . . , ρd always keep invariant. We call
this common part common knowledge in the proposed fuzzy
system CSK-TSK-FS. Therefore, compare with the classical
TSK fuzzy system shown in Fig.1, which is only driven by
special knowledge, CSK-TSK-FS is driven by both special
and common knowledge and accordingly becomes more suit-
able and applicable for simulating the application scenarios.
Also, we find that, if ρ1, ρ2, . . . , ρd in the then-parts are
set to zero, CSK-TSK-FS would degenerate into a classical
zero-order TSK fuzzy system. Therefore, we can consider
our proposed fuzzy system CSK-TSK-FS as a generalized
zero-order TSK fuzzy system. In other words, a zero-order
TSK fuzzy system can also be considered as a special case of
our proposed fuzzy system CSK-TSK-FS.

As we all know that the interpretability of a TSK fuzzy
system can be quantitatively measured by the number of
parameters the system needs to learn [23], [24]. During the
training process of CSK-TSK-FS, 2Kd parameters in the if-
parts and K + d in the then-parts need to be learned. Hence,
the interpretability of CSK-TSK-FS can be quantitatively
measured by 2Kd + K + d . As for the classical zero-order
TSK fuzzy system, during the learning process of the if-parts,
it also needs to learn 2Kd parameters. But during the learning
process of the then-parts, it needs to learn Kd + K parame-
ters. In our application scenarios, K and d are two integer
numbers and often bigger than 1, therefore, by comparing
CSK-TSK-FS with the classical zero-order TSK fuzzy sys-
tem, the interpretability of CSK-TSK-FS is improved.
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When the if-parts of CSK-TSK-FS are determined, and
let

ωg = ω = [ω1, ω2, . . . , ωd ]T , (11a)

ρg = [ρ1, ρ2, . . . , ρd ]T , (11b)

νg = [ν̃1(ω), ν̃2(ω), . . . , ν̃K (ω)]T (11c)

and

ρ̃g = [ρ10 , ρ
2
0 , . . . , ρ

K
0 ]

T , (11d)

where ν̃k (ω) has been defined in (3), k = 1, 2, . . . ,K .
By introducing the classical centroid defuzzification
strategy [4], the output of CSK-TSK-FS can be defined
as

γ o =

K∑
k=1

(
νk (ω)/

K∑
m=1

νm(ω)

)
φk (ω)

=

K∑
k=1

(
νk (ω)/

K∑
m=1

νm(ω)

)
(ρk0+ρ1ω1+. . .+ρdωd )

=

K∑
k=1

(
νk (ω)/

K∑
m=1

νm(ω)

)
ρk0+(ρ1ω1+. . .+ρdωd )

=

K∑
k=1

(
ν̃k (ω)

)
ρk0 + (ρ1ω1 + . . .+ ρdωd )

= ρ̃Tg νg + ρ
T
g ωg. (12)

The output defined in (12) indeed reveals a notable merit
that the common knowledge can be independent of each fuzzy
rule. That is to say, with the classical centroid defuzzifi-
cation strategy, each fuzzy rule can be implicitly shortened
as

If ω1 is �k
1 ∧ ω2 is �k

2 ∧ . . . ∧ ωd is �k
d ,

then φk (ω) = ρk0 , k = 1, 2, . . . ,K .

Therefore, the interpretability of CSK-TSK-FS can
be further enhanced from the perspective of the rule
length [49], [50]. By comparing the expressions in (12)
and (9), we can easily find that the proposed fuzzy system
CSK-TSK-FS is equivalent to FLNN as a matter of fact.
On the contrary, FLNN also can be considered as a special
fuzzy system such that it no longer works in a black way.
To the best of our knowledge, this is the first attempt that
we reveal the relationship between fuzzy systems and FLNN.
The common knowledge denoted as ρg contributes the lin-
ear approximator ρTg ωg to the second term of the output
of CSK-TSK-FS. Moreover, the relationship between
CSK-TSK-FS and GMM will also be theoretically analyzed
in the next subsection.

B. FROM GMM TO CSK-TSK-FS
Theoretically, GMM can approximate any probability dis-
tribution to arbitrary accuracy [17], [18] such that it
can be taken as a high-efficiency approximator. Suppose

χ = {ωi, γi|ωi = [ωi1, ωi2, . . . , ωid ]T ∈ Rd , γi ∈
R, i = 1, 2, . . . ,N } is a training dataset for a Gaussian
mixturemodel who containsC components.With the training
dataset χ , the means (θ1, θ2, . . . , θC ) and covariance matri-
ces (41,42, . . . ,4C ) of all components can be obtained by
a training algorithm, e.g., EM [30], where θc = [θcω, θcγ ].
If we use τcab and τ cab to denote the elements in 4c and its
inverse4−1c , respectively, then4c and4−1c can be expressed
as

4c =

[
τ cωω τ cωγ
τ cγω τ cγ γ

]
=

[
{τcij}d×d {τcj(d+1)}d×1
{τc(d+1)j}1×d τc(d+1)(d+1)

]
, (13)

where i, j = 1, 2, . . . , d . 4c is a symmetric matrix, hence
τ cωγ is equal to τTcγω. Thus, 4

−1
c can be expressed as the

following form,

4−1c =

[
τ cωω τ cωγ

τ cγω τ cγ γ

]
. (14)

It is obvious that τ cωγ in 4c reveals the correlation
degree between ω and γ in component c, and τcγ γ in 4c
reveals the correlation degree between γ s in component c.
In many cases, we are generally uninformative for each com-
ponent in advance, hence, a mild assumption that τ cωγ /τ cγ γ

keeps invariant for each component may be considered.
That is to say, τ cωγ /τ cγ γ = 9 = [91, 92, . . . , 9d ]T

is a constant vector for each component. Therefore,
the joint PDF of (ω, γ ) can be approximated by a special
GMM approximator,

2(ω, γ ) =

C∑
c=1

κcϒ
d+1

([
ω

γ

]
;

[
θcω
θcγ

]
,4c

)
,

s.t. τ cωγ /τ cγ γ = 9 = [91, 92, . . . , 9d ]T , (15)

where θcω = [θc1, θc2, . . . , θcd ]T .
By the approximator 2(ω, γ ) trained by χ , the output γ o

for an unseen sample ω can be formulated as,

γ o = E[γ |ω] =
∫
+∞

−∞

γ2(γ |ω)dγ

=

∫
+∞

−∞
γ2(ω, γ )dγ

2(ω)
. (16)

Since 2(ω, γ ) = 21(ω, γ ) + 22(ω, γ ) + . . . +

2C (ω, γ ), we can obtain 2(ω) =
∫
+∞

−∞
2(ω, γ )dγ =

C∑
c=1

∫
+∞

−∞
2c(ω, γ )dγ . Hence, (16) can be re-organized as

γ o = E[γ |ω] =

C∑
c=1

∫
+∞

−∞
γ2c(ω, γ )dγ

C∑
c=1

∫
+∞

−∞
2c(ω, γ )dγ

. (17)
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In (17),
∫
+∞

−∞
γ2c(ω, γ )dγ can be expanded as (see the

Appendix)∫
+∞

−∞

γ2c(ω, γ )dγ

=
κc

(2π )
d
2
√
|τ cωω|

× exp
{
−
1
2

(
[ω − θcx]T (τ cωω)−1 [ω − θcx]

)}
×

(
θcγ − [ω − θcx]T9

)
. (18)

Component c of the GMMapproximator can be formulated
as

2c(ω, γ ) = κcϒ
d+1

([
ω

γ

]
;

[
θcω
θcγ

]
,4c

)
=

κc

(2π )
d+1
2
√
|4c|

exp

{
−
1
2

[
ω − θcω
γ − θcγ

]T
×4−1c

[
ω − θcω
γ − θcγ

]}
. (19)

Similarly, like the derivation procedures in the Appendix,
the marginal PDF of ω for component c of 2(ω, γ ) can be
formulated as

2c(ω) =
∫
+∞

−∞

2c(ω, γ )dγ

=

∫
+∞

−∞

κc

(2π )
d+1
2
√
|4c|

× exp

{
−
1
2

[
ω − θcω
γ − θcγ

]T
4−1c

[
ω − θcω
γ − θcγ

]}
dγ

=
κc

(2π)
d
2
√
|τ cωω|

× exp
{
−
1
2

(
[ω−θcω]T (τ cωω)−1 [ω−θcω]

)}
= κcϒ

d (ω; θcω, τ cωω). (20)

Therefore, the marginal PDF of ω can be deduced as

2(ω) =
∫
+∞

−∞

2(ω, γ )dγ

=

C∑
c=1

∫
+∞

−∞

κcϒ
d+1

([
ω

γ

]
;

[
θcω
θcγ

]
,4c

)
dγ

=

C∑
c=1

κcϒ
d (ω; θcω, τ cωω). (21)

By substituting (18) and (21) into (17), the expected
output γ o for the unseen sample ω can be re-organized as

γ o =

C∑
c=1

κcϒ
d (ω; θcω, τ cωω)

C∑
c′=1

κc′ϒ
d (ω; θc′ω, τ c′ωω)

(θcγ − [ω − θcω]T9)

=

C∑
c=1

κcϒ
d (ω; θcω, τ cωω)

C∑
c′=1

κc′ϒ
d (ω; θc′ω, τ c′ωω)

(θcγ + θTcω9)

+ (−91ω1 − · · · −9dωd ). (22)

In (22), with the assumption that the each feature in ω is
mutually independent, we can express the output γ o as the
following form,

γ o =

C∑
c=1

ϒ̃c(ω)(θcγ + θTcω9)+ (−91ω1 − · · · −9dωd ),

(23)

where ϒ̃c(ω) = κc
d∏
j=1
ϒ j
(
ωj; θcj, τcjj

)
/

C∑
c′=1

τc′
d∏
j=1
ϒ j(

ωj; θc′j, τc′jj
)
.

After comparing the output γ o in (23) with that in (9)
or (12), we can easily find that the GMM approximator with
the assumption τ cωγ /τ cγ γ = 9 = [91, 92, . . . , 9d ]T

is equivalent to CSK-TSK-FS (also FLNN) where each
component in GMM can be taken as a fuzzy rule in
CSK-TSK-FS in which ϒ j

(
ωj; θcj, τcjj

)
is considered as the

fuzzy membership function. Here, please note that κc in
GMM should be uniform, i.e., κc should be set to 1/K .
The common knowledge denoted as [−91,−92, . . . ,−9d ]
contributes the linear approximator (−91ω1 − · · · − 9dωd )
in (23).

Based on the above analysis, the relationship between
CSK-TSK-FS and the special GMM approximator indicates
the following three results:

1) The training of CSK-TSK-FS can be achieved by using
a density estimation algorithm, e.g., EM [30] to train a
special Gaussian mixture model.

2) With the relationship between CSK-TSK-FS and
GMM, CSK-TSK-FS can be interpreted from the
perspective of probability statistics. Therefore, some
statistical tools for GMM can also be applied to
CSK-TSK-FS. For example, we know that the number
of fuzzy rules in CSK-TSK-FS is equal to the number
of components in GMM, hence, many useful tools for
searching the optimal number of components can be
used for searching the optimal number of fuzzy rules.

3) The promising approximation ability of CSK-TSK-FS
can be insured since GMM is a global approximator.

C. TRAINING ALGORITHM OF CSK-TSK-FS
By giving a training set χ={ωi, γi|ωi= [ωi1, ωi2, . . . , ωid ]T

∈ Rd , i = 1, 2, . . . ,N }, the training of CSK-TSK-FS
can be achieved by many criteria [14]–[16]. For example,
with the determined if-parts, we can employ the gradi-
ent descent algorithm [26] to minimize the error criterion

function (1/2)
N∑
i=1

(
γ oi − γi

)2.
In addition to gradient descent, the optimization of

CSK-TSK-FS can also be considered as a QP problem that
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FIGURE 4. Network of CSK-TSK-FS.

can be solved by QP-based learning [14]–[16]. Although gra-
dient descent-based algorithms and QP-based algorithms are
easy to implement, both of them consumemany CPU seconds
for large-scale datasets. Moreover, clustering techniques used
in the if-parts learning also consume many CPU seconds for
large-scale datasets. Therefore, a fast training algorithm for
CSK-TSK-FS is desired. Since the equivalence relationship
between CSK-TSK-FS and GMM and FLNN, some of the
training algorithms for GMM and FLNN, e.g., EM [30]
for GMM, BP [19] artificial bee colony [20], adaptive learn-
ing [21], and pseudoinverse for FLNN can also be used for
CSK-TSK-FS. However, in this study, we propose a new fast
training algorithm for CSK-TSK-FS, which can be also used
for GMM and FLNN.

In [35], the authors demonstrate that the modeling of
a TSK fuzzy system can be replaced by modeling a fuzzy
neural network. Since CSK-TSK-FS is indeed a TSK fuzzy
system, it also can be considered as a fuzzy neural network,
see in Fig.4.

Essentially, CSK-TSK-FS is a special TSK fuzzy system.
Our previous work [35] reveals that a TSK fuzzy system can
be equivalent to a fuzzy neural network, so CSK-TSK-FS can
also be considered as a special neural network shown in Fig.4,
where only one feature is involved in each yellow node of
the hidden layer. In [8], [9], authors demonstrate that the
optimization of a single-layer feedforward neural network is
equivalence to solving a ridge regression problem that can be
fast solved by the least learning machine (LLM). Therefore,
obviously, the neural network in Fig.4 can also be fast solved
by LLM only by augmenting original input features into the
hidden layer.

Therefore, the solution of CSK-TSK-FS in Fig.4 can be
formulated as

min

(
1
2
β2
+ C

N∑
i=1

ζ 2i

)
,

s.t. (ωi1, ωi2, . . . , ωid , ϕ (ωi, σ 1) , ϕ (ωi, σ 2) , . . . ,

ϕ (ωi, σK ))β
T

= γi + ζi, i = 1, 2, . . . ,N , (24)

where β = [ρ1, ρ2, . . . , ρd , ρ10 , ρ
2
0 , . . . , ρ

K
0 ] represents the

weight vector for the output of CSK-TSK-FS, ϕ (•) is the

activation function used for feature mapping, γi is training
label of sample ωi and C is a given constant.

As for the ridge regression problem in (24), its analytical
solution β̃ for the weight vector β can be derived as,

β̃ = fT
(
ffT

+
1
2C

I
)−1

γ , (25)

where I is anN byN identitymatrix,f= [f1,f2, . . . ,fN ]T ,
fi = [ωi1, ωi2, . . . , ωid , ϕ (ωi, σ 1) , ϕ (ωi, σ 2) , . . . ,

ϕ (ωi, σK )] and γ = [γ1, γ2, . . . , γN ]T is the output of the
training set.

Different from the BP-like learning algorithms [32]–[34],
only parameters in the output layer need to be trained in LLM.
Therefore, LLM can achieve fast learning of such a
SLFN illustrated in Fig.4.

Detailed steps of CSK-TSK-FS training are listed
in Algorithm 1.

Algorithm 1 Fast Training of CSK-TSK-FS

Input: Training dataset χ = [ω1,ω2, . . . ,ωN ]T , training
label dataset γ actual = [γ 1

actual, γ
2
actual, . . . , γ

N
actual]

T
∈ RN ,

where ωi ∈ Rd , γ iactual ∈ R, i = 1, 2, . . . . . . ,N , and number
of fuzzy rules K .
Output: Weight vector β =

[ρ1, ρ2, . . . , ρd , ρ10 , ρ
2
0 , . . . , ρ

K
0 ].

Procedure:
Step 1: Randomly assign the parameter vectors
θk = [ck , σk ] in the Gaussian functions
ϕ (ωi, σ 1) , ϕ (ωi, σ 2) , . . . , ϕ (ωi, σK ), where ck and
σk represent the centers and kernel widths of Gaussian
functions, respectively, k = 1, 2, . . . ,K .
Step 2: Construct = [f1,f2, . . . ,fN ]T ,
where 1 can be expressed as fi =

[ωi1, ωi2, . . . , ωid , ϕ (ωi, σ 1) , ϕ (ωi, σ 2) , . . . , ϕ (ωi, σK )],
and ϕ (ωi, σ k) can be computed by ϕ (ωi, σ k) =
d∏
j=1

exp
(
−1/2((ωij − ckj )/(δ

k
j ))

2
)
.

Step 3: Compute the output weight by using LLM, i.e.,

β̃ =

(
1
2C

I + fTf
)−1

fγ , (26)

where I is an (K + d) by (K + d) identity matrix.

When the weight vector for the output layer is determined,
CSK-TSK-FS can make a prediction for an unseen sample.
Next, we give some remarks about the fast learning algorithm
listed in Algorithm 1.
Remark 1: In this fast training algorithm, the parameters

in the if-parts are randomly assigned rather than obtained by
clustering techniques. The effectiveness of the randomness
strategy has been demonstrated in ELM [35]. Comparingwith
clustering techniques, undoubtedly, the randomness strat-
egy can significantly reduce the CPU seconds consuming.
Moreover, with the high-efficiency analytical solution to the
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then-parts learning in (25), the CPU seconds consuming is
also reduced compared with BP-like algorithms in which all
parameters in the network need to be iteratively adjusted in a
backward gradient descent way.
Remark 2: As all we know that the inverse computation of

a matrix becomes very time-consuming when the number of
elements is very huge. So, the solution in (25) still becomes
out of service for large-scale datasets. However, with the sec-
ond property in [8] about LLM, the analytical solution of
LLM in (25) can be re-organized in another form in (26).
By the new analytical solution, the time complexity is inde-
pendent on the number of samples, it now only dependents on
the number of fuzzy rulesK and the number of features d . For
large-scale datasets, K and d are very smaller than N . Hence,
the time complexity is significantly reduced.
Remark 3: In (26), C is a user-dependent parameter.

According to our previous work [35], it is set to a compar-
atively large value, e.g., 200 in our following experiments.

IV. EXPERIMENTAL RESULTS
In this section, CSK-TSK-FS is mainly evaluated from
two aspects: its classification ability on UCI and KEEL
datasets and its application for epileptic EEG signals recog-
nition. In addition, in order to highlight the performance
of CSK-TSK-FS, several benchmarking approaches includ-
ing SVM (with the linear kernel and the Gaussian kernel,
respectively) [39], FS-FCSVM [24], zero-order-TSK-FS [4],
GFS-AdaBoost-C [38], FH-GBML-C [36], [37] and
L2-TSK-FS [4] are introduced for comparison studies.
The following experiments are organized as: subsection
IV.A gives the experimental setups, subsection IV.B shows
the experimental results on UCI and KEEL datasets, and
subsection IV.C gives an application for epileptic EEG signals
recognition.

A. EXPERIMENTAL SETUP
With regards to the all introduced benchmarking approaches,
SVM, FS-FCSVM, zero-order-TSK-FS and L2-TSK-FS are
coded in the MATLAB platform, while FH-GBML-C and
GFS-AdaBoost-C are provided by the KEEL toolbox [40].
L2-TSK-FS, zero-order-TSK-FS, and the proposed approach
CSK-TSK-FS are originally designed for regression prob-
lems. In our experiments, according to [41], all of them can be
trained for classification tasks by considering the class labels
of the training set as their regression values. For an unseen
object, they predict its label as the one which is nearest to
their outputs.

We use the default parameters provided by the KEEL
toolbox to fix FH-GBML-C andGFS-AdaBoost-C. As for the
remnant approaches, 20% validation objects are used to find
the optimal parameters by 10-fold CV strategy. Table 1 gives
the trial intervals for CV in the corresponding approaches.
After we get the optimal parameters of each approach, 70%
objects are selected for training and 10% objects are selected
for testing. The results are reported in terms of the average

TABLE 1. The trial intervals for CV in the corresponding approaches.

TABLE 2. Detailed information of selected UCI and KEEL datasets.

testing accuracy (including the corresponding standard devi-
ation) and the maximum testing accuracy for 30 trials.

The experiments are conducted on a personal computer
with 4 cores of I5-7200U with 64G Bytes of memory.

B. ON UCI AND KEEL DATASETS
Since UCI [45] and KEEL [40] are two commonly used
repositories for verifying machine learning approaches,
we select sixteen real-life datasets including binary-class
and multi-class to verify the classification performance of
CSK-TSK-FS. Table 2 shows the detailed information of the
selected datasets, in which some medium scale (i.e., Adult,
Magic04) and large scale (i.e., Skin-Segmentation,Kddcup99)
datasets are used to observe the CPU seconds consuming
of CSK-TSK-FS.

Table 3 reports the classification performance of all
approaches in terms of different criteria, i.e., ‘‘Max’’ repre-
sents the maximum accuracy of 30 trials, ‘‘Rules’’ represents
the optimal number of fuzzy rules obtained by CV, ‘‘Mean’’
represents the average accuracy of 30 trials, and ‘‘Std’’ rep-
resents the standard deviation. Although GFS-AdaBoost-C
is also a fuzzy rule-based classifier, the number of fuzzy
rules is not provided by the KEEL toolbox. Therefore, we

VOLUME 7, 2019 127607



Y. Zhang et al.: CSK-TSK-FS and Its Modeling and Application for Epileptic EEG Signals Recognition

TABLE 3. The classification performance on UCI and KEEL datasets.

use ‘‘—’’ to represent the number of fuzzy rules in Table 3.
Next, we will contrastively analysis the results from the per-
spectives of classification performance and interpretability.

1) CSK-TSK-FS wins the best average accuracy and
the maximum accuracy in 7 and 8 out of the
16 UCI and KEEL datasets. As for some datasets,
CSK-TSK-FS performs a little worse than other bench-
marking approaches, e.g., Gaussian kernel based SVM
on Adult, Sonar, Seismic-bumpsandKddcup99, linear
kernel based SVM on Musk, Skin-Segmentation, Bal-
anceandPage_blocks. However, we should keep in
mind that CSK-TSK-FS is interpretable while SVMs
work in a black-box way. Moreover, by comparing
CSK-TSK-FS with zero-order-TSK-FC, L2-TSK-FC
and FS-FCSVM, we find that CSK-TSK-FS often
wins the best classification performance which indi-
cates that the improved generalization capability of
CSK-TSK-FS is insured in contrast to the similar

approaches. In fact, the promising performance of
CSK-TSK-FS on most datasets indicates that it indeed
inherits the good approximation ability of GMM.

2) We know that the number of fuzzy rules is relative to
the interpretability of a fuzzy system. From Table 3,
we can see that, in some cases, the number of fuzzy
rules CSK-TSK-FS used is more than that zero-
order-TSK-FC, L2-TSK-FC or FS-FCSVM used. For
example, on the dataset Balance, 5 fuzzy rules are
identified by CSK-TSK-FS to get its best performance.
As for L2-TSK-FC and FS-FCSVM, both of them need
4 fuzzy rules to get their best performance, respectively.
Therefore, it seems that comparing with L2-TSK-FC
and FS-FCSVM, the interpretability of CSK-TSK-FS
is reduced. However, the interpretability is also high
relative to the number of parameters involved in fuzzy
rules. As for Balance, L2-TSK-FC and FS-FCSVM
need to train 2 × 4 × 4 + (4 + 4 × 4) = 52
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TABLE 4. The CPU seconds each approach consumes on UCI and KEEL datasets.

parameters, while CSK-TSK-FS needs 2 × 5 × 4 +
(5 + 4) = 49 because of the common knowledge
being involved. This phenomenon indicates that com-
mon knowledge involved in CSK-TSK-FS can improve
the interpretability because it shortens the length of
fuzzy rules implicitly.

In Table 4, we report the CPU seconds each approach
consumes during the testing and training procedures. From
careful observation from Table 4, we find that CSK-TSK-FS
perform more efficient than other benchmarking
approaches, especially for medium-scale or large-scale
datasets (e.g., Magic04, Adult, Skin-Segmentation, and
Kddcup99).

From the experimental results on UCI and KEEL datasets,
we can draw the following conclusions.

1) With the common knowledge, CSK-TSK-FS becomes
FLNN and hence a single layer fuzzy natural network.
Thus, it can be considered as a ridge regression problem
that can be fast solved by LLM.

2) With the common knowledge, the length of fuzzy rules
can be implicitly reduced such that the interpretability
is improved.

C. APPLICATION FOR EPILEPTIC EEG RECOGNITION
Here, we use a medical dataset, i.e., the epileptic EEG
data to demonstrate the application ability of CSK-TSK-FS.
The data is provided by the University of Bonn, Germany
(http://www.meb.uni-bonn.de /epileptologie /science/ physik/
eegdata.html). The dataset consists of five groups, i.e., group
A to group E, with each one containing 100 single chan-
nel EEG segments of 23.6 duration. The sampling rate
is 173.6Hz. Segments in group A and group B are
obtained from healthy volunteer subjects and segments in

TABLE 5. Detailed information about the epileptic EEG data.

groups C, D and E are acquired from volunteer subjects with
epilepsy. Table 5 gives the detailed description about the
epileptic EEG data, and Fig.5 illustrates some representative
original epileptic EEG signals in five groups.

The training results of CSK-TSK-FS on the epileptic
EEG data is listed in Table 6.

According to the training results listed in Table 6, all
fuzzy rules involved in CSK-TSK-FS can be easily written.
For example, the first two fuzzy rules can be formulated
as
Fuzzy Rule 1: If ω1 is �1

1(c
1
1 = 0.6146, δ11 = 1.89e-05) ∧

ω2 is �1
2(c

1
2 = 0.6571, δ12 = 1.42e-05) ∧ ω3 is �1

3(c
1
3 =

0.7192, δ13 = 1.11e-05) ∧ ω4 is �1
4(c

1
4 = 0.5783, δ14 =

2.45e-05) ∧ ω5 is �1
5(c

1
5 = 0.5031, δ15 = 2.78e-05) ∧ω6 is

�1
6(c

1
6 = −0.4781, δ

1
6 = 1.50e-05) then φ1(ω) = 0.4561 −

1.0581ω1−0.5632ω2−0.0865ω3+1.4891ω4−1.6326ω5+

0.2962ω6.
Fuzzy Rule 2: Ifω1 is�1

1(c
1
1 = −0.0714, δ

1
1 = 2.44e-05)∧

ω2 is �1
2(c

1
2 = 0.7855, δ12 = 2.01e-05) ∧ ω3 is �1

3(c
1
3 =

0.6302, δ13 = 1.77e-05) ∧ ω4 is �1
4(c

1
4 = 0.3356, δ14 =

1.87e-05) ∧ ω5 is �1
5(c

1
5 = 0.4046, δ15 = 1.50e-05) ∧ω6
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TABLE 6. Training results of CSK-TSK-FS on the epileptic EEG data.

FIGURE 5. Original signals in five groups.

is �1
6(c

1
6 = −0.3013, δ

1
6 = 7.02e-06) then φ1(ω) =

6.9810− 1.0581ω1 − 0.5632ω2 − 0.0865ω3 + 1.4891ω4 −

1.6326ω5 + 0.2962ω6.
In above fuzzy rules, ω1, ω2 et al. are the features

extracted from the original EEG signals, each feature
can be interpreted as the frequency band and its value
denotes the energy of the EEG signal in the correspond-
ing band. Obviously, ρk0 represents the special knowledge
involved in CSK-TSK-FS and [ρ1, ρ2, ρ3, ρ4, ρ5, ρ6] =
[−1.0581,−0.5632,−0.0865, 1.4891,−1.6326, 0.2926] is
the common knowledge which also provides a linear approx-
imator −1.0581ω1 − 0.5632ω2 − 0.0865ω3 + 1.4891ω4−

1.6326ω5 + 2.2926ω6 for CSK-TSK-FS.
Moreover, since the common knowledge is not depen-

dent on each fuzzy rule, the consequent of each fuzzy

FIGURE 6. FLNN obtained from the trained CSK-TSK-FS.

rule can be implicitly shortened as, e.g., φ1(ω) = 6.9810
in the first fuzzy rule. Therefore, the interpretability
of CSK-TSK-FS is accordingly enhanced comparing with
only special knowledge-driven TSK fuzzy
systems.

With the trained CSK-TSK-FS, it is very easy for us to
present a corresponding FLNN based on the equivalence
between them, see in Fig.6. Conversely, with a trained FLNN,
we can also immediately write all fuzzy rules
of CSK-TSK-FS. In addition, since the equivalence, FLNN
is no longer a black box, it can be interpreted from the
perspective of fuzzy rules.

Similarly, from the trained CSK-TSK-FS, we also can
deduce the corresponding GMM, see the mean vector and
covariance matrix of each component in Table 7.

In Table 7, θcy in θc can be calculated by ρk0 −θ
T
cω9 where

c = k and κc = 1/K . Also, we find that τcij in 4c can be
obtained from the trained CSK-TSK-FS.With the assumption
that τ cωγ /τ cγ γ = 9 = [91, 92, . . . , 9d ]T , the values of
τ cωγ and τ cγ γ have many choices. That is to say, multiple
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TABLE 7. Each component of GMM based on CSK-TSK-FS.

choices for the equivalent GMM from CSK-TSK-FS can be
provided, which is very interesting and will be beneficial for
various practical requirements.

Table 8 gives the training accuracy of all approaches
in terms of ‘‘Max’’, ‘‘Mean’’, ‘‘Std’’ and ‘‘Rules’’.
CSK-TSK-FS wins the best performance in terms of ‘‘Mean’’
and ‘‘Rules’’.

TABLE 8. Each component of GMM based on CSK-TSK-FS.

V. CONCLUSION
In this paper, a novel fuzzy system CSK-TSK-FS driven by
special and common knowledge is proposed in which the
common knowledge is defined as the common parts among
all fuzzy rules while the special knowledge corresponds to
difference parts. More specifically, parameters assigned to
the one-order part in then-parts always keep invariant. When
the classical centroid defuzzification method is adopted,
the involved common knowledge can be separated from
fuzzy rules such that the interpretability is enhanced and the
model complexity is reduced. In addition, for the modeling
of CSK-TSK-FS, except for traditional gradient descent-
based and QP-based approaches, we demonstrate
that CSK-TSK-FS is mathematically equivalent to a special
Gaussian mixture model and a functional linked natural
network such that it can also be determined from a trained
GMM or a trained FLNN. In other words, traditional training
algorithms like EM and BP of GMM and FLNN can also be
applied to CSK-TSK-FS. Furthermore, since CSK-TSK-FS
is a special natural network, we develop a fast LLM-based
algorithm for its modeling in this study. That is to say, we also
find a new fast training algorithm for GMM and FLNN. In
our experiments, UCI and KEEL datasets are first taken to
demonstrate the classification ability of CSK-TSK-FS, an
application dataset, i.e., the epileptic EEG data is introduced
for abnormal signals recognition.

In the future work, we are interested in developing a deep
TSK fuzzy system in which common knowledge is embedded
among different layers.

APPENDIX
In (17),

∫
+∞

−∞
γ2c(ω, γ )dγ in the numerator can be com-

puted by,∫
+∞

−∞

γ2c(ω, γ )dγ

=
κc

(2π)
d+1
2
√
|4c|

∫
+∞

−∞

γ
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× exp

{
−
1
2

[
ω − θcω
γ − θcγ

]T
4−1c

[
ω − θcω
γ − θcγ

]}
dγ

=
κc

(2π )
d+1
2
√
|4c|

∫
+∞

−∞

× γ exp

−
1
2


[ω − θcω]T τ cωω[ω − θcω]+
(γ − θcγ )τ cγω[ω − θcω]+
[ω − θcω]T τ cωγ (γ − θcγ )+
(γ − θcγ )τ cγ γ (γ − θcγ )


 dγ.

(A.1)

Based on the theorem in [28] that the inverse of a sym-
metric matrix is also symmetric, thus, in (A.1), τ cωγ =
(τ cγω)T and accordingly (γ − θcγ )τ cγω[ω − θcω] = [ω −
θcω]T τ cωγ (γ − θcγ ). Therefore, we can simplify (A.1) as∫
+∞

−∞

γ2c(ω, γ )dγ

=
κc

(2π)
d+1
2
√
|4c|

∫
+∞

−∞

γ

× exp

{
−
1
2

(
[ω − θcω]T τ cωω[ω − θcω]+
2(γ − θcγ )[ω − θcω]T τ cωγ+
(γ − θcγ )2τ cγ γ

)}
dγ

=
κc

(2π)
d+1
2
√
|4c|

exp
{
−
1
2
[ω − θcω]T τ cωω[ω − θcω]

}
×

∫
+∞

−∞

γ exp
{
−
1
2

(
2(γ − θcγ )[ω − θcω]T τ cωγ

+ (γ − θcγ )2τ cγ γ
)}

dγ. (A.2)

With the assumption τ cωγ/τ cγ γ =9= [91, 92, . . . ,9d ]T ,
the square for the integral on the right-hand side can be
completed and

∫
+∞

−∞
γ2c(ω, γ )dγ is accordingly updated as∫

+∞

−∞

γ2c(ω, γ )dγ

=
κc

(2π)
d+1
2
√
|4c|

exp
{
−
1
2
[ω − θcω]T τ cωω[ω − θcω]

}
× exp

{
1
2

(
[ω − θcω]T τ cωγ
√
τ cγ γ

)2}

×

∫
+∞

−∞

γ exp

{
−
1
2

(
(γ − θcγ )τ cγ γ

+
[ω − θcω]T τ cωγ
√
τ cγ γ

)2}
dγ

=
κc

(2π)
d+1
2
√
|4c|

exp
{
−
1
2
[ω − θcω]T τ cωω[ω − θcω]

}
× exp

{
1
2

(
[ω − θcω]T τ cωγ
√
τ cγ γ

)2}

×

∫
+∞

−∞

γ exp

− 1

2
(

1
τ cγ γ

)
×

(
γ −

(
θcγ − [ω − θcω]T9

))2 dγ. (A.3)

For simplicity, wes define a Gaussian distribution as the
following form

ϒ1
(
γ ; θc, τ

2
c

)
= ϒ1

(
γ ; θcy − [ω − θcω]T9,

1
τ cγ γ

)
(A.4)

and then substitute it into (A.3). Then, we can obtain∫
+∞

−∞

γ2c(ω, γ )dγ

=

κc

√
2π
(

1
τ cγ γ

)
(2π )

d+1
2
√
|4c|

× exp

{
−
1
2

(
[ω − θcω]T τ cωω[ω − θcω]

−

(
[ω−θcω]T τ cωγ√

τ cγ γ

)2 )}

×

∫
+∞

−∞

γϒ1
(
γ ; θcγ − [ω − θcω]T9,

1
δcyy

)
dγ

=
κc

(2π)
d
2
√
τ cγ γ |4c|

× exp

−1
2

 [ω − θcω]T τ cωω[ω − θcω]

−

(
[ω−θcω]T τ cωγ√

τ cγ γ

)2


×

(
θcγ − [ω − θcω]T9

)
=

κc

(2π)
d
2
√
τ cγ γ |4c|

× exp

{
−
1
2

(
[ω − θcω]T τ cωω[ω − θcω]

−

(
[ω−θcω]T τ cωγ τ cωγ [ω−θcω]

)
τ cγ γ

)}
×

(
θcγ − [ω − θcω]T9

)
=

κc

(2π)
d
2
√
τ cγ γ |4c|

× exp
{
−
1
2

(
[ω − θcω]T [τ cωω − τ cωγ (τ cγ γ )−1τ cωγ ]

× [ω − θcω]
)}
×

(
θcγ − [ω − θcω]T9

)
. (A.5)

Based on the theorem in [29] that

A11
=

(
A11 − A12A−111 A21

)−1
(A.6)

we can have

A11 =

(
A11
− A12(A22)−1A21

)−1
or

(A11)−1 = A11
− A12(A22)−1A21. (A.7)

Therefore, we can obtain

(τ cωω)
−1
= τ cωω − τ cωγ (τ cγ γ )−1τ cωγ , (A.8)
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and substitute it to (A.5), accordingly we have∫
+∞

−∞

γ2c(ω, γ )dγ

=
κc

(2π )
d
2
√
τ cγ γ |4c|

× exp
{
−
1
2

(
[ω − θcω]T (τ cωω)−1 [ω − θcω]

)}
×

(
θcγ − [ω − θcω]T9

)
. (A.9)

Since τ cγ γ |4c| is the (d + 1)(d + 1)th cofactor of the
covariance matrix4c, and it is also the determinant of τ cωω,
we can simplify (A.9) to the following form∫

+∞

−∞

γ2c(ω, γ )dγ

=
κc

(2π )
d
2
√
|τ cωω|

× exp
{
−
1
2

(
[ω − θcω]T (τ cωω)−1 [ω − θcω]

)}
×

(
θcγ − [ω − θcω]T9

)
. (A.10)
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