
Received June 20, 2019, accepted July 25, 2019, date of publication August 20, 2019, date of current version August 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2936439

A Gaussian Set Sampling Model for Efficient
Shared Cache Profiling on Multi-Cores
YI ZHANG 1, ZHANWEI LING2, MINGSONG LV2, AND NAN GUAN 3
1Department of Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang 110169, China
2Department of Computer Science and Engineering School, Northeastern University, Shenyang 110169, China
3Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Corresponding author: Yi Zhang (zhangyi@bmie.neu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61602104, Grant 61772123,
and Grant 61701099, and in part by the Ministry of Education Joint Foundation for Equipment Pre-Research under Grant 6141A020333.

ABSTRACT The last level cache (LLC) has significant impact to system performance on modern multi-core
processors. But as cache sizes reach several megabytes and more, the overhead of exploring performance
on LLC greatly increases as well. To improve the efficiency of performance analysis, we propose a set-
sampling-based cache profiling model for the performance analysis on multi-core LLC. We first explore
the memory access distributions on LLC by developing a low-overhead stress-application-based method.
The results show that memory access distributions can be approximated by Gaussian distribution function.
Based on this observation, a Gaussian-distribution-based set sampling model is proposed which can predict
program performance with limited representative samples. We evaluate our model on a contemporary multi-
core machine and show that 1) the proposed method can precisely predict program performance on LLC
under different contention intensities and 2) our method can achieve similar precision with less samples
compared to widely adopted set sampling methods such as the random sampling and the continuous address
sampling.

INDEX TERMS Gaussian distribution, multi-core, shared cache, set sampling.

I. INTRODUCTION
Modern multi-core processors rely on large on-chip caches
to reconcile the gap between core and memory speeds. The
software performance strongly depends on howwell the capa-
bility of cache is utilized. Therefore, understanding the cache
access behavior is crucial for predicting and optimizing the
performance ofmulti-core software. Typically, different cores
share an on-chip multi-megabyte last level cache (LLC).
On the shared LLC, accesses from one core suffers inter-
ferences from other cores, which makes the modeling and
analysis of LLC behavior a challenging problem.

There are different types of techniques to analyze LLC
behavior, such as analytical model [1], [2], trace-driven
simulation [3]–[5] and profiling-based performance predic-
tion [6]–[8]. Analytical models typically provide insights
on program behavior for performance prediction. However,
most models oversimplify the factors to facilitate analysis [9].
Simulation-based methods have the advantages of flexibil-
ity, but suffer from long simulation time. Profiling-based
approaches directly obtain real performance information
from system runs. However, profiling-based approach still

The associate editor coordinating the review of this article and approving
it for publication was Stavros Souravlas.

needs to address efficiency problem. In cache performance
analysis, since LLC is typically very large, analysis efficiency
is low. It is desirable to design efficient cache profiling
techniques, especially for iterative design space exploration
of high performance and embedded systems, which need to
analyze the system behavior repeatedly and adjust system
design to achieve the design goal.

Set sampling can improve the cache profiling effi-
ciency [10], [11] but at the cost of degraded accuracy. Existing
works [11] mainly performs random set sampling, and to
achieve satisfiable accuracy, a considerable number of cache
sets has to be selected, and thus the corresponding analysis
efficiency is still low [12], [13].

In this paper, we propose a novel set sampling tech-
nique for efficient and accurate performance prediction. First,
we obtain the cache access behavior of a target program by
simultaneously running a specially designed stress program
with the target program so that they compete for cache space
at runtime. From the cache miss counts of the stress program,
we can deduce access distribution or other performance met-
rics of the target program. The key insight is that a program’s
cache access distribution on different cache sets can be well
fit into Gaussian distribution. Based on this observation,
we developed an efficient set sampling technique. The main

115560 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-4698-4634
https://orcid.org/0000-0003-3775-911X

Y. Zhang et al.: Gaussian Set Sampling Model for Efficient Shared Cache Profiling on Multi-Cores

idea is that very few key sampling points can represent a
Gaussian distribution function, and thus it suffices to use only
a small number of cache sets (corresponding the key sampling
points) to represent the cache behavior of the whole program.
Experimental results show that our proposed method only
samples a much smaller number of cache sets to achieve the
same accuracy as by the state-of-the-art random sampling
methods.

II. RELATED WORKS
There has been a lot of work on investigating the system
performance on shared cache. One kind of this technique is
developed with simulation. The methods based on the full
system simulation [14], [15] can provide the most detailed
investigation, but are with themost expensive overhead. Trace
driven methods [5], [16]–[18], which only simulate/model
parts of the system, can provide faster, but less detailed
approaches. The major intrinsic problem for simulation tech-
nique is that the accurate simulation normally runs for a very
long time, which leads to poor scaling.

Another kind of technique is the profiling-based method
which is developed on cache usage monitoring on real hard-
ware [7], [8], [19]–[21]. This kind of technique leverages the
existing performance monitoring unit on commodity hard-
ware, which makes it more appropriate to be deployed on real
system.

Set sampling is an effective method to reduce the overhead
in simulation and profiling. Kessler et al. [10] compared
set sampling and time sampling in trace-driven simulation
and showed that set sampling has better precision than time
sampling. Zhao et al. [11] proposed CacheScouts which
leverages set sampling to implement low-overhead occu-
pancy and interference monitoring of the shared caches. This
method has been implemented on Intel commercial multi-
core chips [6]. Qureshi et al. [3] used a set sampling method
to implement Set Dueling which can dynamically switch
between two cache replacement policies. A Gaussian-based
cache access distribution is assumed, based on which random
set sampling is analysed to derive the bounds for Set Duel-
ing. In our work, we demonstrate that cache misses of most
program do follow Gaussian distribution, and we proposed
a more efficient cache sampling method based on the key
feature of Gaussian distribution.

Besides improving the efficiency in simulation and pro-
filing, set sampling can meanwhile reduce the interference
of the profiling program to the system. For example, in the
profiling methods [7], [8], [22], [23], they typically use all
the cache sets. As shown in Eklov’s work [7], their profiling
method introduces about 5% runtime overhead to the tested
application. Since set sampling can only use a small number
of cache sets for performance profiling, the interference is
comparably small.

III. OBTAINING MEMORY ACCESS DISTRIBUTION
The main objective of this work is to find a small number of
cache sets which can accurately represent the overall cache

access behavior. To achieve this goal, we need to first under-
stand how cache accesses distribute over the cache sets.

A. OVERVIEW
Generally, it is hard to directly obtain the runtime cache
access behavior of a target program. A common solution is
to run the target program on a simulator which simulates the
hardware and reports cache access details. However, the enor-
mous time consumption and the un-revealed details of the
target processor make this solution less appropriate for the
real applications.

FIGURE 1. Stress program method for obtaining a program’s memory
access distribution on LLC.

To know how memory accesses of a program distribute
on the cache sets of a real processor, we develop a stress-
program-based method that allows us to obtain this informa-
tion by simultaneously running a specially designed stress
program with the target program. FIGURE 1 provides an
illustration of this method. On each of the cache sets, we let
the stress program generate the same kind of access sequence
and collect the cache miss number of the stress program
through performance counters provided by the processor. The
more cache occupancy taken by the target program on a set,
the more misses the stress program will receive on this set.
As stress program issues the same kind of access sequence
to each cache set, the contention between target program and
the stress program on the cache sets can be used as a proxy to
profile the target program’s cache access distribution on the
cache.

B. DESIGN AND IMPLEMENTATION
As illustrated in Figure 1, we co-run the target program with
stress program and collect the cache miss numbers caused
by the contention between target program and stress program
to infer the cache access distribution of the target program.
Given a cache with N cache sets, we accomplish the cache
miss collection by co-running the target program with the
stress program for N times. In each running, the target pro-
gram conducts the same part of the program and the stress
program is controlled to only access a distinct cache set. Thus,
after performing the same stress over N cache sets, we can
obtain the access information on each cache set.

To generate the accesses to fall into the target cache
set, we allocate the accessed items with known physical

VOLUME 7, 2019 115561

Y. Zhang et al.: Gaussian Set Sampling Model for Efficient Shared Cache Profiling on Multi-Cores

memory mappings. Thus, by reading a specific item that
locates in a specific physical address, we can create an access
to a target cache set. We obtain the memory mapping infor-
mation through/proc/self/pagemap interface on Linux, which
provides us with the known physical location of each page.
To provide the available memory mapping that can cover
all cache sets, we use the huge pages to allocate memory
for the stress program. Another advantage of using huge
pages is to eliminate cache misses caused by the TLB miss,
which further reduces imprecision in the obtained cache miss
counts.

Another issue of implementing stress program is to gener-
ate the access sequence which is able to accurately profile
the misses caused by contention between target and stress
programs. On each cache set, we achieve the access sequence
by repeatedly reading M distinct memory blocks from the
1st one to the M th in the same access speed, where M is the
number of LLC associativity and theM memory blocks are all
located on the target cache set. The main ideas in this design
are as follows.
• Since the associativity of LLC is commonly much larger
than the associativity of the upper level caches, the iter-
ative accesses on the M blocks won’t hit on the upper
level caches and all the accesses will fall onto the LLC
cache set.

• If on the target cache set there is no access issued from
the target program, the accesses of the stress program
will hit on these blocks and no miss will occur.

• When accesses from target program arrive on this set,
the stress program can not monopolize the cache set
and cache misses occur in the stress program when the
replaced blocks are accessed. The higher access rate the
target program introduces on the target set, the more
cachemisses will occur on the stress program. The cause
for such cache miss behavior lies in the observation that
the same techniques, such as recency and protection,
are broadly used on LLC replacement policy, although
the proposed LLC replacement policies differ in their
mechanisms [24].
Generally, recency technique priorities recently used
cache blocks over old ones, and protection technique
priorities the hit cache blocks against eviction. If the
access sequence is with few reused blocks, then recency
will be the main technique that operates. The higher
access rate means the accesses are issued more recently
and therefore take up more cache space. If the access
sequence is with reused blocks, then both recency and
protection techniques could work. In this case, the items
with higher access rate mean they are not just issued
more recently but are also with more hits, and there-
fore they could occupy more cache space as well. Thus
we can conclude that when profiling with our stress
program, the cache set receiving higher rate accesses
from target program could reserve more cache blocks
for the target program and cause more cache misses on
the stress program.

As the target programs can have various cache access rates
and our stress program could intensively access each cache
set during profiling, we also need to adaptively tune the stress
program’s access rate such that it won’t excessively take up
the cache space. We tune the cache access rate by adding a
specific number of null operations after each access of the
stress program. Since the null operation is very trivial and
can be kept on the upper level cache, the null operations only
take time but don’t increase the misses on LLC.

C. EXPERIMENTAL RESULTS
Experiments were conducted on a quad-core Intel 2600 pro-
cessor running Linux 3.16.7. The processor has 8MB LLC
organized into 2048 cache sets. We randomly chose 9 bench-
mark programs from SPEC CPU 2006 as target programs.
The cache access results are shown in Figure 2. In each chart,
the x-axis is the cache set ID ranging from 1 to 2048, and the
y-axis is the collected cache miss counts of the stress program
on each cache set, when it co-runs with each target program.
Note that cache misses of stress program can indicate the
cache access behavior of the target programs.

From the figures it seems that the target programs behave
quite differently from each other regarding the cache miss
distribution over cache sets. In our work, we found that most
programs exhibit similar probability distribution of cache
misses, from which we can select a few cache sets to com-
pactly and precisely represent the cache access behavior of
all cache sets, when trying to obtain the cache occupancy of
the target program. This will be detailed in the next section.

IV. MODELING DISTRIBUTION
A. PROBABILITY DISTRIBUTION OF CACHE MISSES
To understand the probability distribution of cache misses,
we use a bar graph (Figure 3) to represent the probability
density over different cache misses. Let N denote the number
of cache sets (N = 2048 in our experiments); letmissk denote
the miss count of the stress program collected on each cache
set, where k ∈ {1, 2, . . . ,N }; let [a, b] denote the range of
miss counts occurs for all cache sets.

The interval [a, b] is evenly divided into a group of m sub-
intervals, so the size of a sub-interval is (b−a)/m. In practice,
m ≈ 1.87(N − 1)0.4.
For each sub-interval, we count the number of cache sets

whose miss counts fall into the sub-interval and denote it
as υi, where i ∈ {1, 2, . . . ,m}. Let fi denote the frequency
of occurrence in each sub-interval, then:

fi =
υi

N
(1)

Let the median number xi denote a sub-interval; let yi
denote the probability density within the interval xi, then

yi =
fi

(b−am)
(2)

The bar graph of probability density distributions is shown
in Figure 3. In each graphics, x-axis is the cache miss number
and y-axis is the value of probability density.

115562 VOLUME 7, 2019

Y. Zhang et al.: Gaussian Set Sampling Model for Efficient Shared Cache Profiling on Multi-Cores

FIGURE 2. Memory access distribution over 2048 cache sets.

B. FITTING INTO GAUSSIAN DISTRIBUTION
In this section, we further explore the probability density
distributions for most benchmark programs and show that
they can be essentially modeled as Gaussian distribution.

1) GAUSSIAN DISTRIBUTION
Gaussian distribution (or normal distribution) [25] is an
important continuous probability distribution widely used
in science and engineering. If a random variable X fol-
lows a Gaussian distribution with mean µ and variance σ 2,
we denote X ∼ N (µ, σ 2). The probability density of this
distribution is modeled as:

f (x) =
1

σ
√
2π

e−(x−µ)
2/2σ 2 (3)

2) MODELING INTO GAUSSIAN
If the distribution of MISSk follows a Gaussian distribu-
tion [25], we denote it as MISSk ∼ N (µ, σ 2), then the
following formula exists:

f (missk) =
1

σ
√
2π

e−(missk−µ)
2/2σ 2 (4)

The parameters µ and σ 2 in formula (4) are the expec-
tation and the variance respectively. The values of the two

parameters can be estimated by the Maximum Likeli-
hood Estimate (MLE) method [26]. According to MLE,
in Gaussian distribution, the expectation and the variance for
gross samples can be estimated by sample mean and sample
variance. Let µ̂ denote the estimated sample mean and σ̂ 2

denote the estimated sample variance, then µ̂ and σ̂ 2 can be
derived from the following two formulas:

µ̂ =
1
N

N∑
k=1

missk (5)

σ̂ 2 =
1

N − 1

N∑
k=1

(missk − µ̂)2 (6)

With formula (4), (5) and (6), we can get an estimated
Gaussian distribution function for the cache miss distribu-
tions for each experiment. The fitted Gaussian curves are
shown as the dotted lines in Figure 3.

C. EVALUATION OF FITNESS
To evaluate the precision of the obtained Gaussian models,
the Goodness of Fit Tests [26] was applied. We use yi cal-
culated in formula (2) to represent the concrete probability
density distribution, and use Yi to denote the probability

VOLUME 7, 2019 115563

Y. Zhang et al.: Gaussian Set Sampling Model for Efficient Shared Cache Profiling on Multi-Cores

FIGURE 3. Gaussian modeling.

density distribution calculated by formula (4), where i ∈
{1, 2, . . . ,m}, µ and σ 2 are computed by formula (5) and (6).

The goodness of fitness between the Gaussian model and
concrete result can be tested by Pearson correlation coeffi-
cient, which is denoted as R. Let y and Y denote the mean for
yi and Yi respectively, the Pearson correlation coefficient R
can be calculated by the following formula:

R =

∑m
i=1(yi − y)(Yi − Y)√∑m

i=1(yi − y)2 ·
∑m

i=1(Yi − Y)2
(7)

The square of R (denoted as R2) is the measurement of the
similarity (the goodness of the fitness) between two curves.
The range for R2 is [0,1]. The closer to 1 the value of R2 is,
the better the two curves fit.

The similarity values between Gaussian model and con-
crete probability density distribution are shown in Fig. 3.
Results show that the value of R2 is larger than 0.85 for
most benchmark program experiments, which indicates that
Gaussian distribution can well represent the characteristics of
cache miss distribution of programs.

We also explored other distributions, including gamma,
Poisson, beta and t distribution, however, we find the

Gaussian distribution to yield the best fit. This observation
motivates an efficient cache set sampling method which will
be detailed in the next section.

V. SET SAMPLING MODEL
As shown in the previous section, the cache miss behavior
can be precisely modeled as Gaussian distribution. Since a
Gaussian distribution function can be determined by 5 key
points and each key point on the Gaussian curve corresponds
to several cache sets, we can select a few corresponded cache
sets and use their cache miss behavior to represent that of the
whole program.

A. FEATURE SELECTION
It is shown that in Gaussian distribution function 5 represen-
tative sample points can determine a function [25]. The points
are:

• Extreme value point, where x = µ, the first order
derivative of function f ′(x) = 0;

• Two inflection points, where x = µ ± σ , the second
order derivative of function f ′′(x) = 0;

• The starting point;
• The ending point.

115564 VOLUME 7, 2019

Y. Zhang et al.: Gaussian Set Sampling Model for Efficient Shared Cache Profiling on Multi-Cores

The information carried by those points can be explained
as follows: the starting and ending points define the boundary
of the function; extreme value point and the inflection points
determine µ and σ .

B. THE EFFICIENT CACHE PROFILING APPROACH
The aforementioned feature motivates us to use 5 key sample
points to represent the obtained Gaussian curve that repre-
sents the cache miss characteristics of the stress program and
thus indicates the cache occupancy or other cache access
characteristics of the tested target program. Thus, ideally,
it suffices to select 5 cache sets (the miss counts of which
correspond to the 5 key sample points on the Gaussian curve)
and to precisely obtain the gross cache access characteristics
of a whole program by onlymonitoring the cachemiss behav-
ior on these 5 cache sets.

For now, we have a complete work flow to determine a
few cache sets which can precisely represent the cache access
characteristics of a program. The procedure is as follows:
• First, obtain the cache miss distribution of a target pro-
gram by applying the stress program method presented
in section III;

• Second, derive the Gaussian distribution function for
this target program with the method presented in
section IV;

• Third, get the 5 key sample points and find 5 correspond-
ing cache sets as the final set sampling result.

By monitoring the cache behavior on these 5 cache sets of
the stress program, we should be able to make predictions on,
for example, cache occupancy of the target program.

However, in practice, several cache sets may have close
number of cache misses and fall into the same cache miss
count interval in Figure 3. Taking only one cache set for
each sample point may introduce a large disturbance in the
prediction. In our approach, we chose 5 cache sets for each
sample point (i.e., the cache miss counts of these 5 sets fall
into the cache miss count interval corresponding a specific
key sample point on the Gaussian curve). Of course, taking 5
cache sets for each sample point is only a design parameter
and one can take different number of cache sets for each
point. The experimental results reported in the next section
will show that good precision can already be achieved with
5× 5 = 25 representative cache sets.

VI. PERFORMANCE EVALUATION
A. EXPERIMENTAL METHODOLOGY
We conduct experiments on the 9 benchmark programs
(as target programs) presented in Section III to evaluate the
precision of the proposed method and compare it with other
cache set sampling methods.

6 methods are compared in our experiment, which are:
• Global access: thismethod records the total cachemisses
on all cache sets and thus serves as the ‘‘correct answer’’.

• Continuous 128: a state-of-the-art method [27] which
chooses N continuous cache sets; here N = 128.

• Random 128: a state-of-the-art method [6], [10], [11]
which randomly chooses N cache sets; here N = 128.

• Gaussian 25: the proposed method of this paper which
chooses 25 sampling cache sets according to the proce-
dure presented in section V-B.

• Continuous 25: choosing continuous 25 cache sets.
• Random 25: randomly choosing 25 cache sets.
We choose random cache sets sampling and continuous

cache sets sampling for comparison as they are still the preva-
lent techniques employed in the recently proposed systems.
For example, the Cache Monitoring Technology (CMT),
which is launched at the Intel Xeon E5 v3 product fam-
ily [6] and is also enabled in the later Intel processor fam-
ily [28], employs the random cache sets to monitor the
cache occupancy. The continuous cache sets sampling is
used on Intel Ivy Bridge chips to implement the Set Dueling
mechanism [27]. We have further performed the Set Dueling
detection method proposed in [27] on processors such as
Intel 4790 (Haswell microarchitecture), Xeon E5-2609 v4
(Broadwell microarchitecture), Xeon E5-2620 v4 (Broadwell
microarchitecture) and find that they still employ continuous
cache sets to implement the Set Dueling mechanism as well.

To evaluate the sampling methods, we concurrently run
a benchmark with a stress program implemented in a set
sampling method. The cache misses on each stress program
are recorded for evaluations. In the results, the collected
cache miss count for a given number of sampled cache
sets is proportionally enlarged to predict that of the whole
program.

In the experiments, the stress program repeatedly reads M
(M equals to cache associativity) chains of memory accesses.
Each chain has the same number of items which are located
in the distinct cache blocks. Thus, if there is no contention
with the stress program, this program won’t incur cache
misses. The location for the items in the chain is correspond-
ing to the sampling method. For example, in the Continuous
128 method, each chain contains 128 items which are located
at the same continuous cache sets. To evaluate the predic-
tion precision under different cache contention intensities,
we adjust the cache access frequency of the stress program,
which is achieved by inserting different number of null oper-
ations between any two consecutive chain of accesses.

B. RESULTS AND ANALYSIS
To quantify the precision for a profiling method, we use the
deviation of the miss number between the profiling method
and ‘‘Global access’’ as a metric, denoted by D. At a stress
frequency, let Gmiss denote the miss value of Global access,
and let Tmiss denote themiss value of a profilingmethod, then:

D =
|Tmiss − Gmiss|

Gmiss
· 100% (8)

The experimental results for each benchmark are shown
in Figure 4. In each chart, the x-axis is the number of accesses

VOLUME 7, 2019 115565

Y. Zhang et al.: Gaussian Set Sampling Model for Efficient Shared Cache Profiling on Multi-Cores

FIGURE 4. Performance deviations of each set sampling method on different cache contention intensities.

TABLE 1. Overall performance deviations for different set sampling
methods.

arrived on a cache set in 1 second and y-axis is the deviation
value D.
To quantitatively compare the performance of each set

sampling method, we compute the average and worst devia-
tion results. Table 1 lists each set sampling method’s average
and worst deviation results among the overall experiments.
Figure 5 shows each method’s average and worst deviation
on each benchmark. Note that for these metrics, all of them
in our experiments are the lower-the-better ones.

1) ANALYSIS
From the overall performance in Table 1, we can see that our
proposed method produces comparable precision compared
to the Continuous 128 which performs best in the average and
worst deviation results. From the results on the 9 benchmarks
in Figure 5, we can observe that our method and Continuous

128 achieve the most best deviation results: on the aver-
age and the worst deviations, our method achieves 5 times
and 4 times best performance respectively; and Continuous
128 achieves 3 times and 4 times best performance respec-
tively. By applying the same comparisons with ‘‘Continuous
25’’ and ‘‘Random 25’’, it can be observed that our method
outperforms those two methods on the results in Table 1 and
Figure 5.

Those comparisons show that our method can achieve the
same level of precision compared to the two prevalent set
sampling methods by using only one-fifth cache sets. The
results demonstrate the effectiveness of our method that a
program’s cache access behavior, which can be modeled by
Gaussian distribution, can be accurately represented by very
few key points in its Gaussian distribution function. The cost
in our method is to obtain the information to determine the
Gaussian distribution function for the target program. Such
information can be collected by our stress-program-based
method presented in Section III. This stress-program-based
method is simple and efficient, which doesn’t need to modify/
model the target processor and can be easily applied on
current commercial multi-core processors.

115566 VOLUME 7, 2019

Y. Zhang et al.: Gaussian Set Sampling Model for Efficient Shared Cache Profiling on Multi-Cores

FIGURE 5. Performance deviations for different set sampling methods on
each benchmark.

VII. CONCLUSION
In this paper, we proposed a Gaussian set sampling model for
efficient shared cache profiling on multi-cores. We developed
amethod to probe the cache access distribution of a target pro-
gram by simultaneously running a specially designed stress
program and obtain the cache miss counts of the stress pro-
gram. The key finding of our work is, cache miss distribution
of the program can well fit into Gaussian distribution. Based
on a key feature of Gaussian distribution, we were able to
develop an efficient set sampling method which leverages
much less set samples to achieve the same accuracy as by the
state-of-the-art random sampling methods in predicting LLC
cache performance.

REFERENCES
[1] R. Sen and D. A. Wood, ‘‘Reuse-based Online models for caches,’’

ACM SIGMETRICS Perform. Eval. Rev., vol. 41, no. 1, pp. 279–292,
Jun. 2013.

[2] K. Anand and R. Barua, ‘‘Instruction-cache locking for improving embed-
ded systems performance,’’ ACM Trans. Embedded Comput. Syst., vol. 14,
no. 3, May 2015, Art. no. 53.

[3] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, ‘‘Adaptive
insertion policies for high performance caching,’’ACMSIGARCHComput.
Archit. News, vol. 35, no. 2, pp. 381–391, May 2007.

[4] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, ‘‘High perfor-
mance cache replacement using re-reference interval prediction (RRIP),’’
ACM SIGARCH Comput. Archit. News, vol. 38, no. 3, pp. 60–71,
Jun. 2010.

[5] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, ‘‘The
application slowdown model: Quantifying and controlling the impact of
inter-application interference at shared caches and main memory,’’ in Proc.
48th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2015,
pp. 62–75.

[6] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, and
R. Iyer, ‘‘Cache QoS: From concept to reality in the Intel Xeon processor
E5-2600 v3 product family,’’ in Proc. HPCA, Mar. 2016, pp. 657–668.

[7] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten, ‘‘Cache
pirating: Measuring the curse of the shared cache,’’ in Proc. Int. Conf.
Parallel Process. (ICPP), Sep. 2011, pp. 165–175.

[8] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, ‘‘Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,’’ in Proc. MICRO, Dec. 2011, pp. 248–259.

[9] K. Ji, M. Ling, L. Shi, and J. Pan, ‘‘An analytical cache performance
evaluation framework for embedded out-of-order processors using soft-
ware characteristics,’’ ACM Trans. Embedded Comput. Syst., vol. 17, no. 4,
Aug. 2018, Art. no. 79.

[10] R. E. Kessler, M. D. Hill, D. A. Wood, ‘‘A comparison of trace-sampling
techniques for multi-megabyte caches,’’ IEEE Trans. Comput., vol. 43,
no. 6, pp. 664–675, Jun. 1994.

[11] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell,
‘‘CacheScouts: Fine-grain monitoring of shared caches in CMP plat-
forms,’’ in Proc. 16th Int. Conf. Parallel Archit. Compilation Techn.,
Sep. 2007, pp. 339–352.

[12] E. Berg and E. Hagersten, ‘‘Statcache: A probabilistic approach to efficient
and accurate data locality analysis,’’ in Proc. IEEE Int. Symp. ISPASS
Perform. Anal. Syst. Softw., Mar. 2004, pp. 20–27.

[13] N. C. Thornock and J. K. Flanagan, ‘‘Facilitating level three cache studies
using set sampling,’’ in Proc. 32nd Conf. Winter Simulation, Dec. 2000,
pp. 471–479.

[14] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, ‘‘The gem5 simulator,’’
ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, May 2011.

[15] M. Xie, D. Tong, K. Huang, and X. Cheng, ‘‘Improving system throughput
and fairness simultaneously in shared memory cmp systems via dynamic
bank partitioning,’’ in Proc. IEEE 20th Int. Symp. High Perform. Comput.
Archit. (HPCA), Feb. 2014, pp. 344–355.

[16] X. E. Chen and T. Aamodt, ‘‘Modeling cache contention and throughput
of multiprogrammedmanycore processors,’’ IEEE Trans. Comput., vol. 61,
no. 7, pp. 913–927, Jul. 2012.

[17] X. Xiang, C. Ding, H. Luo, and B. Bao, ‘‘HOTL: A higher order the-
ory of locality,’’ ACM SIGARCH Comput. Archit. News, vol. 41, no. 1,
pp. 343–356, Mar. 2013.

[18] A. Jaleel, H. H. Najaf-abadi, S. Subramaniam, S. C. Steely, and
J. Emer, ‘‘CRUISE: Cache replacement and utility-aware scheduling,’’
ACM SIGARCH Comput. Archit. News, vol. 40, no. 1, pp. 249–260,
Mar. 2012.

[19] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm, ‘‘RapidMRC: Approx-
imating L2 miss rate curves on commodity systems for Online optimiza-
tions,’’ ACM SIGARCH Comput. Archit. News, vol. 37, no. 1, pp. 121–132,
2009.

[20] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, ‘‘The
impact ofmemory subsystem resource sharing on datacenter applications,’’
in Proc. Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2011, pp. 283–294.

[21] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer, ‘‘Model-
ing performance variation due to cache sharing,’’ in Proc. IEEE 19th Int.
Symp. High Perform. Comput. Archit. (HPCA), Feb. 2013, pp. 155–166.

[22] J. Mars, L. Tang, and M. L. Soffa, ‘‘Directly characterizing cross core
interference through contention synthesis,’’ in Proc. 6th Int. Conf. High
Perform. Embedded Archit. Compil.. Jan. 2011, pp. 167–176.

[23] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao, ‘‘Cache contention and
application performance prediction for multi-core systems,’’ in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2010, pp. 76–86.

[24] N. Beckmann and D. Sanchez, ‘‘Modeling cache performance beyond
LRU,’’ in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Mar. 2016, pp. 225–236.

[25] S. Ross, First Course in Probability. London, U.K.: Pearson, 2014.
[26] S. M. Ross, Introduction to Probability and Statistics for Engineers and

Scientists. New York, NY, USA: Academic, 2014.
[27] Y. Zhang, N. Guan, and W. Yi, ‘‘Understanding the dynamic caches on

intel processors: Methods and applications,’’ in Proc. 12th IEEE Int. Conf.
Embedded Ubiquitous Comput., Aug. 2014, pp. 58–64.

[28] K. T. Nguyen. (2016). Introduction to Cache Allocation Technology
in the Intel Xeon Processor E5 v4 Family. [Online]. Available:
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-
technology

VOLUME 7, 2019 115567

	INTRODUCTION
	RELATED WORKS
	OBTAINING MEMORY ACCESS DISTRIBUTION
	OVERVIEW
	DESIGN AND IMPLEMENTATION
	EXPERIMENTAL RESULTS

	MODELING DISTRIBUTION
	PROBABILITY DISTRIBUTION OF CACHE MISSES
	FITTING INTO GAUSSIAN DISTRIBUTION
	GAUSSIAN DISTRIBUTION
	MODELING INTO GAUSSIAN

	EVALUATION OF FITNESS

	SET SAMPLING MODEL
	FEATURE SELECTION
	THE EFFICIENT CACHE PROFILING APPROACH

	PERFORMANCE EVALUATION
	EXPERIMENTAL METHODOLOGY
	RESULTS AND ANALYSIS
	ANALYSIS

	CONCLUSION
	REFERENCES

