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Despite practical limitations of isostatic theories to model the Moho geometry are well-known, gravi-
metric methods are often used in terrestrial studies of crustal structure in regions with a low seismic data
coverage. Moreover, these methods are indispensable in planetary studies. Various gravimetric methods
have been proposed. The Airy and Pratt theories are defined based on adopting a local compensation
mechanism. The Vening Meinesz theory assumes a regional isostatic flexural model. The Vening Meinesz
regional isostatic model generally describes a respond of the lithosphere to a load more realistically than
the Airy model over continents. The Pratt method, on the other hand, better describes a compensation
mechanism of the oceanic lithosphere. The application of a particular isostatic model also depends on
applied numerical procedures, parameters for inversion, input data specifications, and many other as-
pects. In this study, we address some basic aspects by applying local and regional isostatic models for a
Moho recovery. We also conduct a spectral analysis to assess a spectral resolution of gravity data that is
optimal for a Moho recovery. Furthermore, we inspect the influence of low-degree spherical harmonics
of gravity field on a Moho geometry. Gravimetric results are validated using seismic data at the European
plate. Our results confirm a better performance of a regional compensation principle. We also demon-
strate that a different thickness of the oceanic and continental crustal thickness should be taken into
account as a priori information. Spectral analysis indicates that gravity data used for a Moho inversion
should optimally have a spatial resolution between degrees 60 to 180. Results also show that low-degree
spherical harmonics do not modify significantly the Moho geometry, particularly over regions with a
relatively homogenous structure of deep mantle.
© 2019 Institute of Seismology, China Earthquake Administration, etc. Production and hosting by Elsevier
B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Various methods for a gravimetric Moho recovery have been
developed and applied in global and regional studies. Gravimetric
methods are typically formulated based on adopting some
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hypothesis about the isostatic mass balance. The Pratt-Hayford
model [1e3] assumes a variable density of compensation. The
Airy-Heiskanen theory [4,5] is based on adopting a variable depth
of compensation. Both these isostatic models are based on a local
compensation mechanism. Vening Meinesz [6] modified the Airy
theory by introducing a regional compensation scheme for a thin
plate lithospheric flexure model. Parker [7] presented a practical
iterative gravimetric method similar to the Vening Meinesz hy-
pothesis. Oldenburg [8] added a filter in the frequency domain to
stabilize the solution. The combination of these two methods was
generalized to a 3D problem by Gomez-Oritz and Agarwal [9] and
applied, for instance, by Shin et al. [10] and Kiamehr and Gomes-
Ortiz [11]. Moritz [12] generalized the Vening Meinesz inverse
problem for a global compensation mechanism and adopted a
spherical approximation of the Earth. A regional compensation
model was later utilized also in the Parker-Oldenburg method [8]
by assuming a variable crustal thickness and adopting a uniform
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Moho density contrast. Note that both, the Parker-Oldenburg and
Moritz models use an interface detection theory [13]. It implies that
the Bouguer gravity anomaly relates to elevation/depth at a certain
position. The Parker-Oldenburg method was also presented for a
planar approximation and solved by applying the Fast Fourier
Transform (FFT) technique. Sj€oberg [14] reformulated Moritz
problem, called the Vening Meinesz-Moritz inverse problem of
isostasy, as that of solving a non-linear Fredholm integral equation
of the first kind. The solutions by Moritz [12] and Sj€oberg [14] use
the same idea, but the former (and also the Parker-Oldenburg
method) applies an iterative approach while the latter provides a
direct solution. Eshagh et al. [15] generalized the VMM isostatic
model for a variable density distribution. Ye et al. [16] derived
generalized expressions for solving the VMM problem in the
spectral domain from gravity and gravity-gradient data and applied
these spectral expressions for a global Moho recovery. Their results
indicated that in global applications, using global data-coverage,
the spherical harmonic expressions for the gravimetric forward
and inverse modeling yield (almost) the same results for both, the
input gravity and gravity gradient data.

One of the most important aspects of gravimetric methods for
a Moho recovery is to apply the topographic and crust-stripping
gravity corrections in order to reveal a Moho signature in grav-
ity data. Various methods have been developed and applied for
this purpose (e.g. [17e24]). Alternatively, spectral filtering
methods could be used to remove a short-wavelength gravita-
tional contribution of detailed topographic features and shallow
anomalous crustal density structures as well as the long-
wavelength signature of deep mantle density heterogeneities
[14]. However, to know exactly which wavelengths should be
filtered out, or which range of wavelengths should be used is not
simple. Among several aspects to be taken into consideration, the
most importance are the gravity-signal dependence on the target
depth, spectrum analysis of the gravity field and other geophysical
and geological information [25e27]. In this study, we model and
remove gravitational contributions of anomalous crustal density
structures based on available information from results of seismic
surveys. We further take into account the upper mantle density
distribution by assuming the variable Moho density contrast. To
deal with the gravitational signature of deep mantle density
heterogeneities, Bagherbandi and Sj€oberg [28] removed the long-
wavelength gravitational signal according to method proposed by
Eckhardt [29]. He evaluated a maximum degree of long-
wavelength spherical harmonics, which should be subtracted
from the gravity field before solving the isostatic inverse problem.
A theory of this method was based on finding a representative
depth of the gravitational signal attributed to each spherical
harmonic-degree term. The spherical harmonics which have the
depth below a certain limit (chosen, for instance, as the maximum
Moho depth) are then removed from the gravity field. Here we
apply this approach to treat the long-wavelength mantle signal.
Bagherbandi et al. [30] used an alternative approach by applying a
non-isostatic correction.

In this study, we apply local and regional isostatic models to
estimate a regional Moho geometry at the European plate and
compare gravimetric results with existing seismic models. A
detailed coverage by a high quality seismic data in this study area
allows us to inspect some basic numerical aspects, particularly how
the spectral resolution and long-wavelength harmonics affect the
accuracy of Moho results. After giving a summary of applied
methodology (in section 2), we briefly describe input datasets and
models (in section 3) and numerical procedures (in section 4).
Results are then presented (in section 5) and discussed (in section
6). Finally we summarize major findings (in section 7).
2. Methodology

We applied methods for a spherical harmonic analysis and
synthesis of gravitational and crustal structure models to compute
the Bouguer gravity data that were subsequently used to estimate
the Moho depth based on solving the Vening Meinesz-Moritz
(VMM) inverse problem of isostasy [6,12,14]. We also estimated
the Moho depth according to the Airy [4] theory. Numerical steps
involved in the gravimetric forward and inverse modelling are
given next.
2.1. Gravimetric forward modelling

We computed the Bouguer gravity disturbances from the free-
air gravity disturbances by applying the topographic and crust-
stripping gravity corrections in order to accentuate a gravitational
signature of the Moho geometry, while attenuating gravitational
signals of the topography and crustal density heterogeneities.
2.1.1. Free-air gravity data
For the external convergence domain r � R, the free-air gravity

disturbance dgFA at a location ðr;UÞ is computed from the (fully-
normalized) spherical harmonics Tn;m of the disturbing potential T
(defined as the difference between the actual and normal gravity
potentials W and U respectively; T ¼ W � U) using the following
expression (e.g. [31])

dgFAðr;UÞ ¼ GM

R2

Xn
n¼0

Xn
m¼�n

�
R
r

�nþ2
ðnþ 1Þ Tn;m Yn;mðUÞ (1)

where GM¼ 3986005� 108 m3 s�2 is the geocentric gravitational
constant, R¼ 6371� 103 m is the Earth's mean radius, Yn;m are the
(fully-normalized) surface spherical functions of degree n and order
m, and n is the upper summation index of spherical harmonics. The
3D position in Eq. (1) and thereafter is defined in the spherical
coordinate system ðr;UÞ; where r is the radius, and U ¼ ð4; lÞ is the
spherical direction with the spherical latitude 4 and longitude l.
2.1.2. Bouguer gravity data
As stated above, the Bouguer gravity disturbances dgB were

obtained from the free-air gravity disturbances dgFA after applying
the topographic and crust-stripping gravity corrections. The
application of the topographic gravity correction gT removed the
gravitational contribution of topographic masses of a uniform
density. Subsequently, the crust-stripping gravity corrections were
applied in order to remove gravitational contributions of major
known anomalous density structures within thewhole crust (down
to the Moho interface). Specifically, we applied the gravity correc-
tions due to density contrasts of lakes gL [32], ice gI [33], bathym-
etry gB and sediments gS. The atmospheric gravity correction was
disregarded, having globallymaxima less than 1mGal (cf. [34]). The
procedure of computing the Bouguer gravity disturbances is then
written as (cf. [19,23])

dgB ¼ dgFA � gT � gL � gI � gB � gS (2)

The topographic gravity correction gT is defined for a uniform
topographic density by the following expression

gTðr;UÞ ¼ GM

R2

Xn
n¼0

Xn
m¼�n

�
R
r

�nþ2

ðnþ 1ÞVT
n;m Yn;mðUÞ (3)

The potential coefficients VT
n;m in Eq. (3) read
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VT
n;m ¼ 3

2nþ 1
rT

rEarth

Xnþ2

k¼0

0
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k

1
A ð�1Þk

kþ 1þ i
Hðkþ1Þ
n;m

Rkþ1
(4)

where rEarth ¼ 5500 kg m�3 is the Earth's mean mass density, and
rT is the (average) topographic density. The topographic co-
efficients {Hðkþ1Þ

n;m : k ¼ 0; 1; ::: } are given by

Hðkþ1Þ
n ðUÞ¼2nþ 1

4p
∬
F

Hkþ1
U ðU0ÞPnðtÞ dU0 ¼

Xn
m¼�n

Hðkþ1Þ
n;m Yn;mðUÞ

(5)

where Pn are the Legendre polynomials for the argument t defined
as: t ¼ ðr2 þ r02 � [2Þ=2rr0, and [ is the Euclidean spatial distance
between points ðr;UÞ and ðr0;U0Þ. The infinitesimal surface element
on the unit sphere is denoted by dU0 ¼ cos 40 d40 dl0, and F is the
full spatial angle.

The crust-stripping gravity corrections were computed based on
applying the method developed by Tenzer et al. [19] that utilizes
the information about a 3D density distribution within a particular
geological unit, such as sedimentary basins (see also [20,21,23]).

The generic expression for a spherical harmonic synthesis reads

gðr;UÞ ¼ GM

R2

Xn
n¼0

Xn
m¼�n

�
R
r

�nþ2

ðnþ 1ÞVn;m Yn;mðUÞ (6)

The potential coefficients Vn;m of each volumetric mass layer are
defined by

Vn;m ¼ 3
2nþ 1

1

rEarth

XI

i¼0

�
FlðiÞn;m � FuðiÞn;m

�
(7)

where the coefficients {FlðiÞn;m;Fu
ðiÞ
n;m : i ¼ 0; 1; :::; I} are defined as

follows

FlðiÞn;m ¼
Xnþ2

k¼0

0
B@nþ 2
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(8)

The coefficients {Lðkþ1þiÞ
n;m ;Uðkþ1þiÞ

n;m : k ¼ 0; 1; ::: ; i ¼ 1; 2; :::;I}
in Eq. (8) describe the geometry and density contrast distribution
within a particular volumetric mass layer. These coefficients are
generated from discrete data (of depth, thickness and density) us-
ing the following expressions for a spherical harmonic analysis
[20].

Lðkþ1þiÞ
n ðUÞ¼

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
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and
Uðkþ1þiÞ
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The 3D density contrast with respect to the reference crustal
density rref in Eqs. (9) and (10) reads

drðr;UÞ¼ rðr;UÞ � rref ¼ rðDU ;UÞ � rref

þ bðUÞ
XI

i¼1

aiðUÞ ðR � rÞi; for

R � DUðUÞ� r>R � DLðUÞ
(11)

where rðDU ;UÞ is a (nominal) value of the lateral density at a
location U and a depth DU .

2.2. Gravimetric Moho inversion

We applied the Airy and VMM gravimetric methods to estimate
the Moho depth. A brief summary of theoretical principles of both
methods is given next.

2.2.1. Airy model
According to the Airy local isostatic model, theMoho depthDAiry

M
can readily be computed from

DAiry
M ðUÞ¼D0 �

rTH
Drc=mðUÞ (12)

where rT is the average topographic density, D0 is the mean depth
of the Moho interface, and Drc=m denotes a variable density
contrast across the Moho interface.

2.2.2. VMM model
Eshagh [15] generalized the VMM inverse problem of isostasy

for the variable Moho density contrast. He presented the VMM
solution for finding the Moho depth DVMM

M in the following form

DVMM
M ðUÞ¼R

3

"
1�

�
1�D0

R

�3
#�

1�D0

R

��1

� 1
4pGDrc=mðUÞ

XN
n¼0

2nþ1
nþ1

dgBn

�
1�2þn

2R
D0

��1

PnðsinfÞ

(13)

where G¼ 6:674� 10�11 m3 kg�1 s�2 is the Newton's gravitational
constant, and dgBn are the spherical harmonics of the Bouguer
gravity disturbances.

The VMM model in Eq. (13) is suitable for an estimation of the
Moho depth only under either the oceanic crust or the continental
crust. However, it should not be used for a simultaneous estimation
of the Moho depth used the oceanic and continental crust due to
large systematic differences between a thick continental crust in
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contrast to a much thinner oceanic crust. Eshagh [35] addressed
this theoretical deficiency by introducing the degree-dependent
Moho parameter bn in order to account for a generally different
average thickness of the oceanic and continental crust. The VMM
model in Eq. (13) then becomes [35].

DVMM
M ðUÞ¼R

3

"
1�

�
1�D0

R

�3
#�

1�D0

R

��1

� 1
4pGDrc=mðUÞ

XN
n¼0

2nþ1
nþ1

bndg
B
n

�
1�2þn

2R
D0

��1

PnðsinfÞ

(14)

where

bn ¼

8>>>>><
>>>>>:

�
1� ðnþ 2ÞD0

2R

��1
for continents

1 for oceans

(15)

The expression given in Eq. (15) was proposed by Eshagh [35]
based on testing (global-scale) approximation errors, while
checking the Moho-depth degree variances. He realised that
beneath the continental crust, the choice of a mean Moho depth D0
significantly influences Moho depth variations, while causing un-
realistic Moho frequencies beneath oceans.

3. Input datasets and models

We used the EIGEN-6C4 [36] global gravitational model, the
Earth2014 topographic, bathymetric, inland bathymetry and glacial
bedrock relief datasets [37], the marine sediment thickness data
[38] and the CRUST1.0 [39] global seismic crustal model. These
datasets and models were used for a gravimetric forward modeling
of crustal density structures within the study area of the European
plate (see Fig. 1). We also used the seismic Moho model of the
European plate prepared by Grad et al. [40] to validate our gravi-
metric results.

The combined gravity field model EIGEN-6C4 was compiled
from terrestrial and satellite gravity data including also the satellite
gravity-gradiometry data from the Gravity field and steady-state
Ocean Circulation Explorer (GOCE; [41,42]) over the entire
mission (from November 2009 until October 2013). The combina-
tion of different satellite and terrestrial data was done by a band-
Fig. 1. Topography of the study area.
limited combination of normal equations (to max degree 370),
which were generated from observation equations for the spherical
harmonic coefficients according to the procedure described by
Shako et al. [43]. This solution extended to a maximum degree of
2190 by a block-diagonal solution using the DTU10 global gravity
anomaly data grid [44,45].

The Earth2014 datasets [37] provide the information about the
topographic heights inland, the bathymetric depths offshore, the
glacial bedrock relief in polar regions and the inland bathymetric
depths of major lakes on a 10 � 10 grid. This model was compiled
from data releases of the SRTM30_PLUSv9 [46], SRTMv4.1 [47],
BEDMAP2 [48] and Greenland Bedrock Topography GBTv3 [49].

The dataset of the marine sediment thickness on a 50 � 50 grid
was made available through the National Geophysical Data Center
(NGDC) of the National Oceanic and Atmospheric Administration
(NOAA).

The CRUST1.0 global seismic crustal model was complied glob-
ally on a 1� � 1� grid [39]. It consists of the ice, seawater, (upper,
middle, and lower) sediments and (upper, middle, and lower)
crystalline crustal layers. It provides also information about a lateral
density structure of the upper mantle. Globally averaged data from
active seismic methods and deep drilling profiles were used to
predict sediment and crustal structures where no seismic mea-
surements were available (most parts of Africa, South America,
Greenland, and large oceanic areas) by a generalization to similar
geological and tectonic settings.

Grad et al. [40] compiled the first digital, high-resolution Moho
depth model (denoted here as EURO) for the whole Europe,
extending from the mid-Atlantic ridge in the west to the Ural
Mountains in the east, and from theMediterranean Sea in the south
to the Barents Sea and Spitsbergen in the Arctic in the north.

4. Numerical procedures

Expressions for a spherical harmonic analysis and synthesis in
section 2 were applied to compute the Bouguer gravity distur-
bances using input datasets and models summarized in section 3.
Numerical procedures applied to compute the Bouguer gravity
disturbances and to estimate the Moho depth are briefly reviewed
in this section.

4.1. Gravimetric forward modelling

The free-air gravity disturbances and gravity corrections were
computed with a spectral resolution complete to the spherical
harmonic degree of 2160 (corresponding to a 50 � 50 spatial reso-
lution in terms of a half-wavelength), except for the continental
sediment gravity correction. This gravity correction was computed
only up to the spherical harmonic degree of 180 that corresponds to
a 1� � 1� spatial resolution of the CRUST1.0 model. In this way, the
(complete) sediment gravity correction was computed individually
for contributions of marine and continental sediments. The former
was computed with a 50 � 50 spatial resolution (from the NGDC
marine sediment data), and the latter only with a 1� � 1� resolution
(from the CRUST1.0 sediment data).

The free-air gravity disturbances were computed from the
EIGEN-6C4 gravitational coefficients corrected for the GRS80 [50]
normal gravity component. The topographic, lake and ice gravity
corrections were computed using the Earth2014 datasets of the
topography, inland bathymetry and glacial bedrock relief. The
density value of 2670 kg m�3 was used to compute the topographic
gravity correction. It is worth mentioning that this density value is
commonly adopted to represent the continental upper crustal
density defined based on the areal proportion of sedimentary and
shield rocks (cf. [51]). The freshwater density of 1000 kg m�3 was
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used to compute the lake gravity correction. The glacial density of
917 kgm�3 (cf. [52]) was used to compute the ice gravity correction.
We note that the ice density contrast with respect to the value of
2670 kg m�3 was used for glacier volumes above the sea level. For
the glacier volumes below the sea level we computed the ice
density contrast with respect to the value of 2900 kg m�3. We
further used the CRUST1.0 sediment data, updated for the sediment
layers of the Antarctic continental crust according to Baranov et al.
[53], to compute the continental sediment gravity correction. The
bathymetric gravity correction was computed using the Earth2014
data of the bathymetric depths. A depth-dependent seawater
density model was utilized in the definition of the ocean density
contrast. For the reference crustal density of 2900 kg m�3 and the
surface seawater density of 1027.91 kg m�3 (cf. [54e56]), the
nominal ocean density contrast (at zero depth) equals
1872.09 kg m�3. The depth-dependent seawater density model is
according to Eq. (11) defined by the following parameters (up to the
second-order density term): b ¼ 0:00637 kg m�3, a1 ¼ 0:7595 m�1

and a2 ¼ �4:3984� 10�6 m�2 (cf. [57]).
We used the NGDC marine sediment thickness data combined

with the density model of marine sediments, developed by Tenzer
and Gladkikh [58] based on the analysis of in situ density mea-
surements, to compute the marine sediment gravity correction.
According to Gu et al. [59], the marine sediment density model rs

(in g cm�3) reads

rsðTs;DwÞy1:66� 5:1� 10�5Dw þ 0:0037 T0:766s (16)

where Dw denotes the ocean-floor depth (in m), and Ts is the
sediment thickness (in m). The value 1.66 g cm�3 in Eq. (16) rep-
resents the sediment density beneath a thin sedimentary cover (for
Ts/0) at shallow seafloor depths (Dw/0). The second constituent
describes the decreasing density with the seafloor depth (reflecting
the fact that coarse particles are transported at shorter distances
from the coast). The third constituent describes the increasing
density with the depth within marine sediment layers (due to the
compaction and further lithification); see also Chen et al. [60]. We
note that the expression in Eq. (16) was converted into a general-
ized form given in Eq. (11). Finally, we used the CRUST1.0 data to
compute the consolidated crust gravity correction.

All gravity computations were realized on a 50 � 50 spherical grid
of surface points within the study area. The gravity corrections are
shown in Fig. 2. The intermediate results obtained after applying
these gravity corrections to the free-air gravity disturbances are
presented in Fig. 3. Statistical summaries of the gravity corrections
and the corrected gravity disturbances are given in Tables 1 and 2
respectively.

4.2. Gravimetric Moho recovery

We applied the Airy method (Eq. (12)) to estimate the Moho
depth for the uniform and variable Moho density contrast. For the
uniform density contrast, we adopted the average value of
485 kg m�3 (cf. [22]). For the variable model we computed the
Moho density contrast as the difference between the CRUST1.0
upper mantle density values and the reference crustal density of
2900 kg m�3. We used the mean topographic heights down
sampled on a 1� � 1� grid from the 10 � 10 Earth2014 topographic
data by applying the average operator. For both solutions, the mean
value of the Moho depth of 28 km was obtained by averaging the
CRUST1.0 Moho depth data over the study area.

It is worth mentioning that different estimates of the average
Moho density contrast were reported. Dziewonski and Anderson
[61], for instance, adopted the value of 480 kg m�3 in the definition
of the Preliminary Reference Earth Model (PREM). This value was
derived from the analysis of available global seismic data. Tenzer
et al. [19] estimated the average value of the Moho density contrast
by minimizing a global spatial correlation between gravity and
Moho depth data. They used the Moho information from the
CRUST2.0 global seismic crustal model [62]. According to their
result, the average value was found to be 520 kg m�3. Later, Tenzer
et al. [22] and Tenzer et al. [63] updated this value to 485 and
441 kg m�3, respectively, on the basis of more recent datasets and
more accurate numerical models. Sj€oberg and Bagherbandi [64]
estimated the global average of the Moho density contrast of
448 ± 187 kg m�3 by solving the VMM problem.

We further estimated the Moho depth according to the VMM
models with and without considering the degree-dependent Moho
parameter bn (Eqs. (13) and (14)). Both VMM Moho results were
again computed for the uniform and variable Moho density
contrast. For the case without considering bn , we used the mean
Moho depth of 37 km selected based on minimizing the RMS of
Moho depth differences between the VMM gravimetric and the
EURO seismic models. All VMMMoho models were computed with
a spectral resolution up to degree of 180. This spectral resolution is
often used to compute the gravimetric Moho models. A more
detailed analysis and discussion of this numerical aspect is post-
poned until sections 5 and 6.

5. Results

TheMoho depth estimates based on applying the Airy and VMM
models are presented and compared with seismic solutions in this
section.

5.1. Gravimetric Moho models

The Airy and VMM gravimetric Moho models computed on a
1� � 1� grid within the study area are shown in Fig. 4 and their
statistical summary is given Table 3.

5.2. Validation of results

The gravimetric results presented in Fig. 4 were compared
with the EURO and CRUST1.0 seismic models. The EURO and
CRUST1.0 seismic Moho models are shown in Fig. 5, with their
statistical summary in Table 4. The Moho depth differences be-
tween the gravimetric and seismic models are plotted in Figs. 6
and 7. Statistics of the Moho depth differences are summarized
in Tables 5 and 6.

5.3. Spectral analysis

The VMM Moho results, presented in Fig. 4, were computed
with a spectral resolution up to degree of 180. Here we investigated
dependence of the Moho results on a spectral resolution of gravity
data. The RMS and mean of Moho depth differences between the
VMM solutions (for the uniform and variable Moho density
contrast) and the EURO seismic model are plotted in Figs. 8 and 9.

To estimate the Moho depth from gravity data, we subtracted
the gravitational contribution of the topography and crust density
heterogeneities in order to enhance a Moho signature in gravity
data. This gravity data, however, still comprises a gravitational
signal of deep mantle heterogeneities that should also be modelled
and subtracted. Since our knowledge about a deep mantle density
structure is limited, this procedure could be realized by subtracting
the long-wavelength part of gravity spectrum. It is assumed that
low-degree spherical harmonics comprise mainly the gravitational
contribution of deep mantle heterogeneities. In Figs. 8 and 9, we
inspected this aspect by checking the RMS and mean of the Moho



Fig. 3. Regional gravity maps: (a) the free-air gravity disturbances dgFA, (b) the topography-corrected gravity disturbances dgT, (c) the topography-corrected and lake- and ice-
stripped gravity disturbances dgTLI , (d) the topography-corrected and lake-, ice- and bathymetry-stripped gravity disturbances dgTLIB, and (e) the (negative) Bouguer gravity
disturbances dgB.

Fig. 2. Gravity corrections: (a) topographic gT, (b) iceI gI , (c) bathymetric gB , and (d) sediment gS.
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Fig. 4. Gravimetric Moho depth computed by applying: (a) the Airy model for the uniform D

VMMmodel for the uniform DVMM
M;Drc=m (left panel) and variable DVMM

M;Drc=mðUÞ (right panel) Moho d

parameter bn for the uniform DVMM
M;Drc=m ;bn

(left panel) and variable DVMM
M;Drc=m ;bn

(right panel) M

Table 3
Statistics of the Airy and VMM gravimetric Moho solutions. For the notation used,
see the legend to Fig. 4.

Moho model Min [km] Max [km] Mean [km] STD [km]

DA
M;Drc=m

0.1 56.6 23.3 10.1

DA
M;Drc=mðUÞ 0.3 51.7 24.2 8.1

DVMM
M;Drc=m

0.9 63.2 26.5 12.6

DVMM
M;Drc=mðUÞ 0.9 59.7 28.7 10.1

DVMM
M;Drc=m ;bn

2.7 63.3 26.9 11.5

DVMM
M;Drc=mðUÞ;bn

4.0 59.8 29.0 9.2

Table 1
Statistics of the gravity corrections. For the notation used, see the legend to Fig. 3.

Gravity Correction Min [mGal] Max [mGal] Mean [mGal] STD [mGal]

gT �2 532 42 72

gL �3 20 0 1

gI �247 10 �7 26

gB �667 0 �182 193

gS �333 20 �77 62

Table 2
Statistics of the free-air gravity disturbances and the intermediate results obtained
after applying the individual gravity corrections. For the notation used, see the
legend to Fig. 2.

Gravity Disturbances Min [mGal] Max [mGal] Mean [mGal] STD [mGal]

dgFA �203 158 19 29

dgT �117 463 23 73

dgTL �118 463 23 73

dgTLI �120 460 15 62

dgTLIB �659 460 �167 239

dgB �765 454 �245 248
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depth differences obtained after removing the long-wavelength
contribution for different degrees of spherical harmonics (5, 10,
15 and 20).

6. Discussion of results

The comparison of gravimetric results revealed some substan-
tial discrepancies between the Airy and VMM Moho depth models.
Generally, these differences are attributed to adopted compensa-
tion mechanism. A local isostatic principle of the Airy theory is
A
M;Drc=m (left panel) and variable DA

M;Drc=mðUÞ (right panel) Moho density contrast, (b) the

ensity contrast, and (c) the VMMmodel with considering the degree-dependent Moho

oho density contrast.



Fig. 5. Seismic Moho models: (a) EURO DEURO
M , (b) CRUST1.0 DCRUST1:0

M , and (c) their differences DEURO
M � DCRUST1:0

M .

Table 4
Statistics of the EURO and CRUST1.0 seismic Moho models and their differences.

Moho model Min [km] Max [km] Mean [km] STD [km]

DEURO
M

2.3 59.7 29.7 11.3

DCRUST1:0
M

7.1 58.0 28.8 12.0

Moho model differences Min [km] Max [km] Mean [km] RMS [km]

DEURO
M � DCRUST1:0

M
�27.4 14.1 0.8 3.3
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exhibited in the Moho geometry (Fig. 4a) by a relatively sharp
contrast in crustal thickness across continental margins. Moreover,
we could see a quite localized isostatic signature of mountain roots
in contrast to a relatively smooth Moho pattern under flat and
moderately elevated regions. Differences between the Airy solu-
tions for the uniform and variable Moho density contrast are not
significant.

The Moho geometry of all four VMM solutions (Fig. 4b and c) is
smoother than the Airy solutions. In this case, however, we could
see remarkable differences between VMM solutions computed
using the constant and variable Moho density contrast, particularly
in their spatial pattern. Differences between the VMM results ob-
tained with and without applying the degree-dependent Moho
parameter are much less pronounced. Generally, among all gravi-
metric results, the VMM models for the variable Moho density
contrast most closely agree with seismic models (Fig. 5).

We could identify two dominant features in the VMM Moho
results for the variable Moho density contrast. The oldest Archean
and Proterozoic crust is characterized by a crustal thickness that
typically exceeds 40 km and reaches maxima up to roughly 60 km.
The continental Variscan and Alpine crustal structures have a
thickness largely between 20 and 40 km. This general classification
roughly agrees with the interpretation of seismic data by Grad et al.
[40].

A more detailed comparison of gravimetric and seismic models
(Fig. 6) confirmed a significantly better agreement of the VMM
solutions with the EURO and CRUST1.0 seismic models. Large sys-
tematic discrepancies, on the other hand, exist between the Airy
and seismic models that often exceed even 20 km over most of the
Russian Platform. The VMM model for the variable Moho density
contrast and the degree-dependent Moho parameter has the best
agreement (in terms of the RMS and mean of the Moho depth
differences) with both seismic models. As seen in Tables 5 and 6,
the RMS of differences of this gravimetric solution with both
seismic models is roughly 6.5 km, and without the presence of a
systematic bias (the mean of differences is less than 1.0 km). Ac-
cording to Knapmeyer-Endrun et al. [65] such differences between
gravimetric and seismic solutions are roughly within the limit of
tolerance. Nevertheless, we could observe also large regional dis-
similarities, particularly over most of the Russian Platform, where
the gravimetric model systematically overestimates the Moho
depth of about 10 km. Large disagreements there reach locally even
20 km. In the Scandinavian Shield, the Variscan-Alpine orogenic
formations and elsewhere, these differences are mostly less than
10 km. Large differences up to about 10e12 km are seen over old
parts of the oceanic lithosphere in the eastern Mediterranean Sea.
In contrast, the VMM model only slightly underestimates the
oceanic crustal thickness in the northeast Atlantic.

The spectral analysis in Figs. 8 and 9 reveals that the best VMM
result bymeans of fitting seismic solutions is attained when using a
spectral resolution up to degree of 60. With an increasing spectral
resolution, the RMS fit and the systematic bias between the VMM



Fig. 6. The Moho depth differences: (a) DA
M;Drc=m � DEURO

M , (b) DA
M;Drc=mðUÞ � DEURO

M , (c) DVMM
M;Drc=m � DEURO

M , (d) DVMM
M;Drc=mðUÞ � DEURO

M , (e) DVMM
M;Drc=m ;bn

� DEURO
M , and (f) DVMM

M;Drc=mðUÞ;bn
� DEURO

M .
For the notation used, see the legends to Figs. 4 and 5.
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and seismic models slightly increase. These changes in the accuracy
specifications are, however, in both cases less than 1 km, thus not
crucial as an accuracy indicator. Interestingly, however, this finding
does not hold for the most optimal scheme for a gravimetric Moho
modelling (i.e. the VMM model for the variable Moho density
contrast and the degree-dependent Moho parameter). In this case,
the systematic bias approaches zero, but the RMS fit of the VMM
solution for a spectral resolution up to degree of 60 is slightly worse
than for higher spectral resolutions (up to 360). Nevertheless, dif-
ferences between the RMS fits of VMM models for investigated
spectral resolutions (from 60 to 360) are less than 0.5 km. Results of
our analysis not presented here in detail, however, revealed that
the accuracy could rapidly deteriorate when using a very high de-
gree resolution (>720) to model the Moho geometry.

A rough assessment of the influence of deep mantle gravity
heterogeneities on the Moho geometry reveals that modifications
in the Moho geometry caused by subtracting the long-wavelength
part of gravity spectrum are not significant. The analysis indicates
that the best RMS fit and a minimum systematic bias was attained
after subtracting low-degree spherical harmonics up to degree of 5
when solving the VMM inverse problem of isostasy for the uniform
Moho density contrast and applying the degree-dependent Moho
parameter (Fig. 8). Nevertheless, the RMS fit and a systematic bias
between the VMM and seismic models worsen only slightly even
after removing low-degree spherical harmonics up to degree 20.
We also see that the use of a full harmonic spectrum up to a chosen
spherical resolution worsens the RMS fit and a systematic bias to
about 0.5 km in both cases when compared with the VMM solution
after removing the low-degree harmonics up to degree 5. Similar
accuracy characteristics hold also for the VMM solution for the
variable Moho density contrast, with the best result obtained after
removing spherical harmonics up to degree 5. Interestingly, the
VMM solution for a maximum spectral resolution up to degree 60
again behaves differently. The optimal result is obtained after
subtracting spherical harmonics up to degree 10, with a minimum
systematic bias. Even if the RMS fit worseness after subtracting
spherical harmonics above degree 10, the impact on accuracy is
stochastically insignificant.
7. Summary and concluding remarks

We have investigated some basic numerical factors and pa-
rameters that could affect accuracy characteristics of the Airy and
VMMmethods for a Moho recovery from gravity data. The accuracy
characteristics were assessed with respect to seismic models. In



Fig. 7. The Moho depth differences: (a) DA
M;Drc=m � DCRUST1:0

M , (b) DA
M;Drc=mðUÞ � DCRUST1:0

M , (c) DVMM
M;Drc=m � DCRUST1:0

M , (d) DVMM
M;Drc=mðUÞ � DCRUST1:0

M , (e) DVMM
M;Drc=m ;bn

� DCRUST1:0
M , and (f)

DVMM
M;Drc=mðUÞ;bn

� DCRUST1:0
M . For the notation used, see the legends to Figs. 4 and 5.

Table 5
Statistics of the Moho depth differences.

Moho model differences Min [km] Max [km] Mean [km] RMS [km]

DA
M;Drc=m � DEURO

M
�31.1 31.1 6.4 9.3

DA
M;Drc=mðUÞ � DEURO

M
�26.1 31.4 5.5 8.7

DVMM
M;Drc=m � DEURO

M
�29.6 33.6 3.1 8.5

DVMM
M;Drc=mðUÞ � DEURO

M
�29.3 25.0 0.9 7.0

DVMM
M;Drc=m ;bn

� DEURO
M

�28.9 27.9 2.7 7.7

DVMM
M;Drc=mðUÞ;bn

� DEURO
M

�29.7 23.3 0.6 6.5
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particular, we inspected how the spectral resolution and long-
wavelength harmonics affect the Moho results.

According to our findings, the VMM inverse problem of isostasy
formulated based on adopting a regional compensationmechanism
approximates the seismic Moho geometry much more realistically
than the Airy model based on a local compensation mechanism.
The application of the variable Moho density contrast improves the
VMM gravimetric results. An additional improvement is achieved
by applying the degree-dependent Moho parameter to properly
deal with a different thickness of the oceanic and continental crust
structures.

The spectral analysis indicates that the choice of a different
spectral resolution of gravity data (that does not exceed a
maximum degree of 360) for a Moho recovery is not essential. A
maximum spectral resolution of gravity data for a Moho recovery
could be recommended somewhere between degrees from 60 to



Table 6
Statistics of the Moho depth differences.

Moho model differences Min [km] Max [km] Mean [km] RMS [km]

DA
M;Drc=m � DCRUST1:0

M
�26.4 31.3 6.4 9.3

DA
M;Drc=mðUÞ � DCRUST1:0

M
�22.8 29.6 4.6 8.1

DVMM
M;Drc=m � DCRUST1:0

M
�13.2 36.4 10.0 12.2

DVMM
M;Drc=mðUÞ � DCRUST1:0

M
�13.9 31.5 8.0 10.3

DVMM
M;Drc=m ;bn

� DCRUST1:0
M

�19.5 26.2 2.9 7.3

DVMM
M;Drc=mðUÞ;bn

� DCRUST1:0
M

�20.7 22.2 0.8 6.3

Fig. 8. The RMS and mean of Moho depth differences DVMM
M;Drc=m ;bn

� DEURO
M between the

VMM (for the constant Moho density contrast) and EURO models.

Fig. 9. The RMS and mean of Moho depth differences DVMM
M;Drc=mðUÞ;bn

� DEURO
M between

the VMM (for the variable Moho density contrast) and EURO models.
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about 180. The use of a very high degree of spherical resolution
(above degree 720) could significantly deteriorate the accuracy of a
gravimetric Moho modelling.

The spectral analysis also indicates that low-degree spherical
harmonics up to degree 5 could be subtracted from the gravity
spectrum to solve the VMM inverse problem of isostasy. Never-
theless, the impact of this numerical procedure on the Moho
accuracy is stochastically insignificant. This finding, however,
holds only for regions with relatively homogenous mantle
structure. In global studies as well as studies covering regions
characterized by significant mantle density heterogeneities (i.e.
subducted slabs, hotspots, mantle upwelling), the long-
wavelength gravity spectrum should be treated more carefully
(cf. [28,30]).
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