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ABSTRACT Despite the great progress of image super-resolution in recent years, face super-resolution has
still much room to explore good visual quality while preserving original facial attributes for larger up-scaling
factors. This paper investigates a new research direction in face super-resolution, called Reference based
face Super-Resolution (RefSR), in which a reference facial image containing genuine attributes is provided
in addition to the low-resolution images for super-resolution. We focus on transferring the key information
extracted from reference facial images to the super-resolution process to guarantee the content similarity
between the reference and super-resolution image. We propose a novel Conditional Variational AutoEncoder
model for this Reference based Face Super-Resolution (RefSR-VAE). By using the encoder to map the
reference image to the joint latent space, we can then use the decoder to sample the encoder results to
super-resolve low-resolution facial images to generate super-resolution images with good visual quality.
We create a benchmark dataset on reference based face super-resolution (RefSR-Face) for general research
use, which contains reference images paired with low-resolution images of various pose, emotions, ages and
appearance. Both objective and subjective evaluations were conducted, which demonstrate the great potential
of using reference images for face super-resolution. By comparing it with state-of-the-art super-resolution
approaches, our proposed approach also achieves superior performance.

INDEX TERMS Face super-resolution, deep feature extraction, style transfer.

I. INTRODUCTION
The traditional Single Image Super-Resolution (SISR) is
defined as using a single low-resolution (LR) images to
recover the corresponding high-resolution (HR) image. It has
received substantial attention in image processing and com-
puting vision fields. Inspired by the advanced convolutional
neural network in various computing tasks, single image SR
gains great improvement recently. Face SR can be regarded
as a domain-specific SR application. It also can be called face
hallucination. The main goal of SR is to have large up-scaling
factors, e.g. 8×, for practical application, like digital image
display, entertainment and video coding assistance. Gener-
ally, we can classify face SR approaches into two categories:
conventional learning based face SR and deep learning based
face SR.

For conventional learning based face SR, researchers
tackle the whole image SR to overlapped patches recon-
struction. In the early studies, researchers used internal and
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external images to explore the patch statistics. In order to
learn the mapping relationship between LR and HR patches,
there are many proposed techniques utilizing classification
algorithms to cluster patches into groups for subspace linear
estimation. For example, [1], [2] propose to use k Nearest
Neighbor (kNN) to search nearest patches online for patch
reconstruction. References [3], [4] propose to learn the cou-
pled overcomplete dictionary for sparse representation of the
patch pairs. Furthermore, [6] comes up with multiple layers
of kNN super-resolution to gradually improve SR quality.
Reference [7] makes use of the local geometrical structure
on the HR manifold rather than LR manifold as constraints
to learn the couple dictionary for sparse reconstruction. Sim-
ilar idea is also proposed [8], which combines two different
regularizations: kernel Hilbert space constraint and HR local
geometrical manifold for better SR reconstruction. Besides
these domain specific approaches targeted on facial images,
there are also some general image SR approaches that can be
directly used for face SR. References [10]–[14] use random
forests to process a large number of training data so that
various patch patterns can be modeled differently by different
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decision trees. By stacking multiple decision trees, we can
hierarchically reconstruct the LR images layer by layer until
obtaining the optimal SR images.

Recently, deep learning based SR approaches have greatly
advanced the state-of-the-art performance of SR. Most exist-
ing approaches focus on face SR with large up-scaling fac-
tors, i.e., 8×. The evaluation of SR performance is inherited
the Mean Squared Errors (MSE) pixel loss used in general
image SR. For example, general deep learning based SR
approaches [18]–[25] can be directly used in face SR. Due
to the lack of study on facial priors, general deep learning
based SR approaches give general image patterns features
rather than facial features so that they usually fail to generate
clear and pleasing face SR. There are also some approaches
that use facial prior information to perform post-processing
on the SR image to enhance the details. However, due to the
ill-posed nature of image SR,most SR approaches suffer from
blurry results because the fine details are lost in the LR facial
images. Recently, researchers come up with two solutions to
obtain face SR with good visual quality: Generative Adver-
sarial Network (GAN) [17] to learn the photo-realistic SR
images using adversarial loss and perceptual loss and neural
texture transfer [26] to transfer the desired textures of the
reference images to the SR images.

GAN based face SR approaches [28]–[35] make use of
both discriminators and generators to learn the distribution
of the HR images to generate ‘‘fake’’ images that cannot
be distinguished from the HR images by the discriminator.
In order to learn the natural textures, a feature loss is added
along with MSE loss to balance the distortion and perception
of the image SR. Reference [28] can be considered as the
first GAN based face SR that ultra-resolves the LR images by
8×. Reference [31] then proposes the transformative discrim-
inative autoencoders to solve the face SR. There are facial
priors can also be embedded into face SR to obtain better
performance. Reference [29] uses Bi-Network to learn the
dense face correspondence field as the prior to guide face
SR. Reference [30], on the other hand, uses the recurrent
policy network to focus on different regions of the LR images
for local enhancement. Reference [32] designs a network to
learn facial landmarks and parsing from LR images and then
use the learned priors to super-resolve LR images by compo-
nents. To keep the facial identity, [33] cascades the face SR
and recognition networks together to output SR images with
closest identity distance to the ground truth images. Neural
texture transfer [26] was the first work that transfers the style
of the reference image to the input image to the output image
with reference style. It proposes to use both content loss
and style loss to train the deep neural network. Lately, [34]
proposes to use neural texture transfer for face style transfer.
The idea is to choose a reference image containing desired
style and then transfer the style to the LR image for better
SR. Similarly, [36] proposes a multi-scale neural transfer to
improve the texture similarity.

For large up-scaling face SR (e.g. 8×), despite the good
visual quality of using GAN or neural texture transfer,

the generated ‘‘fake’’ features can cause inconsistent patterns
and distorted identity. Reference [37] gives a discussion on
the ‘‘mode collapse’’ and ‘‘unmatched pattern’’ problems.
From the perspective of practice, the potential application of
face SR is face recognition so that preserving true identity of
facial images is vital. In this paper, we propose a novel Con-
ditional Variational AutoEncoder model for Reference based
Face Super-Resolution (RefSR-VAE). In addition to using a
single LR image for SR, we also add a reference image, hence
referred to as Reference based Super-Resolution (RefSR),
to guide the super-resolution process where LR and the
reference images contain the same person, so that we can
obtain SR image with both sharp visual quality and remain
the ground truth identity. Nowadays, face recognition cannot
guarantee 100% or even high accuracy for low quality facial
image. By using an available reference images, RefSR can
be used to super-resolve low-resolution facial images to assist
people for human recognition. In order to extract useful infor-
mation from the reference image for arbitrary LR images,
we propose a conditional Variational AutoEncoder that the
encoder learns the joint latent model between LR and refer-
ence images and then the decoder extracts latent parameters
from the encoder to generate SR images. To the best of our
knowledge, this is the first work that resolve the face SR as
reference based face SR. With the help of existing reference
images, we can use RefSR-VAE network to super-resolve raw
LR images of different poses, illumination, ages and other
variations with good visual quality, while preserving true
identity. Our contributions include the following.
• We firstly propose a Single Image Super-Resolution
via conditional Variational AutoEncoder (SISR-VAE)
to use single image to reconstruct LR images. Experi-
ments show that proposed SISR-VAE can provide good
and robust SR performance in different conditions. This
good performance proves that the proposed VAE model
can achieve good performance comparable to other
state-of-the-art face SR algorithms.

• After showing the potential of VAE for face SR, we fur-
ther propose a Reference based face SR via conditional
Variational AutoEncoder (RefSR-VAE) to resolve face
SR with large up-scaling factors. It includes three parts:
Ref-HR encoder, LR decoder and VGG feature extrac-
tor. The experiments show that RefSR-VAE can greatly
outperform all other state-of-the-art face SR algorithms
both qualitatively and quantitatively.

• Finally, we will introduce a new Reference based
(RefSR-Face) dataset for the SR of face images for
training and testing. And then we conducted both quan-
titative and qualitative evaluations to measure the face
SR. By comparing with the state-of-the-art SR algo-
rithms, our proposed approaches can achieve superior
performance.

Fig. 1 shows our experimental results for comparison
between SISR and RefSR. The SISR results are obtained by
using recent state-of-the-art face SR approach FSRNet [35],
and RefSR results are obtained by using our proposed
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FIGURE 1. Comparison between SISR and RefSR.

FIGURE 2. Face SR comparison between perception and distortion.

RefSR-VAE. It can be seen that using our proposed approach
can achieve superior face SR performance. In Section II,
we will give detailed analysis and investigation of face SR.
In Section III, we will introduce the proposed RefSR-VAE
and RefSR-HAVE in details. In Section IV, we give experi-
mental results to analyze SR performance.

II. RELATED WORK
In this section, let us review the related works from the
following perspectives.

A. PHOTO-REALISTIC FACE SR
Photo-realistic face super-resolution focuses on super-
resolution with perceptual quality over distortion. The dif-
ferences between perception (no ground truth reference and
quantified by real or fake based on human opinions) and
distortion (requires ground truth reference for pixel based
measurement) can be explained in Fig. 2.

In Fig. 2, we show two different face SR results: GAN
and CNN. GAN represents the SR approach that uses GAN
network to minimize perception loss while CNN represents
the SR approach that uses the CNN network to minimize the
MSE loss. From PSNR results, we can see that results of
the CNN approach give lower distortion compared to GAN
results. However, from the visual quality, GAN gives sharper
reconstruction of facial features. This trade-off between per-
ception and distortion is discussed in [38]. It can be observed

from theMaximumAPosterior (MAP) problem of image SR.

Ŷ = argmax
Y

logP(X|Y)+ logP(Y) (1)

where Y is the HR image, Ŷ is the estimated SR image, X
is the LR image, logP(X|Y) represents the log-likelihood of
LR images given HR images and log P(Y) is the prior of HR
images that is used for optimization. Formally, we can turn
Eq. (1) making use of the MSE minimization,

Ŷ = argmin
Y
‖Y− CX‖2 + λ�(Y) (2)

where C is the mapping model, λ is the weighting parameter
and �(Y) is the regularization term. Or we can turn Eq. (1)
as divergence minimization,

Ŷ = argmin
Y

d [P(Y)− P(CX)]+ λ�P(Y) (3)

where d is the perceptual loss that measures the divergence
between distributions, e.g. the Kullback-Leibler (KL) diver-
gence, Total-Variation (TV) distance, etc. Besides these mea-
surements, GAN based image SR utilizes the discriminator
(D) and generator (G) to calculate the adversarial loss to
simulate the perceptual loss as

Ŷ = argmin
Y

N∑
n=1

log
[
1− DθD

(
GθG (X)

)]
(4)

where N is the batch size. DθD
(
GθG (X)

)
is the probability

that the SR image GθG (X) is a natural HR image. It can
be interpreted that the generator learns the ‘‘fake’’ sample
that cannot be distinguished from its ground truth reference
by the discriminator. The discriminator only looks for the
meaningful semantic similarity to guide the reconstruction of
the generator.

B. REFERENCE BASED IMAGE SUPER-RESOLUTION
Reference based image Super-Resolution (RefSR) (as shown
in Fig. 3) is benefited from the study of style transfer [26].
It is an artistic image generation model that can generate the
artificial images with the style of the reference image. It uses
the covariance of the feature maps of the target and reference
images as style reconstruction loss,

lφ,jstyle(Ŷ,Y) =
∥∥∥Gφj (Ŷ)− Gφj (Y)∥∥∥2F

where Gφj (Y)c,c′ =
1

CjHjWj

H∑
h=1

W∑
w=1

φj(Y)h,w,cφj(Y)h,w,c′

(5)

where φj(x) is the feature map at j-th layer of the network of
shape Cj × Hj × Wj. The Gram matrix Gφj (x) is calculated
as the auto-correlation of φj(Y) with size Cj × Cj. The first
example in Fig. 3 shows that the reference style of painting
‘‘Candy’’ is extracted and transferred by a feed-forward net-
work to the target image ‘‘Chicago’’.

Lately, [36] proposes the RefSR approach that utilizes the
style reconstruction loss to fuse the reference textures to the
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FIGURE 3. Style transfer and RefSR.

LR images to generate SR images with good visual quality.
As shown in Fig. 3, using a reference image that contains
similar contents super-resolve the LR image to obtain a SR
image with better quality. RefSR can use external references
found from adjacent frames in a video or the Internet to recon-
struct the missing fine details of LR images. The problem is
that RefSR still requires the user to find the reference image
that is similar to the LR images. The closer the reference
image we have, the better SR image we can get. RefSR has
another problem that for the same network, each reference
requires one training process. During testing, it means that for
each LR image we not only need to find the similar reference
image, we also have to train the network from scratch. This
online training process is very time consuming for real-time
application.

Face SR as a domain specific application of image SR,
it has one advantage that the faces share similar statistics.
Considering the potential application of face SR, each iden-
tity can have many facial images captured at different con-
ditions and stored in the dictionary. We can use RefSR for
face SR to improve SR performance based on the following
procedure: for each identity, we store one HR facial image
that captures the frontal face with clear facial features (no
need for alignment) as the Reference. Then we have LR and
HR image pairs of the same person captured at different
conditions. We form tripled Ref-LR-HR images for each
identity and train a model for super-resolution. With the help
of reference images, the target is to train one model for face
SR across different identity at different conditions so that we
can avoid online training process. During testing, we only
need to input LR images along with their corresponding
reference images to the model, and then we can generate the
SR image. In the following sections, we will introduce the
propose RefSR-VAE model.

III. THE PROPOSED WORK
In this sections, we will introduce the proposed RefSR-VAE.
As shown in Fig. 4, the proposed RefSR-VAE contains three
parts: i) Ref-HR encoder which learns the conditional gen-
erative model (approximates the posterior distribution of the
latent variables) between the reference and LR images, ii)
SR decoder which reconstructs the SR images from sam-
pled latent variables, and iii) VGG feature extractor which
calculates the perceptual loss using pretrained networks.

The proposed structure is built upon the idea of the con-
ditional variational autoencoder. We will first give a brief
review of the conditional variational autoencoder. Then we
will introduce the propose RefSR-VAE. Finally, wewill intro-
duce the new Reference based SR of face image (RefSR-
Face) dataset for training and testing.

A. CONDITIONAL VARIATIONAL AUTOENCODER
Let us formally introduce the Conditional Variational
Autoencoders for image super-resolution. We denote the LR
image by X∈ Rm×n×3, and the HR image by Y∈ Rαm×αn×3,
where α is the up-sampling factor and m, n is the dimension
of the image. Given a vector of z in a high-dimensional space
Z, the goal of the conditional variational autoencoders is to
learn the conditional generative model as,

P(Y|X) =
∫
P(Y|X, z)P(z|X)dz (6)

Generally, given arbitrary z sampled from some distribution,
it is almost not possible to obtain desired posterior P(Y|X).
We want to arrange the network to learn parameters θ to
maximize the data log likelihood Pθ (Y|X) as,

logPθ (Y |X ) ≥
∫

logP(Y |X , z)P(z|X )dz (7)

we can use Bayesian rule to rewrite Eq. (7) as

logPθ (Y|X) ≥
∫

logP(Y|X, z)P(z|X)dz

= EQφ (z|X)

[
log

Pθ (Y|X, z)Pθ (z|X)
Qφ(z|X,Y)

]
(8)

Note that the key of conditional variational autoencoders is
to learn the latent vector z first and then we sample from
z to find the posterior P(Y|X). We can use KL to represent
the divergence between predicted distributions Pθ (z|X) and
Qφ(z|X,Y). We have the following equation,

logPθ (Y|X) = EQφ (z|X)

[
log

Pθ (Y|X, z)Pθ (z|X)
Qφ(z|X,Y)

]
= EQφ (z|X)

[
logPθ (Y|X, z)

]
−KL

[
Qφ(z|X,Y)|Pθ (z|X)

]
(9)

where KL[p|q] represents the KL divergence. Eq. (9) can be
interpreted in the way that we use encoder to learn an approx-
imation to the posterior Qφ(z|X, Y) and then use decoder
to learn the tractable likelihood Pθ (Y|X, z). To apply the
mini-batch gradient optimization, we use the ‘‘reparameter-
ization trick’’ proposed in [40] and to use ε ∼N(0, I ) to
randomly sample from Qφ(z|X, Y) and then compute z =
µ(X,Y)+60.5(X,Y)∗ε. Hence, we can calculate the gradient
of Eq. (9) as,

1
N

∑
n

logPθ (Yn|Xn)

=
1
N

∑
n

EQφ (z|X)
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FIGURE 4. Complete structure of the proposed RefSR-VAE.

[
logPθ (Y|X, z = µ(Xn,Yn)+60.5(Xn,Yn)∗ε)

]
−KL

[
Qφ(z|Xn,Yn)|Pθ (z|Xn)

]
(10)

We assume that Pθ (z|X) is independent from training data
X so we randomly sample z from N (0, I ) for training. Hence,
at test time, we simply input z ∼ N (0, I ) into the decoder to
generate the new sample.

B. REFERENCE BASED FACE SR VIA CONDITIONAL
VARIATIONAL AUTOENCODER
To utilize conditional variational autoencoder for Reference
based face SR, we only need to change posterior from P(Y|X)
to P(R|X), where R is reference facial image of the same
identity. Then we can rewrite Eq. (10) as,

1
N

∑
n

logPθ (Yn|Rn,Xn)

=
1
N

∑
n

EQφ (z|RX)[
logPθ (R|X, z = µ(Rn,Yn)+60.5(Rn,Yn)∗ε)

]
−KL

[
Qφ(z|Rn,Xn)|Pθ (z|Rn,Xn)

]
(11)

The target is to use encoder to learn the latent relationship
between LR and reference images P(z|R, X). Hence, for
each identity, we map various LR facial images taken under
different conditions with the reference image to extract the
most representative attributes that are robust against different
conditions. This rigid mapping relationship is based on the
assumption that the images of the same person share the

same facial attributes so that this one-to-many correlation can
be converted to the latent space and sample a latent vector
for super-resolution. In order to perform super-resolution to
the LR images, the decoder can sample from the learned
generative model of P(z|R, X) to generate SR images.

The complete structure of the proposed RefSR-VAE is
shown in Fig. 4. The model includes four parts: Ref-LR
Encoder, Sampling Generator, SR Decoder and VGG feature
extractor. Ref-LR Encoder works as a generative model that
learns the latent variables z of the distribution of P(z|R,X).
The input is paired Bicubic up-sampled LR images and
their reference images. The output is the approximation
of mean µ(R,X). and variance 6(R,X) of training data
Qφ(z|R,X). To reduce the KL divergence betweenQφ(z|R,X)
and P(z|R,X), we assume that P(z|R,X) follows the Gaussian
distribution P(z) ∼ N (µN , 6N ) that is independent of the
training data. The computation of KL is,

LKL = log

∑
N∑
Q
+

∑
Q+(µQ − µN )

2

2
∑

p
(12)

Usually, we set µN = 0 for simplicity. Reference [41]
discusses about the choice of 6N for computing KL. A
smaller6N suggests a narrower searching space of z that can
generate sharper samples but bizarre pattern while a larger
6N generates blurry and plausible samples. To encourage
better SR results, we set σ = 0.1 experimentally.
The second part is the Sampling generator. It works as

sampling process of ‘‘reparameterization trick’’ for training.
Inmost of VAE basedworks [39]–[41], they use simple Gaus-
sian distribution ε ∼ N (0, I ) (as introduced in the previous
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subsection) to complete the training procedure as described
in Eq. (10). We propose to use sampling generator G(z) to
learn the subspace of latent variables for sampling. Details
of sampling generator G(z) are shown in Fig. 4. We design
two layers of fully connected layers followed by a normal-
ization layer to normalize the output to mean 0 and variance
σ as the sampling distribution. During training, instead of
using ε ∼ N (0, I ), we use G(z) to randomly sample from
‘‘encoder’’ distribution as G(z) = 6∗σ + µ (latent variables
learned from the Ref-LR images) and the SR decoder uses
the sampled distribution to reconstruct the SR image. After
training, we can directly sample from normal distribution
P(z)∼ N (µN , 6N ) to output the SR results.
Next, we arrange the SR Decoder to learn the recon-

struction process of SR. The basic module is Up-sampling
Back Projection (UBP) block. It is based on previous stud-
ies of back projection based residual network on image
SR [23]–[25]. Inside the UBP block, as shown in the right up
corner of Fig. 4, it is designed based on the concept of back
projection: to improve data fidelity of SR, we minimize the
loss between the original LR image and the down-sampled
SR image. The same idea used in UBP can be described
mathematically as,

yl=W1f (U ⊗ xl)+U ⊗ (W2xl−f (D⊗ f (U ⊗ xl))) (13)

where xl is the input (LR) feature maps of sizeM ×H ×W .
yl is the output (HR) feature maps of size M×2H×2W . M
is the number of feature maps and H and W are the sizes of
the feature map.W1 andW2 are the weighting processing that
use 1×1 convolutional layer. U and D are the convolutional
and deconvolutional layers that work as the up-sampling and
down-sampling processes. Each UBP block achieves 2× up-
sampling. Depends on different up-sampling factors, we can
stack different number of UBP blocks to achieve the goal.
In Fig. 4, we show the case for 8× face SR so that we stack
three UBP blocks. After the final UBP block, we add the
shortcut form the input Bicubic up-sampled LR image to form
the output of UBP blocks to obtain the final SR images Y’.
To guarantee the data fidelity, we calculate the pixel based
Mean Absolute Errors (MAE) as follows,

LMAE =
C∑
c=1

H∑
h=1

W∑
w=1

|Yc,h,w − Y′c,h,w| (14)

where C , H and W are the size of HR images.
Similar to GAN base image SR, to encourage the network

to generate photo-realistic images, we also arrange the VGG
feature extractor to learn the semantic similarity between SR
and HR images using distance in the deep feature space.
We can use pre-trained VGG19 [16] to extract the feature
maps for estimation. Both SR and HR images are sent to
VGG19 (fix the parameters) which outputs the corresponding
feature maps obtained by the 4th convolution layer before
the 5th ‘‘Maxpooling’’ layer. We define SR and HR feature
maps as854(Y’) and854(Y). Inspired by [27], we suggest to
extract the feature maps before the ‘‘ReLU’’ activation layer

FIGURE 5. Comparison between neural style transfer and conditional
variational autoencoder for RefSR.

FIGURE 6. Training and testing process of SISR-VAE and RefSR-VAE.

because we want to use all feature response to calculate the
feature loss as,

LVGG =
C∑
c=1

H∑
h=1

W∑
w=1

|8
c,h,w
54 (Y)−8c,h,w

54 (Y′)| (15)

Finally, we have the total loss of combination of pixel
based MAE loss LMAE, VGG feature loss LVGG and also KL
loss LKL (Eq. 12) to average the mini-batch gradients for
backpropagation.

C. COMPARISON BETWEEN VARIATIONAL
AUTOENCODERS AND NEURAL STYLE TRANSFER
After introducing RefSR-VAE, let us discuss the differences
between neural style transfer and our proposed variational
autoencoders for reference image SR. Let us use Fig. 5 to
simplify the structure of two different models.

The neural style transfer is built based on a feed-forward
network to transfer the style of the reference image to the
input LR image to aid the super-resolution process. As shown
in Fig. 5A, the neural style transfer usually includes two
subnetworks: generator and texture transfer. The generator
super-resolves LR images X to generate SR images Y’.
In order to improve the SR quality, we need to find an image
with contents similar to LR image as the reference image R.
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FIGURE 7. Samples of RefSR-Face dataset.

Then there is the texture transfer that calculates the feature
loss between R and Y’ using the style reconstruction loss
(introduced in Eq. (5)) and the content loss between Y’ and
Y. The content loss can be regarded loosely as a per-pixel
loss calculated at some extracted feature maps of the texture
transfer. Similarly, the style reconstruction loss can also be
calculated at extracted feature maps of the texture transfer.

For variational autoencoder, it contains an encoder,
a decoder and a VGG feature extractor. The encoder learns
the latent variable model of the correlation between reference
and LR images. Then the decoder samples from the encoded
latent space to super-resolve LR images. The losses include
three parts: KL divergence, content loss and feature loss.

Both neural style transfer and variational autoencoder can
be used for face SR. In essence, the former is still a discrim-
inative model to maximize posterior likelihood of LR super-
resolution, while the latter is a generative model to capture
the dependencies between reference and LR images. The
disadvantage of neural style transfer is that it requires online
training. Given a LR image, it needs to collect reference
patches across different scales to perform patch matching
and feature swapping. It is time consuming for real-time
application. For variational autoencoder, it has encoded the
dependencies between LR and its reference images during
training. During testing, we only need to sample from the
learned distribution for reconstruction.

Finally, not only we can use variational autoencoder for
RefSR, we can also use it for Single Image Super-Resolution
(SISR) which only uses LR images for SR. We call it
SISR-VAE in the following discussion.

The training and testing process of SISR-VAE and
RefSR-VAE are shown in Fig. 6. Both SISR-VAE and
RefSR-VAE canmake use of the same structure of variational
autoencoder introduced in Fig. 4. The only difference is
that the encoder of SISR-VAE learns latent distribution of
posterior P(Y|X). During testing, SISR-VAE only needs the
decoder to perform super-resolution.

D. REFERENCE BASED FACE SUPER-RESOLUTION
DATASET
Finally, we propose a dataset for face RefSR training and
testing. The target is to collect facial images across different

sex, races and so on. Each identity should include several
facial images with various poses, ages, emotions and so on.
In [42], authors of the paper proposed a VGGFace2 dataset
that contains images downloaded from Google Image Search
which has a large variation in pose, age, illumination, ethnic-
ity and profession. The testing dataset includes 500 identities
of annotated facial images with different variations.

To form the RefSR dataset, we split VGGFace2 testing
dataset to form the RefSR-Face training and testing dataset.
The process includes three steps: 1) for each identity, we can
select at least two images with size no smaller than 128∗128,
2) we crop the image and resize the images to 128×128 by
Bicubic using MATLAB and 3) we can manually select the
most representative images that contain frontal face for each
identity as the reference. Finally, we can then obtain a training
dataset containing 428 identities for development. Each iden-
tity includes 2∼30 images. And a testing dataset also contains
428 identities. Each identity includes 1∼4 images with very
different appearance to the reference image for evaluation.
Totally, the testing dataset has 560 images obtain the training
dataset has 7451 images.

To summarize this part of the discussion, let us show sev-
eral cases in RefSR-Face in Fig. 7. For each identity there is a
reference image and their HR images. The chosen reference
images do not need to be frontal faces, like group D, G and
K. For the same person, the chosen reference image can be
very different from other HR images. For example, we can
have dressing difference (A shows a woman with a hat and
J shows a woman with makeup), age difference (C shows
childhood of the woman and H shows a woman at different
ages) and difference in movie or TV pictures (F shows a
black-and-white film shot and L shows another movie shot).
Using RefSR-Face dataset, we can evaluate the performance
of face RefSR.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
Datasets:We conducted extensive experiments on three avail-
able datasets: Helen [43], CelebA [44] and our proposed
RefSR-Face. We coarsely cropped the images according to
their face regions and resized to 128×128×3 without any
pre-alignment operation. Among all face SR approaches,
Helen dataset is commonly used for evaluation. We followed
the same procedure for comparison.We selected 2330 images
for training and the rest 50 images for testing. We call the
Helen testing images as Helen-50 for clarity. CelebA dataset
is another popular data for comparison. It is a larger dataset
that contains facial images with more variations. We used
the first 18,000 images for training and the rest 1000 images
for testing. We call the CelebA testing images as CelebA-
1000. For RefSR-Face, we used 7451 images for training and
the rest 560 images for testing. Depending on whether using
reference images or not, RefSR-Face has also been used for
SISR and RefSR evaluation.

We have only focused on 8× up-sampling. During the
training stage, the LR images were down-sampled from HR
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images by using Bicubic in MATLAB and then we used Bicu-
bic again as an initial up-sampling operation to up-sample
LR images to the same size as the HR images. The initial
up-sampled LR and HR images were formed as image pairs
for training. The same as most image SR approaches, we
enlarged the training images by image augmentation, includ-
ing flipping and rotation. Eventually, wewere able to generate
around 100,000 training data.

Most of our experiments were conducted for 8× face SR.
Hence, we used 3 UBP blocks in SR Decoder for three
times of 2× up-sampling. Inside the UBP block, we used
Parametric ReLU (PReLU) for activation and 6×6 filter
with stride 2 for convolution and deconvolution. Pre-trained
VGG19 is provided by [16]. For implementation, we trained
our model with learning rate 0.0001 for all layers for a
total of 500,000 iterations. For optimization, we used Adam
with momentum to 0.9 and weight decay 0.0001. All exper-
iments were conducted using Caffe, MATLAB R2016b on a
NVIDIA GTX 1080Ti GPU.

Different settings and SR algorithms were evaluated in
terms of PSNR and SSIM. They are standard distortion based
SR estimation methods which describe the pixel based loss.
The same as most face SR algorithms, we converted RGB
images to YUV images and only used Y channel for calcu-
lation. We ignored 8 pixels at each boundary to avoid the
boundary effect.

B. ANALYSIS OF SINGLE IMAGE SUPER-RESOLUTION
Since RefSR for face SR is a new topic in computing
vision field, to the best of our investigation, there is no
related approaches for comparison. Let us firstly see the
efficiency of our proposed SISR-VAE introduced in the
previous section. We only have the LR images for SR.
In our investigation, we compared SISR-VAE with many
state-of-the-art face SR algorithms, including Local Linear
Embedding (LLE) [2], Locality constrained Representation
(LcR) [7], Super-Resolution via Convolutional Neural Net-
work (SRCNN) [18], Very Deep convolution network for
image Super-Resolution(VDSR) [19], Super-Resolution via
ResNet (SRResNet) [21], Global Local face SR Network
(GLN) [30], Ultra-Resolving face images by Discrimina-
tive Generative Networks (UR-DGN) [28] and the recent
superior approach Face Super-Resolution with Facial Priors
(FSRNet) [35]. Note also that results of SRResNet were
provided by the authors of FSRNet [35]. Except this, all other
approaches were reimplemented based on the codes provided
by the respective authors.

TABLE 1 shows the SR results on Helen-50 and
CelebA-1000 datasets. We can see that our SISR-VAE
approach can achieve comparable PSNR and SSIM similar
to FSRNet, and much higher performance compared to other
state-of-the-art algorithms. Note that FSRGAN and FSRNet
are the results from [35]. FSRGAN is the GAN version of
FSRNet that was trained based on perception loss rather than
pixel based MSE loss. FSRGAN can generate images with
better visual quality but sacrificing data fidelity.

TABLE 1. State-of-the-art SR algorithms comparison on PSNR and SSIM
(red indicates the best and blue is the second best results).

In general, our SISR-VAE can achieve the second best per-
formance among different SR algorithms. It is understandable
because SRCNN, VDSR and SRResNet were trained on gen-
eral image set for general image SR. They may not perform
well on face SR. GLN and UR-DGN can perform well but
the results are not as good as those in FSRNet or SISR-VAE
because they can be considered as early investigation of face
SR using deep learning approaches. The most competitive
approaches are FSRNet and FSRGAN that were proposed
recently. In the following discussion, we try to focus more
on them for comparison. It is noticeable that our SISR-VAE
can achieve similar PSNR and SSIM performance as FSRNet
on Helen-50 but it is not very impressive on CelebA-1000.
Our explanation is that FSRNet (and FSRGAN)was proposed
based on using facial prior information to guide face SR. That
is, the model is trained by using both LR images and their
priors. The priors include facial parsing and landmark. The
authors first prepared these priors alongwith the facial images
and then trained the model to minimizing both pixel based
MSE loss and prior losses. Different from Helen dataset,
CelebA dataset does not have ground truth parsing maps
so the authors use GFC [45] to estimate the parsing map
as the pseudo ground truth for training. In order to obtain
the optimal performance, the authors separately used Helen
and CelebA datasets to train two different sets of models to
test on corresponding datasets. Hence, it could be the reason
why FSRNet can perform even better than Helen-50 for
CelebA-1000.
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TABLE 2. FSRNET and SISR-VAE comparison on RefSR-face dataset
(red indicates the best and blue is the second best results).

In order to verify the general performance of our proposed
SIS-VAE. We conducted further experiments on the perfor-
mance on our proposed RefSR-Face dataset for SISR. Note
that RefSR-Face is very different from Helen and CelebA
because it contains images with more difficult conditions.
It can be used to verify the generalization ability of differ-
ent face SR approaches. To make the comparison, we call
the SISR-VAE in TABLE 1 as SISR-VAE(independent).
It trained on the same datasets (Helen and CelebA)
as FSRNet and FSRGAN. We also trained another
SISR-VAE(dependent) model that used RefSR-Face training
set for comparison.We have the results as shown in TABLE 2.

From TABLE 2, we can see that SISR-VAE(dependent)
achieves the best PSNR and SSIM. Compared to FSRNet,
it can improve nearly 3 dB PSNR and 0.1 SSIM. Even
SISR-VAE(independent) can also outperform FSRNet about
0.5 dB in PSNR and 0.02 in SSIM. Comparing SISR-
VAE(dependent) and SISR-VAE(independent), it is obvious
that using RefSR-Face for training can achieve better perfor-
mance.

To further demonstrate the superior performance of our
proposed SISR-VAE, let us show some SR images for visual
comparison. In Fig. 8, we show SR results of Bicubic,
FSRNet, FSRGAN and SISR-VAE on Helen-50 and RefSR-
Face datasets. It can be see that using proposed SISR-VAE
can also achieve good visual quality comparable to FSRNet
or FSRGAN. Though FSRGAN can output much sharper
SR images compared to other approaches, it also predicts
wrong facial features that affect the data fidelity. For example,
the left eye of the man in the third row should be close
but FSRGAN predicts an open eye. FSRGAN also predicts
wrongly about the man in the fourth row that he does not wear
glass and has open eyes.

Furthermore, we also show several cases in RefSR-Face
to demonstrate the generality of proposed SISR-VAE over
FSRNet and FSRGAN.

From Fig. 9, we demonstrate different SR algorithms on
RefSR-Face testing set. It can be found that using FSR-
Net and FSRGAN fail to provide good face SR. The facial
features are distorted. Compared to the good SR results on
Helen-50 in Fig. 8, the reason that FSRGAN and FSRNet
fail to perform on RefSR-Face can be twofold: 1) RefSR-
Face contains more challenging facial images that Helen and
CelebA do not include. For instance, the last row of Fig. 9,

FIGURE 8. Visual comparison among different SR algorithms on
Helen-50 testing set.

FIGURE 9. Visual comparison among different SR algorithms on
RefSR-Face testing set.

the image contains a lady with a partial face of a man; and
2), FSRNet and FSRGAN trained on Helen and CelebA
datasets with corresponding facial priors. It could be easily to
encounter overfitting problem so that they can perform well
on facial images captured in the similar conditions. On the
other hand, using SISR-VAE(independent) can still generate
SR images with reasonable facial features. The SR visual
quality are more consistent from Helen-50 to RefSR-Face.
Furthermore, we also have SISR-VAE(dependent) trained on
RefSR-Face training set that performs better on the testing
set.

C. ANALYSIS OF REFERENCE BASED IMAGE
SUPER-RESOLUTION
After illustrating the efficiency of the proposed SISR-VAE,
we can formally demonstrate the performance of proposed
RefSR-VAE.
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FIGURE 10. Visual comparison among different SR algorithms.

RefSR-Facewas used to train our RefSR-VAEmodel intro-
duced in Fig. 4. During the training stage, we used image
triplets Ref-LR-HR to train the model. That is, for the same
person, we have one reference image and many different
HR images and their corresponding LR images (Reference
images share the same identities with different HR images but
with very different conditions). The Ref-LREncoder explores
the hidden latent variables across different Ref-LR image
pairs and the SR Decoder reconstructs LR images based on
the guidance of reference images to predict the corresponding
HR images. During testing, we input LR images and their
corresponding reference images for predicting the SR images.
We have obtained the SR performance in the following table.

In TABLE 3, we tested both SISR-VAE and RefSR-VAE
on RefSR-Face dataset. To fully explore the potential of
RefSR-VAE, we tested RefSR-VAE on three different con-
ditions. RefSR-VAE(reference) is the RefSR results that
uses the corresponding reference images to super-resolve
LR images. RefSR-VAE(Gaussian) is the RefSR results that
uses the random Gaussian noise with 0 mean and 1 vari-
ance as reference for SR. RefSR-VAE(LR) is the RefSR
results that uses LR images themselves as references for
SR. RefSR-VAE(reference) is the best results that used
reference images to aid LR facial image super-resolution.

Compared to SRCNN, FSRNet and FSRGAN, it can achieve
at least 3dB improvement in PSNR and 0.15 improve-
ment in SSIM. RefSR-VAE(reference) can also outperform
SISR-VAE about 0.15dB in PSNR and 0.04 in SSIM. RefSR-
VAE(LR) and RefSR-VAE(Gaussian) are alternative choices
when reference images are missing or we cannot ensure
the true identity of the LR facial images. They do not pro-
vide good quantitative performance but they are still worthy
further investigation. Note that we only used RefSR-Face
training set to train RefSR-VAE(reference) model. For test-
ing, depending upon different reference inputs (LR, Gaus-
sian noise and Reference images), we used the RefSR-VAE
testing model (as shown in Fig. 6B) to obtain correspond-
ing results of RefSR-VAE(LR), RefSR-VAE(Gaussian) and
RefSR-VAE(reference). We show the visualization of differ-
ent results in Fig. 10 to further demonstrate the effectiveness
of the proposed methods.

From Fig. 10, we show the results on facial images with
different conditions, including a poster picture (5th row),
makeup or movie picture (1st and last row), black&white
picture (3rd row) and so on. The reference images are also
very different from LR images to avoid any spatial similarity.
Compared with our proposed algorithms, both FSRNet and
FSRGAN fail to recover fine facial features because the facial
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TABLE 3. State-of-the-art SR algorithm comparison on RefSR-face
dataset.

images have different poses from the training images they
used in CelebA and Helen. It is interesting to find that RefSR-
VAE(LR) can also be able to reconstruct facial features well
even without the aid of reference images. It can be explained
that Ref-LR encoder is originally designed to extract the
compact model distribution of Ref-LR. When we input LR
images as reference, the input becomes LR-LR images with
same spatial correlation so that the LR facial edges are
multiplied by 2 time for reconstruction. From Fig. 10, we
can also observe that strong edges in LR images are further
enhanced without much distortion. However, compared to
RefSR-VAE(reference), fine details of facial features are still
missing.

D. ANALYSIS OF ROBUSTNESS OF FACE
SUPER-RESOLUTION
In practical applications, face SR needs to be robust enough
against various distortion and interference. A good face SR
model should be able to generate SR images with good qual-
ity. To test the robustness of face SR, we choose two ways of
distortions to conduct the experiments: noise and occlusion.

For image denoising, as studied in many research
works [46]–[47], researchers added white Gaussian noise
with different variances to simulate the real situation. Sim-
ilarly, we added random Gaussian noise N (0,0.05) to the LR
facial images, and then used the noisy LR images as inputs
to different face SR models to perform super-resolution. For
image occlusion, we randomly cropped out a 64×64 region
from LR facial images and filled it with random Gaussian
noise N (0,1). These occluded LR images were then applied
to different face SR models to perform super-resolution.

We first calculated the quantitative results as shown
TABLE 4. From the results of the table, it can see that
using proposed SISR-VAE and RefSR-VAE can achieve
better PSNR and SSIM on both denoising and occlusion.
In Fig. 11, we show two cases of SR results to show the visual
differences.

TABLE 4. PSNR and SSIM comparison among different face SR algorithms.

In Fig. 11, the first row shows the SR results generated
from original LR images obtained by different approaches.
The second and third rows are the SR results generated from
occluded and noisy LR images. Since all the approaches are
proposed to super-resolve LR images, if there are occlusions
in the images, they all fail to predict the occlusions. Still,
the advantages of our proposed SISR-VAE and RefSR-VAE
are not affected by the occlusions. The unoccluded parts are
still able to be reconstructed. On the other hand, FSRNet
and FSRGAN are affected by the existence of occlusions.
The unoccluded parts also become blurry and unclear. For
instance, image B of Fig. 11, the eyes can be preserved in
SISR-VAE and RefSR-VAE but distorted by FSRNet and
FSRGAN. For noisy situation, after adding the Gaussian
noise, both FSRNet and FSRGAN have global impacts that
the details cannot be reconstructed and even the color is
distorted. Our proposed approaches are still able to resist
the random noise and generate SR images with better visual
quality.

Furthermore, we also evaluated different approaches using
Labeled Faces in the Wild (LFW) [48] dataset. We choose it
because the images were collected from the web. They repre-
sent people in a wide variety of settings, poses, expressions
and lighting so it can be used for unconstrained face recogni-
tion. To perform face SR on this dataset, we randomly chose
200 images from the deep-funneled LFW dataset, for which
the images were roughly aligned by deep neural network.
We usedBicubic function inMATLAB to generate LR images
for estimation. We have the SR results in TABLE 5.

From TABLE 5, we can find that SRCNN, FSRNet and
FSRGAN fail to generate SR images with good PSNR and
SSIM. Since the LFW dataset does not have reference image
for each identity, we cannot perform RefSR-VAE for face
SR, we only used SISR-VAE to perform face SR. Generally,
SISR-VAE outperforms other approaches at least 3 dB in
PSNR and 0.12 in SSIM. It demonstrates the generalizability
of our proposed SISR-VAE. It can achieve robust SR perfor-
mance on different facial images.
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FIGURE 11. Visual comparison of denoising and occlusion.

TABLE 5. PSNR and SSIM evaluation on LFW dataset.

FIGURE 12. Visual comparison on LFW dataset.

In Fig. 12 we further show the visualization of different
SR algorithms on the LFW dataset. Similar to the previ-
ous experiments on noisy and occluded LR images, we can

observe the same problems on FSRNet and FSRGAN SR
results. The colors and features on SR images are severely
distorted. The reason is that LFW images are photos taken
from daily life or snapshot from magazines or books. The
images are filled with random noise and inference. FSRGAN
and FSRNet were built on the generative adversarial net-
work to learn the generation of photo-realistic images. The
vulnerability of GAN has been discussed in some research
works [49], [50]. Adversarial attack is one emerging topic of
GAN and researchers study different attacks to prevent the
collapse ofmodels. The possible explanation is that it is due to
insufficient model averaging and insufficient regularization
so that the generated images are easily affected by random
noise or some types of inference. However, as introduced in
Section III, our proposed SISR-VAEmakes use of the encoder
to statically learn the compact latent parameters of images
to get close to random Gaussian distribution. The random
sampling mechanism is embedded in the training process to
learn a robust decoder for image SR. Hence, SISR-VAE can
resist the random noise and output good SR results.

E. ANALYSIS OF FACE IDENTITY TRANSFER
Finally, we extend the study of RefSR to face transfer, which
we make use of proposed RefSR-VAE model to achieve the
goal of face identity transfer from one person to another. Face
generation or face attributemanipulation can be considered as
domain specific of image generation. The purpose of image
generation is to learn a parametric model of the training data.
A good generative model should be able to ‘‘understand’’ the
training data and give new samples that mix up various data
attributes.

Similarly, our proposed RefSR-VAE model can also be
used for style transfer. Generally, style transfer is HR-to-
HR translation to generate photo-realistic images. On the
other hand, our proposed RefSR-VAE not only transfers the
attributes of reference image to LR images, but also per-
form super-resolution. We randomly selected several refer-
ence images and LR images from RefSR-Face dataset, and
used the trained RefSR-VAE model to perform style transfer.
Note that the RefSR-VAE is the same model as RefSR-
VAE(reference) used in the last part. We have the results
in Fig. 13.

In Fig. 13, we used 6 LR images and 6 corresponding
reference images to conducted the experiments. Each input
was a combination of one LR and one reference image so we
obtained 36 different SR results. The images on the diagonal
line are the SR results that used reference images of same
identities. Hence, the images in red windows give the best
visual quality with sharp facial features. For the results on
the non-diagonal positions, they mix up the facial attributes
of LR and reference images. For example, Ref_A image is a
smiling woman with open mouth. All SR images are able to
catch this character even the people in the LR images (LR_D
and LR_F) closemouth. Though Ref_B andRef_C are photos
of women. The model can smoothly transfer female features
of the reference images into the images of men (LR_D,
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FIGURE 13. Visual comparison of facial attributes transfer.

LR_E and LR_F). On contrary, Ref_D, Ref_E and Ref_F
are photos of men. The model can masculinize the photos
of women (LR_A, LR_B and LR_C) to show corresponding
male features of the references. Especially, Ref_F is a man
with mustache, mustache-like feature can be converted to SR
images.

In summary, we conducted several experiments to compare
our proposed SISR-VAE and RefSR-VAE with other face SR
algorithms on different dataset. From both quantitative and
qualitative evaluation, our proposed approaches can achieve
good SR results.

V. CONCLUSION
We have proposed a Reference based face SR via condi-
tional Variational AutoEncoder (RefSR-VAE) and a Single
Image Super-Resolution via conditional Variational AutoEn-
coder (SISR-VAE) for face super-resolution. Our proposed
works are built on the variational autoencoder to learn the
generative model of joint distribution of low-resolution and
high-resolution (or reference) images for image reconstruc-
tion. The encoder is able to extract the latent parameters from
the training images so that the decoder can generate new
data point from learned distribution. Due to the large amount
of information loss in 8× SR, we propose the Reference
based face SR (RefSR) to extract useful information from the

reference images to assist getting quality SR. We also come
up with a novel reference based SR face dataset (RefSR-
Face) to develop and test the RefSR. From a large number
of experiments and the comparison with the state-of-the-art
SR algorithms on different face datasets, it is found that our
proposed approaches are effective and robust. Especially, our
RefSR-VAE is able to provide good SR images with the
highest PSNR and sharp photo-realistic quality. Furthermore,
we also discover the potential use of RefSR-VAE for facial
style transfer that can be used for facial expression transfer
and facial image generation.

In the future work, researchers may focus on robust vari-
ational autoencoders for better face SR. There are many
regularization-based methods and structured priors that can
be embedded into variational autoencoders to learn con-
strained latent representations to generate sharp images. With
the ability of generative learning of VAE models, facial
image generation and completion become even a more inter-
esting topic. This is really a fruitful direction for future
research.
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