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ABSTRACT Computational verb (CV) theory is a relatively new research field in mathematics and has been
applied to many different fields. In the field of pattern recognition, the CV-based rule induction algorithm
can generate some simple rules with CVs and adverbs by linguistically interpretable forms. In this paper,
we present an interpretable rule extraction framework based on CV rule theory for the classification of
microarray data. In contrast to the existing rule-based methods, the CV method enables to explicitly express
the relationships of the genes based on somemathematical templates and hence enhance the understanding on
the data results. Stay is a typical verb used in the CV to describe the trend of changes. In our algorithm, Stay is
applied to generate CVR by a gene pair, named SCVR. The corresponding evolving and similarity functions
for calculating the difference between SCVR rules are also presented to illustrate this process. Similar
to other rule-based methods, the SCVR can achieve significant gene selection and cancer classification
task concurrently. To evaluate the performance of our proposed approach, we conduct the experiments on
several binary class and multiclass microarray datasets. Experiments confirm that the proposed method can
outperform many rule-based classiers with the fusion of five rules.

INDEX TERMS Computational verb, computational verb rules, stay, microarray Data, classifier ensemble.

I. INTRODUCTION
With the rapid development of bioinformatics technology,
it is possible to diagnose some types of cancers directly
using microarray technique [1]. To date, there has been a
large number of machine learning methods introduced to ana-
lyze microarray data. With the aid of these methods, we are
provided with an insight of the molecular variations among
tumors and normal tissues [2]. In order to further explore gene
functions and regulation relationships, researchers are keen to
utilize miningmethodologies to produce both accurate results
and comprehensive knowledge in the process of microarray
data analysis [3]. It seems to be a reasonable request for
models to inhere good interpretability. However, for some of
the classifiers, such as Support Vector Machines (SVM) and
neural networks, it is hard for the researches to understand

The associate editor coordinating the review of this manuscript and
approving it for publication was Ying Song.

or explain the trained models due to their complex struc-
tures. On the contrary, rule-based classifiers are typical inter-
pretable models, and they could offer the researchers a way to
master the roles of different genes in different cancer types.

An important and tricky property of microarray data is that
the number of samples is much smaller than that of genes.
At the same time, a large proportion of genes are irrelevant
or redundant to cancer diagnosis [4]. Therefore, an effective
solution for this problem is the application of feature selection
method, as it can filter those biologically insignificant genes
to improve the diagnosis accuracy [5], [6].

Another issue in the analysis of microarray is the inter-
pretability of models. Specifically, in the literature, there are
plenty of methods developed to extract rules from microarray
data. For instance, the fuzzy-rule based models are designed
to generate adjectives (i.e., low, high, etc.) in microarray
classification. Wang and Palade [7] and Ho [8] introduced a
framework to learn fuzzy rules based on genetic algorithms.
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Besides, different rule-induction and filtering strategies are
proposed to generate a small-scale fuzzy classifier using a
grid partition of feature space, taking the form of if (Gene 1,
High) then Class 1 [9], [10]. Observe that, biological knowl-
edge can be incorporated into the algorithm by defining the
forms and parameters of fuzzy membership functions. Nev-
ertheless, these type of rules might not be able to provide a
global view for a data set, as they often focus on capturing the
information from local data [11].

In contrast, some algorithms are able to extract impor-
tant information from the entire dataset. Hence, the gen-
eralization ability of these rules is higher than the fuzzy
rules, and produces better results. An example is k–Top
Scoring Pairs (TSP) [12], a classical method that compares
the gene pairs and utilizes significant discriminative infor-
mation contained in the data. It focuses on ‘marker gene
pairs’, whose expression levels across the N samples are
quite different in two classes. These rules take the form
of: IF Gene 1> Gene 2 THEN Class 1; ELSE Class 2.
On the other hand, some researchers also designed evolu-
tionary based rule generation systems, which are applicable
on an entire data set. A typical system is implemented with
genetic programming (GP), designed by exploiting multiple
logical and mathematical operators in individual’s structure.
The final GP individuals can be molded to the rules like: if
max(Gene1,Gene2)>1.9190 then Class 1 [13]. These algo-
rithms use lesser rules to draw the final decision, as each rule
is able to cover the whole data set.

The advancement and development of computer technol-
ogy enable the researches to have more and better options
in interpreting microarray data from different perspectives
and aspects [14]. In this paper, we propose a Computational
Verb (CV) based method to generate CV rules (CVR) for
microarray data analysis. The CV theory was first introduced
by Tao Yang. Due to its high discriminating power, CV theory
has also found its way in a lot of scientific fields, such
as linguistics, biology, psychology, physics and computer
sciences [15]. One of the applications of CV is to construct
a complete artificial language into machines, whereas CVR
is a further step of such applications. CVR takes the forms
of some simple rules consisting of verbs and adverbs. It can
describe the changes or status by summarizing interaction
terms and constants into linguistically interpretable forms.
In [16], the author suggested some predefined formulas to
be used as verb or adverb templates when modeling different
CVRs.

In this paper, we apply the verb Stay based CVR to tackle
microarray data analysis problem, named as SCVR for short.
Stay describes the change trends of a sample. Here, we apply
this verb to extract gene pairs in which the change of a
gene expression value has valuable effects to the other one.
As such, SCVR could further enhance the bio-medical sci-
entists to understand the relationships among the microarray
data.

The framework of CVR, including the evolving func-
tion and the similarity function, is presented in Section 2.

There are many algorithms proposed to handle the issue
of multi-class microarray data classification because in this
case, the sample size would be quite different in differ-
ent classes. Such a class imbalance problem makes the
multi-class classification task much harder than for the binary
class problem [17]. Based on this consideration, our algo-
rithm is also evaluated based on some multi-class microarray
datasets.

II. INTRODUCTION TO COMPUTATIONAL VERB
Computational Verb (CV) is an essential element widely used
in artificial intelligence and expert system. It facilitates in
solving engineering problems by converting different types
of natural words to mathematical formulas. The CV theory
was invented in 1997. Since then, the interest in researching
related to this area have been raised until recent [16]. CV has
been applied to many different fields successfully. For exam-
ple, the applications of CV to different kinds of control prob-
lems were studied on different occasions. It has been used to
model many different kinds of products, such as card coun-
ters, webcam barcode scanner, smart pornographic image
and video detection system [18]. It was also deployed in the
design of flame-detecting systems using CCTV signal [15].
Moreover, the mathematical concept and logic operations of
CV has been well studied. It is found that the difference and
relationships between CV and Fuzzy mathematics is, the for-
mer uses many different verbs in the statement while the latter
only uses verb BE. Furthermore, CV can be transformed to
Fuzzy mathematics by CV Collapses [16], [19].

There are limited explorations in the application of CV
in the bioinformatics field and very few works have been
published. To the best of our knowledge, there is only one
recent work that attempted to employ CV rule (CVR) based
method to analyze microarray data, which is the work of
Tong [20]. In his work, a computational verb rule is used to
compare the change of expression levels between a genes pair
to deal with a binary-class problem. The rules is expressed
as: if Gene i increases relative to Gene j, then class 1; if
Gene i decreases relative to Gene j, then class 2. This rule
can be applied to classify a sample based on expression
differential levels of a gene pair. Nevertheless, in our opinion,
the verbs (i.e., increase and decrease) may not be adequate
for describing the diversity of gene expression level, because
the gene expression data is not time-varying. Such rules
tend to be affected by the input sequence of the training
set, resulting inconsistent and unreliable performance of such
rules. Hence, the changes of the input sequence may lead to
different decisions and incurring poor results. For instance,
if we reverse the input sequence of training data, the rules
formed by verb should be increase instead of decrease, and
vice versa. In conclusion, such rules are not able to assure in
obtaining stable results.

In this paper, we further extend the exploration and inspec-
tion in CVR to discover more interesting content and provide
significant insights to bioinformatics field. Despite the usage
of action related verbs (i.e., increase and decrease), a more
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decent and favorable verb in describing the states to model
data is recommended, which is stay. Similar to Tong’s [17]
work, our rules are also based on a gene pair, however the
input sequence is not able to affect the results of our rules.
In addition, we utilize computational adverbs to make our
rules more knowledgeable and comprehensible..

A. THE DEFINITION OF COMPUTATIONAL VERB
Each computational verb can be represented as a 4-tuple
(v, T , 9, ε). Here v defines a verb (e.g. increase, stay).
(T,9, ε) refers to a dynamical system. In this system, T is the
life span [16], 9 denotes the state space of the system, and ε
represents the evolution function of the dynamical system.

ε : T×9 −→ 9 (1)

ε(0, x) = x, ε (t2, ε (t1, x)) = ε (t1 + t2, x) (2)

where (T, +) is a monoid, and x is the observation.
Verbs commonly used in CV are: become, stay,

increase/decrease. They can illustrate the changes in trend
within a period. Different verbs describes different levels of
the changes, so they require diverse CV templates. There
are also some computational adverbs, such as slowly, fast,
exploited to facilitate the verbs. A typical CV rule (CVR)
may contain a set of verbs and adverbs, often expressed in
the form of:

If XiAdxi ◦ Vxi AND XjAdxj ◦ Vxj THEN Y AdY ◦ VY

(3)

where adverb (Adxi) and verb (Vxi) describe an action
(Adxi◦Vxi) on feature Xi. Y is the target output affected by
the action AdY◦ VY. Note that each rule can comprise as
many verbs and adverbs as required. However, a typical rule
should not consist of more than two verbs for minimizing the
complexity and amplifying the efficiency of the algorithm.
The number of the features that are needed by a verb depend
on the definition of the verb. In normal cases, only one or two
features are attached to a verb.

B. THE CV TEMPLATES
In CV, there are many different template functions for verbs
and adverbs. A classical computational verb template is for-
mulated as:

V = w2t2 + w1t+ w0 (4)

In Equation (4), t represents a time variable. The starting
point is t = 0, and 1 t = 1 is set as time step. The values of
the parameters, w0, w1 and w2,are determined by a learning
algorithm automatically. Different verbs can be deployed to
construct a set of rules. For observations X1 and X2, let Y be
the expected output. Then a typical instance can be denoted
as:

IfX1slowly increase toVxl, and X2 fast become Vx2,

then YstayVY (5)

The words fast and slowly are computational adverbs,
which should be prescribed in the context. Furthermore,
Tao [16] demonstrated different templates recommendation
for adverbs. As different templates may lead to diverse
results, it is necessary to pay attention to the choice of tem-
plates for verbs and adverbs.

By taking the evolving process into consideration, a CV
can be written as:

Ynew = f (s(X,Vx),VY,Ycurrent) (6)

where s(X, Vx) is the similarity function, used to calculate
the diversity between X and Vx. The function f represents
a preset function, which acts an approach in order to update
Ynew, depending on the similarity between VY and Ycurrent.
So this formula illustrates the relationships among Ynew,
Ycurrent and VY.

C. THE EVOLVING FUNCTIONS FOR CV
For CV, an evolving function defines an orbit in a dynamical
system. It is capable to illustrate the change of an action
within a time span. An evolving function is produced based
on training data. An example is the verb increase (Vincrease),
which can be molded as a 4-tuple (increase; R+; R; ε). ε
is an evolving function, and its general form as shown in
Equation (7).

ε(t; x) = t+ x, t ∈ R+ (7)

In most case, R refers to the real number field, so there are
numerous possible orbits for such a simple dynamical system
with various initial states. As reported in [16], if x is set to 1,
the simplest evolving function for increase can be obtained
and expressed as:

εincrease = 1+ t; t ∈ R+ (8)

On the other hand, the representation of the evolving func-
tions is different for different verbs according to the definition
of verbs. For instance, the typical evolving function for verb
stay is formulated as:

εstay = |1+ t| < δ; t ∈ R+ (9)

where δ indicates the expected deviation.

D. THE SIMILARITY MEASUREMENT FUNCTION
The goal of similarity measurement function is to evaluate the
diversity between two verbs, so each similarity measurement
function is derived from their evolving functions. Concretely,
letE represent a set of evolving functions. Given two evolving
functions, ε1, ε2 ∈ E , for the two verbs, the similarity is com-
puted based on a similarity function s, s : E2

→ R+. Each
function takes value ranging in [0, 1], where 0 indicates com-
pletely different behaviors, and 1 refers to the same action.
In such case, the function should satisfy several conditions,
as listed below:

s(ε1, ε2) = s(ε2, ε1),∀ε1, ε2 ∈ E (10)
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s(ε1, ε1) = 1,∀ε1 ∈ E (11)

if ε1(t)ε(t) ≡ 0, ε1(t)+ ε2(t) ≡ 1,∀t ∈ T ,

then s(ε1, ε2) = 0 (12)

∀ε1, ε2, ε3 ∈ E, if ∀ε1 ≤ ε2 ≤ ε3

then s(ε1, ε2) ≤ s(ε1, ε3) and s(ε2, ε3) ≤ s(ε1, ε3) (13)

Conditions (10)-(13) reflect some properties of similarity
functions. Formula (10) indicates that each similarity func-
tion is symmetric, that is, the similarity degree from ε1 to ε2
is the same as that from ε2 to ε1.

Succinctly, the similarity function is adopted to distinguish
two states of a verb (i.e., Vx and X) or two verbs (i.e., V1
and V2). The definition of a verb similarity function is highly
dependable on each problem. Thus far, there are three types
of verb similarity functions based on different principles:
distance, trend and frequency. As trend and frequency based
similarity functions are mainly designed for time serials anal-
ysis, in this work, only the distance based similarity function
is deployed to check the distance between two verbs based
on sd (as shown in Equation (14)) within the time interval
[0, T]. Concisely, in Equation (14), sd sums up the square of
point-by-point amplitude difference for ε1 and ε2 in [0, T].
The function g(x) maps the outputs within the range of [0, 1],
as shown in Equation (15).

sd (ε1, ε2) = g(
∑T

t=0
|ε1(t)− ε2(t)|2) (14)

g(x) =
2

1+ ex
(15)

E. CVR BASED CANCER CLASSIFICATION
With the representation of canonical form, the template func-
tion is can bemodeled to implicit equations and hencemaking
the learning process easier. Concisely, both the inputs and the
template functions can be expressed by using a computational
verb (v, R+, R, ε). Two genes are viewed as two tuples in
the timeline [0, T]. A computational verb rule is employed
to compare the variation of the expression levels between
them to handle a binary-class problem. As such, a sample is
distinguished based on the expression levels of two genes.
The similarity function is used to calculate the probability of
a sample falls into a certain class.

The computational verb stay is adopted to portray the states
to model the gene data. Such computational verb rules can be
expressed as:

If Gene i stay relatively inactive to Gene j, then class 1; (16)

If Gene i stay active to Gene j, then class 2; (17)

The rule proposed in [20] is based on the verb increase.
Unlike it, the verb stay used in our algorithm can describe
the accumulate effect among a dataset. Although both types
of rules are based on a gene pair, the rules based on increase
would be affected by the input sequence, while ours is inde-
pendent of it. And it is key to the application of CVR to
such a classification task. The usage of the words active and
inactive are utilized to describe the gene expression status.

This makes our rules are more illustrative and meaningful to
the researchers to interpret the results.

Basically, the verb used in the SCVR algorithm is referred
to the template suggested in [16]. The similarity of each
rule is quantified between the input and the antecedents of
these rules. The final decisions are drawn on the basis of the
similarity of the rules’ output.

It is assumed that stay active is mathematically formulated
as V1i/V1j, and stay inactive is represented by V2i/V2j for the
gene i/j. The expression level of gene i/j for sample x is
expressed using xi/xj. Assume n samples are contained in a
dataset, and S1 and S2 represent the results of the antecedents
of the rules defined in Equation (16) and (17), respectively.
Then, S1 and S2 can be computed by combining the dis-
tance based similarity function, as shown in Equations (18)
and (19), respectively.

S1 = sd1(V1i,V1j) = g[
∑

n
(k1(|xi − Gi1| − σ1)

− (
∣∣xj − Gj1∣∣− σ2))2]

= g[
∑

n
(k1(|xi − Gi1| −

∣∣xj − Gj1∣∣− w1))2] (18)

S2 = sd2(V2i,V2j) = g[
∑

n
(k2(|xi − Gi2| − σ3)

− (
∣∣xj − Gj2∣∣− σ4))2]

= g[
∑

n
(k2 |xi − Gi2| −

∣∣xj − Gj2∣∣− w2)2] (19)

where σ1,σ2,σ3 and σ1 are the parameters used to adjust the
rules to better fit the data distribution. Moreover, two new
parameters (i.e., w1 and w2) are introduced to simplify the
computational process, where w1 = k1 × σ1 + σ2 and w2 =

k2 × σ3 + σ4.
The final decision for a sample is made by assigning the

sample to the class with higher probability. In our proposed
framework, it is observed that the larger gap between active
or inactive status in a gene pair, the better the generalizability
of the final output, and hence the more powerful SCVR
classifier.

The verb template defined in Equation (5) is exploited
to construct the rules along with the evolving function
(i.e., stay). To validate the status of a gene, the parameters
Gi1/Gj1 and Gi2/Gj2 are used to determine whether gene
i’s or j’s expression level is relatively high (i.e., active) or
low (i.e., inactive). The parameters are determined entirely
by the original data distribution. Here, a gene i’s average
expression values in two classes are calculated firstly. The
larger mean value is assigned toGi1 to represent the threshold
of active, and the smaller mean value is assigned to Gi2 as
inactive status. The difference between these values affects
the discriminative power of the final rules. It is obvious that
the performance of final rules relies on the differentiation of
the active/ inactive comparison levels in the selected gene
pair. The larger difference between two statuses in a gene pair,
the higher generalization ability of the produced SCVR.

In Equations (16) and (17), the words relatively to is used
to measure the degree of active/inactive. To better compare
the difference in two statuses, k1 and k2 in Equations (18)
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FIGURE 1. The workflow of the SCVR algorithm.

and (19) are used to implement the adverb relatively to in the
rules. Such relatively to relationship can be more if k1 or k2
is larger than 1, and less otherwise. As such, a rule is capable
to provide a more accurate and worthwhile comparison for
a gene pair. The rule is written as: If Gene i stay more active
compared withGene j, then class 1. Next, the gradient descent
methodology is adopted to optimize these four parameters,
k1/k2 and W1/W2. In this way, the SCVR algorithm can be
optimized to make rules matching the training data better.

To summarize, the workflow of algorithm SCVR is shown
in Figure 1. Step 2 to step 4 attempt to remove redundant
and meaningless genes, then quickly match the dominant
and remarkable genes to construct gene pairs with a greedy
approach. Next, in step 5, the gene pairs are combined to
produce SCVR rules. Finally, step 6 keeps the top N gene
pairs to form the final ensemble. This approach is capable to
generate rules based on non-overlapping gene pairs, so that
the diversity in this ensemble can be guaranteed. To validate
the effectiveness of our proposed method, N is set to 5 in our
experiment. Thus, 10 genes will be employed to produce the
results in all the experiments.

The optimization of parameters in step 5 is implemented
using a gradient descent algorithm. In details, let P represents
four parameters (i.e., k1, k2, W1, W2). Let Fi represent the
feature vector for sample xi, and its label is li. The probability
of sample xi belonging to class 1/2 can be calculated by
Equations (18) and (19):

p(l = 1|x,P) = S1/(S1 + S2) (20)

p(l = 2|x,P) = S2/(S1 + S2) (21)

The parameter vector P can be optimized based on the
maximizing likelihood. The loss function takes the form of
negative log of likelihood P, as shown in Equations (22).

l(P) = −log
n∏
i=1

p(yi|xi,P)

= − log
n∏
i=1

(
s1i

s1i + s2i
)yi (1−

s1i
s1i + s2i

)1−yi

= −

∑n

i=1
(yi log(

s1i
s1i + s2i

)

+ (1− yi) log(1−
s1i

s1i + s2i
)) (22)

By taking the partial derivative with respect to Pi,
Equation (22) turns to:

∂

∂Pi
l(P) = −

∑n

i=1
(yi(

s1i + s2i
s1i

)

− (1− yi)
s1i + s2i
s1i

))
∂

∂Pi
(

s1i
s1i + s2i

) (23)

The result of Equation (23) is closely related with the
definition of similarity function. To simplify our discussion,
gradient descent is deployed to optimize parameters. That is,
Pi is updated by:

P
′

i = Pi − α
∂

∂Pi
l(P) (24)

III. RESULTS AND DISCUSSION
A. THE SETTINGS OF EXPERIMENTS
The experiments are conducted on five binary class and six
multiclass microarray datasets. The details of these datasets,
including the number of the genes and the number of sam-
ples, are tabulated in Table 1 and Table 2. All the samples
in the datasets are utilized in the experiments. To avoid
data dependent issue in the classification process, all the
samples are assigned to either the training or testing sets.
Following the steps implemented in [12], the datasets are
undergoing pre-process stage before applying our proposed
method. Concretely, all the raw data are first converted to
natural logarithmic values, then each sample is normalized
to zero mean and unit variance for standardization and to
facilitate the subsequent classification process. In addition to
the original partition for the binary class task, each dataset is
reshuffled with 9 randomizations. Note that, each randomiza-
tion comprises the same sample distribution in each class of
the original training and testing sets.

In all the experiments, classifiers are constructed solely
dependent on the training samples. Then the classification
results are predicted using the independent testing set. The
data normalization and the feature selection operations are
applied in all the classifiers. Naturally, all the classifiers will
be having the same suppressed subset of features in certain
training and testing datasets.
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TABLE 1. Five Binary class datasets Deployed in this study.

TABLE 2. Six Multiclass datasets deployed in this study.

Decision tree is a common rule-based learner due to
its robustness against noise, ease in generating rules and
impressive computational simplicity and efficiency. As such,
we decide to compare our proposed algorithm performance to
decision tree and some other well-known tree based methods,
such as RF and Rotation Forest. The implementations in
scikit-learn library are exploited [29] for decision tree (DT)
and RF (RF). For Rotation Forest, an improved Rotation
Forest algorithm, named Hybrid Extreme Rotation Forest
(HERF) [30], is employed. The parameters of the classifiers
are set to default values, accordingly. And SCVR is imple-
mented on Python 2.7 platform.

In our algorithm, the top five CV rules are considered
to generate outputs for each two-class problem. As such,
the algorithm is treated as a small-size ensemble classifier.
Nevertheless, since there are only ten genes used, the scale
of the ensemble CV rules is smaller even when comparing
with using decision trees. Note that, there will be no duplicate
genes occurred in constructing the rules. Thus, the diversity
of the final ensemble can be assured.

To validate the effectiveness of the proposed framework,
different measures are employed, following the recommen-
dation in [31]. Specifically, classification accuracy denotes
the percentage of correctly classified samples. Furthermore,
to tackle the imbalance data distribution, F-score and MCC
(Mathews Correlation Coefficient) are used to measure the
recognition performance of the proposed method. Recall and
precision are the elements used in calculating F-score, where
recall (exactness) is the ratio of the relevant information
extracted by the system to the total number of relevant records
in the database, and precision (completeness) is the measure
of how much information in the system is returned cor-
rectly. The equations of these three indicators are set out as
follows:

Precision =
tp

(tp+ fp)
(27)

Recall =
tp

(tp+ fn)
(28)

F− score =
2 ∗ Precision×Recall
(Precision+ Recall)

(29)

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(30)

MCC =
tp× tn− fp× fn

√
(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)

(31)

where tp, tn, fn and fp are true positive, true negative, false
negative and false positive, respectively. MCC was proposed
in [32], mainly used as a balanced measure even for classes
with very different sizes. MCC returns a value within
[−1, +1]. +1 represents a perfect prediction, and −1 shows
a total disagreement between prediction and observation,
while 0 refers to random prediction.

For a m-class classification problem, different class
labels are represented as 1, 2, . . . ,m. SCVR can only
solve binary-class problems by classifying the data into
Yes/ No. Hence, we consider to treat a multiclass problem
with two commonly used decomposition methods: One vs.
One (OVO) and One vs. Rest (OVR). In this way, we can
safely handle a multiclass problem by using SCVR as base
learners. To establish fair comparison among the experiments
carried out in different parameter settings, the classifiers such
as decision tree, RF and Rotation Forest methods are also
used as binary classifiers, fusedwith OVO andOVRmethods.

For the multiclass problems, experiments are performed
entirely on the original splits. This is because both the RF and
HERF are based on random division on the sample sets and
both of the classifiers execute ten times with random seeds.
Therefore, the average performance can be used in describing
the generalization ability.

Precisionµ =

∑c
i=1 tpi∑c

i=1 (tpi + fpi)
(32)

Recallµ =

∑c
i=1 tpi∑c

i=1 (tpi + fni)
(33)

Fscoreµ =
(β2 + 1)PrecisionµRecallµ
β2Precisionµ + Recallµ

(34)

AAcµ =

∑c
i=1

(tpi+tni)
(tpi+tni+fpi+fni)

c
(35)

tk =
∑c

i=1
Cik (36)

pk =
∑c

i=1
Cki (37)

c =
∑c

k=1
Ckk (38)

s =
∑c

i=1

∑c

j=1
Cij (39)

MCC =
c× s−

∑c
k=1 pk × tk√

(s2 −
∑c

k=1 p
2
k )× (s2 −

∑c
k=1 t

2
k )

(40)

As mentioned earlier, the two performance measurements,
F-scoreµ and Average Accuracy (AAc for short), are utilized
for results comparisons. Concisely, assume that there are c
classes in a dataset, and these two measurements can be com-

VOLUME 7, 2019 103315



K.-H. Liu et al.: Microarray Data Classification Based on CV

TABLE 3. Experimental results for binary class datasets.

puted by applying the Equations (32-35). Unlike the accuracy
measurement,AAc denotes the average per-class performance
of a classifier. For example, if a classifier fails to recognize
samples in a hard class, it would be not able to attain high
scores in AAc. F-scoreµ is a measurement that combines
the scores from both the precision and recall among all the
classes. To obtain a balance between precision and recall, β
is set to 1 in the Equation (34).

Equation (36-39) defines some intermediate variables,
where Cij the elements in the i-th row and j-th column in
the confusion matrix. So tk represents the times that class k
occurs; pk represents the times that k is predicted; c represents
the total number of samples correctly predicted; s represents
the total number of samples. Equation (40) gives the MCC
measure in the case of multiclass. The minimum MCC value
changes within the range of [−1, 0], depending on the true
distribution; but the maximum value is always +1.

B. EXPERIMENTAL RESULTS FOR BINARY DATASETS
From Table 3, it is observed that SCVR can outperform in
four out of five datasets, and exhibits the best accuracy in
three out of five datasets. Hence, the effectiveness of SCVR
algorithm is confirmed in these experiments. Additionally,
it completely beats DT and RF in these experiments by
achieving higher F-score andMCC indices. It is demonstrated
that our SCVR algorithm has the capability to overcome the
sample-imbalanced problem by generating the best overall
average F-score and MCC scores.

The ability of the generalization of SCVR algorithm may
be further verified by the nonlinear projection function, g(x),
as stated in Equation (14). To demonstrate the reliability of
SCVR, the experiments based on the colon dataset can be
used as an example. Figure 2 illustrates the line chart of the
top five gene pairs selected for forming SCVR in a loop of

a 10-fold cross validation. Concisely, the gene indices are:
([492, 624], [285, 1041], [248, 1771], [1896, 1866], [896,
364]). Details about these genes are elaborated in Table 4.
Figure 2(a) and Figure 2(b) visualize the expression value
of five gene pair in both training and testing sets. Each sub-
figure represents a gene pair. That is, two coordinates in
x-axis, 1 and 2, represents two genes with the gene index
marked at the bottom. The y-axis value represents their
expression values. And each line stands for a sample, con-
necting the expression values of its gene pair. From Fig. 2,
it is discovered that the data distribution in different classes
is quite different. So a sample is relatively active in a class,
and inactive in another. The difference between two classes
reinforces the discriminative ability of SCVR.

In our algorithm, the genes are used to form different rules
in pairs. The set of the rule obtained by the gene pair [R87126,
T51250] can be molded to:

• If R87126is more active than T51250, then normal;
• If R87126 is more inactive than T51250, then colon
cancer;

Similar rules can also be extracted from other gene pairs.
Figure 3 show the training samples projection based on the
first gene pair, in which the blue cross and red o denote the
cancer and normal classes respectively. From Figure 3(a),
it can be seen that it is not possible to draw a linear decision
boundary in the original datasets because of the complex
class distributions. However, SCVR still can provide a good
classification result for the training samples by projecting the
original data to a linear subspace. By using the final output
of the trained SCVR, samples can be better classified with
only 3 samples misclassified based on a linear boundary line,
as shown in Figure 3(b). Furthermore, a perfect 100% correct
classification result can be obtained for the test samples only
in the condition of combining the decision of three SCVRs.
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FIGURE 2. The top five gene pairs selected for the colon dataset.

FIGURE 3. The projection of training samples for the colon dataset with the gene pair: R87126 and T51250.

From the results, is it observed that there is sig-
nificant difference within each gene pair. Concretely,
when a gene takes relatively high expression values,

another gene will take relative low values. The detailed
information of some of the selected genes is reported
in Table 4.
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The biological functions of the 5 gene pairs are checked
in NCBI. Among these genes, some of them were used to
build classification models in some previous publications.
For example, R87126, J05032 are identified in [29], [30] as
important genes in classifying the colon cancer from the
normal class. Some other genes are discovered to be tran-
scription factors or repressors, and a typical example is Pim-1
kinase (M27903), which has been proved to participate in
the important biological processes [31]. These genes may
be potentially important factors in the oncogenesis, which
require further investigation in the future.

C. EXPERIMENTAL RESULTS FOR VARYING ENSEMBLE
SIZE
More experiments are carried out to justify the performance
of SCVR algorithm by applying different ensemble sizes,
as shown in Figure 4. From these figures, it is observed that
the results are stable when increasing ensemble size on the
Lung, Singh and Ovarian datasets. Yet for the Colon datasets,
the results change a lot with the change of ensemble size.
With further exploration, it is revealed that most rules can
obtain around 95% accuracy on the Lung and the Ovarian
datasets, as shown in Figure 4(a). So the outputs of different
rules are quite similar, and the fusion of such accurate rules
can produce stable results. While in the Singh datasets, there
are some hard samples in test set, causing the top rules fail
to recognize them correctly. In both cases, the combination
of more rules does not benefit the results. For the Colon
dataset, the accuracy of one rule can reach 0.857, but drop
to 0.790 when adding two more rules. On the contrary,
in Figure 4(b), the F-score rises from 0.739 to 0.773 at the
same time. When increasing the ensemble size to 5, the
F-score continues to raise, and the accuracy begins to recover.
However, adding some more rules to the ensemble is not
able to improve the F-score anymore. The reason being is
that the rules with lower ranked are not as accurate as those
added to the ensemble formerly, and add more rules may
even deteriorate the performance of SCVR. In general, from
the results, it is concluded that the fusion of five rules can
produce satisfactory results, but it is not necessary to enlarge
the ensemble scale. Hence, the ensemble size is set to 5 as a
trade-off to filter inaccurate rules.

D. EXPERIMENTAL RESULTS FOR MULTICLASS DATASETS
The results based on multiclass datasets are listed in Table 5,
in which it can be seen that SCVR based classification results
also take advantages in most cases for the multiclass problem
from Table 4. In considering F-score, AAC and MCC results,
OVR based SCVR outperforms other methods in three out
of six datasets, and is able to obtain the highest scores in
average performance. On the other hand, OVO based SCVR
exhibits promising results when tested in Leukemia1 dataset.
For other datasets, only RF outperforms in DLBCL dataset.
As a result, SCVR method can take obvious advantage with
a much smaller ensemble size compared to other classifiers.

FIGURE 4. The results of the changing ensemble size on different
datasets.

FIGURE 5. The heatmap of the selected gene pairs for the
Leukemia2 dataset.

It is observed that OVR based SCVR scheme achieves
100% accuracy in the Leukemia2 dataset, so some inves-
tigation is conducted to further study the results. For such
a three-class problem, as five gene pairs are required for
each binary class problem, there are fifth gene pairs are
required for the construction of OVR scheme. Figure 5
illustrates the 15 gene pairs used in this scheme. Three
classes in Leukumia2 are divided by two red lines.
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TABLE 4. The ten genes selected by SCVR.

TABLE 5. Experimental results for multiclass datasets.

The results can verify the success of our algorithm
because the gene expression levels of each of the five
gene pairs are quite different in each binary class case.
Such results could also become the reference for clinical
treatment.

The 30 selected genes are reported in Table 6, along
with their names and description. It is found that all of
the selected genes are well studied by other researchers.
For example, MAPKAPK3 was demonstrated to play an
important role in transferring the aberrant signaling from
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TABLE 6. The selected 15 gene pairs for the leukemia2 dataset using ovsr.

a mutant KIT receptor, causing loss of polycomb complex
association from PAX5 chromatin [33]. Some studies demon-
strated the importance of MZF1 in high-throughput mam-
malian transcription factor interaction. A typical example

is that a potential MIXL1-Tbox-MZF1 contains multipro-
tein complex is of great possibility to mediate transcrip-
tional regulation of c-REL in AML [34]. Besides, EPHB6,
aMetastasis Suppressor, andMutations of the EPHB6Recep-
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FIGURE 6. The comparison results among algorithms based on the Nemenyi test.

tor Tyrosine Kinase may be a key factor in the induction
of a Pro-Metastatic Phenotype Cancer [35]. Furthermore,
a typical leukemia-related gene, named TJP1, was suggested
to be an essential role establishing the podocyte filtration
barrier. The suppression of TJP1 would lead to glomerular
disorders [36]. Some published works discovered the hyper-
methylated status of TJP1 promoter region in newly diag-
nosed acute leukemia, which is correlated with the pathogen-
esis and progression of the disease [37]. Hence, TJP1 was
suggested as a clinical molecular marker of leukemia [38] .
Moreover, some other genes included in Table 5 are also
discovered to play pivotals role in clonal expansion of human
T-cell leukemia virus type 1 (HTLV-1)-infected cells, such as
FoxO, NCBP1 [40-41].

E. PERFORMANCE COMPARISONS USING HYPOTHESIS
TEST
The Friedman test and Nemenyi test [33] are applied to get a
deeper insight for performance comparisons, with the aim of

determining whether the performances of our algorithm’s is
different from other algorithms’.

Friedman test is a non-parametric statistical test [34],
based on the hypothesis that there is no significant difference
in the overall distribution of multiple pairs of algorithms’
mean ranks. The mean ranks for all results are calculated by
equation (41), where r ij is the rank of the j-th algorithm on the
i-th data set. k is the number of algorithms to be compared,
and M is the number of data sets.

rj =

∑M
i=1 r

i
j

M
,∀j ∈ [1, k] (41)

Then the Friedman statistic is computed by (42):

τχ2 =
12M

k(k + 1)

(∑k

i=1
r2i −

k (k + 1)2

4

)
(42)

As τχ2 was found to be too conservative, the improved
version [34] is given as formula (43):

τF =
(M − 1) τχ2

M (k − 1)− τχ2
(43)
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By setting the significance level α = 0.10, the critical value
can be obtained from [42]. For the results comparison on
Table 3, M = 6 and k = 4, the critical value is 6.4. Based
on equation (43), τF = 6.9 for F-score indices comparisons,
larger than 6.4, so the results are of significant difference on
the F-score indices. While for accuracy, τF = 4.95, there
is no significant difference. As F-score reveals the balance
of classification results among classes, the advantage of our
algorithm is to predict more balanced results.

For Table 5, M = 6 and k = 8 because OVO and OVR
based results are compared at the same time. The critical
value is 11.67 in this case. As τF = 15.51 for F-score
comparisons, τF = 14.04 for accuracy comparisons, there
are significant differences among the results of different
algorithms when comparing both indices among different
algorithms. So for the multiclass problem in our experiment,
we can safely rejected the original hypothesis.

Nemenyi test defines the critical difference (CD) value
for that two methods are significantly different with certain
confidence (1-γ ), as calculated by equation (44)

CD = qγ

√
k(k + 1)

6M
(44)

γ is set as 0.1, meaning that the confidence interval is 90%.
So qγ = 3.11, CD = 2.32 for Table 3, and qγ = 3.53,
CD = 4.99 for Table 5. The results of the post-hoc test for
Table 3 and 5 are shown in Figure.6, where the mean rank
of each algorithm is marked by a dot, and the horizontal
bar across each dot shows the range of the Nemenyi value.
Then two methods are significantly different when there is
no overlap between their horizontal bars.

From Fig.6, it is observed that SCVR and OVR based
SCVR can get the best mean ranks in two tables. It is inter-
esting to find that OVO based SCVR perform slightly worse
than OVO based RF and HERF, and ranked as the forth place.
The reason may lie in that in the case of OVO, the small
sample size problemmakes SCVR to suffer the undertraining
problem. While this problem is alleviated with RF and HERF
because they can learn from diverse feature subspace to build
ensemble models. That is, the advantage of both RF and
HERF are based on the deployment of more classifiers.

As OVR based SCVR can achieve the best performance
with the most compact ensemble size, it can be concluded
that SCVR can handle the class imbalance problem well
by drawing discriminate rules. Furthermore, the overlapping
among results of diverse algorithms and SCVR is not large,
so the mean rank results confirm that SCVR can outperform
other algorithms, especially the OVR based RF and DT.

IV. CONCLUSIONS
In conclusion, this paper proposes a computational verb rule
(CVR) based algorithm to learn and analyses microarray
datasets by providing the verb Stay based rules (SCVR).
Our rules extract the status of data using the combination
of linguistical verbs and adverbs. In this way, the rules can
produce interpretable results to biomedical scientists, offer

them better understanding of the relationships among the
microarray data. Up to now, although there are already many
methods designed based on gene pairwise [43], our CVR
based method has never been discussed and applied in the
microarray data research field.

The principle and learning methods for SCVR are
described in this study. In order to demonstrate the effective-
ness of SCVR, some experiments are conducted on several
binary class and multiclass datasets. The classifiers such as
decision tree, RF and rotation forest are also employed in
the experiments for further comparisons. Although only five
rules are fused to form the final SCVR classifiers for each
two-class problem with ten genes engaged, the final results
illustrate that SCVR can achieve the best performance in
most cases. The selected genes are also verified, and the
findings confirm the biological significance of the selected
features. As a result, our SCVR achieves the goal of fea-
ture selection and classification simultaneously with excel-
lent generalization ability. The Stay based rules is our first
attempt in applying the CVR to the classification task. For our
future direction, we tend to explore the computational verb
theory, in order to generate more interesting models that will
be benefiting the biomedical related research aspects. Some
more verbs and adverbs can be connected together to form
powerful rules, revealing the relationships among features
from various aspects. For example, the verbs increase and
decrease can be used to capture the movement of mouse and
eyebrow with the adverb slightly, so they may be a powerful
tool to extract features for micro-expression expression from
video streaming.
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