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ABSTRACT In bioinformatics, the vast of multi-label type of datasets, including clinical text, gene, and
protein data, need to be categorized. Specifically, due to the redundant or irrelevant features in bioinformatics
data, the performance ofmulti-label classifiers will be limited, and therefore, selecting effective features from
the feature space is necessary. However, most of the proposed methods, which aimed at dealing with multi-
label feature selection problem in the past few years, only adopt a simple and direct strategy that transforms
the multi-label feature selection problem into more single-label ones and ignore correlations among different
labels. In this paper, a novel algorithm named ensemble embedded feature selection (EEFS) is proposed to
handlemulti-label bioinformatics data learning problem in amore effective and efficient way. The EEFS does
not only explicitly find out the correlations among labels, but it can also adequately utilize the label correla-
tions by multi-label classifiers and evaluation measures. Furthermore, it can reduce the accumulated errors
of data itself by employing an ensemble method. The experimental results on five multi-label bioinformatics
datasets show that our algorithm achieves significant superiority over the other state-of-the-art algorithms.

INDEX TERMS Bioinformatics, multi-label learning, embedded feature selection.

I. INTRODUCTION
Multi-label type of bioinformatics data widely exists in clini-
cal text data [1], gene data [2], protein data [3], [4] and so on.
For example, a patient suffering from cough and fever should
be associated with both two disease labels in the clinical
records. Formally, let X = Rd denote the d−dimensional
feature space and Y = {0, 1}q denote the q−dimensional
label space, where each example in multi-label bioinformat-
ics data can be denoted as (xi,Yi)(xi ∈ X ,Yi ⊆ Y). Due
to the rapidly expanding quantity of multi-label bioinformat-
ics data resources, techniques based on multi-label learning
demonstrate the superiority in mining useful information
from vast this type of data [5], [6]. These techniques aim to
build classification models for instances which are assigned
with multiple labels simultaneously. However, the feature
space of multi-label data inevitably exists redundant and
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irrelevant features which could limit the performance of
multi-label classifiers. Encouragingly, to promote the clas-
sification performance, many multi-label feature learning
methods, which could reduce the dimension of feature space,
have been proposed to acquire important and effective infor-
mation from the original feature space [7], [8]. Specifi-
cally, there are two kinds of dimension reduction methods
for multi-label data: feature extraction and feature selec-
tion. For feature extraction, unsupervised approaches, such
as principal component analysis (PCA) [9], latent semantic
indexing (LSI) [10], [11], multi-output regularized feature
projection [12], extraction shared subspaces [13], are pro-
posed to find a compact feature space to represent the original
datasets and supervised approaches, such as linear discrimi-
nant analysis (LDA) [14]–[16] and multi-label dimensional-
ity reduction via dependence maximization which is based on
the Hilbert-Schmidt independence criterion (MDDM) [17],
achieve better performance. These approaches are effective
to improve the performance of classification. However, the
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extracted features fuse the information of original features,
and lose the distinct physical meanings. Hence, the fea-
tures extracted from the original feature space can be hardly
explained and easily comprehended.

These characteristics limit the use of feature extraction
methods in particular research area, such as multi-label bioin-
formatics data analysis. For example, many clinical decision-
making tasks following the philosophy of Evidence Based
Medicine (EBM) rely on the ability to find relevant health
records and gather sufficient clinical evidence [18]. There-
fore, reliable feature subsets which have interpretation of
physical significance for clinical records classification can
help doctors or researchers in disease diagnosis, prevention
and treatment, or simply medical text resources categoriza-
tion and retrieving. Encouragingly, different from feature
extraction, feature selection approaches remains the physical
meaning of features when reducing the feature dimension.
Hence, it is more suitable than feature extraction for dealing
with this type of multi-label data analysis task.

To deal with the multi-label feature selection task, there
are three main types of methods: filter, wrapper ands embed-
ded [19]–[21]. We will describe them in detail in the next
section. In this paper, a new embeddedmethods type of multi-
label feature selection algorithm named EEFS, i.e. Ensemble
Embedded Feature Selection, for multi-label bioinformatics
data is proposed. It randomly selects partial training examples
to train classification models which is an ensemble method,
and then employs evaluation measure and averaged training
examples for each column to test the trained models itera-
tively to acquire the final feature importance ranking. Exper-
iment results demonstrate our algorithm is superior over other
multi-label feature selection (feature importance ranking)
algorithms. This paper extends our preliminary work [22].

The rest of this paper is organized as follows. Section II,
reviews the existing multi-label feature selection meth-
ods. Section III, presents the proposed EEFS algorithm.
Section IV, presents the design of the experiments. Section V,
reports and analyzes the comparative experimental results.
Finally, Section VI, summarizes several issues and suggest
some future directions.

II. RELATED WORKS
Recently, multi-label feature selection methods for bioinfor-
matics data have received increasing attention from research
community, due to the rapidly expanding quantity of multi-
label bioinformatics data resources. There is a rich body of
work on the research of them. As mentioned above, the exist-
ing multi-label feature selection methods can be generally
categorized into three classes, namely filter, wrapper and
embedded methods. In this section, we will review the main
algorithms of these three main types of methods in detail.
• Filter methods
The main idea of filter feature selection methods [23],
[24] for multi-label bioinformatics classification is
transforming the single-label methods to multi-label
methods. For example, Yang and Pedersen [23]

proposed a filter framework to evaluate features for
each label separately under some statistic evaluation
measures, and combine the results by the maximal or
average methods. This framework is an extension of
single-label filter feature selection methods. It deals
with the labels separately, which ignores the correlations
within labels. LetX = {f1, f2, . . . , fd } denote the feature
space with d features and Y = {l1, l2, . . . , lq} denote
the label space with q class labels. Then the maximal
and average types of filter multi-label feature selection
methods, FSmax and FSavg, are defined as follows:

FSmax(fi) = max
q
{EM (fi, l1), . . . ,EM (fi, lq)} (1)

FSavg(fi) =
1
q

q∑
j=1

EM (fi, lj) (2)

where EM is the evaluation measure which evaluates
the correlations between feature and label for single-
label feature selection. The evaluation measures utilized
by single-label feature selection methods can be χ2,
Relief [25], COR [26] and mRMR [27]. The importance
which is represented by the value FS(fi) of ith features
decided in multi-label bioinformatics data depends on
the rules of filter multi-label feature selection as shown
in Eq. (1) or Eq. (2). The results of filter multi-label
feature selection will demonstrate the feature impor-
tance ranking. These methods have linear computation
cost, but their selection results are always rough. They
consider the relevance between labels and each fea-
ture, while ignoring the power when features combined
together. Moreover, filter methods provide a unique fea-
ture ranking for different kind of classifier. The selected
feature subset is always not the most suitable subset for
a certain classifier.

• Wrapper methods
The main idea of wrapper feature selection
method [28]–[30] for multi-label learning is depend-
ing on the learning machine and utilizing the learning
machine of interest as a black box to score feature
subsets according to their predictive power. They are
widely used in scientific data analysis, because the
selected feature subset is optimal to the specific learn-
ing machine due to its mechanism that the selection
result is based on the learning algorithms. For example,
Shao et al. [30] propose a hybrid optimization multi-
label feature selection method called HOML. In their
work, simulated annealing, genetic algorithm and hill
climb strategies are combined to generate many feature
subsets and then they utilize multi-label classifiers to
select the best one. The process of generating and
selecting optimal feature subset is comparative time-
consuming. These methods are classifier specified fea-
ture selection methods. Specifically, they select a wide
variety of feature subsets based on some principle from
training data to train corresponding classifiers, and then
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measure the selected feature subsets from test data with
the corresponding trained classifiers directly. Wrapper
methods can improve the performance of classifiers in
a large range. However, their computational complexity
is always too high.

• Embedded methods
The embedded feature selection methods [31]–[33] for
multi-label learning are a trade-off way to overcome the
weaknesses of filter and wrapper methods. For embed-
ded methods, the multi-label classifiers are embedded
in the process of feature selection to compute the rela-
tionships between features and classifiers. It also can
avoid the time consuming problem compared with wrap-
per methods. For example, You et al. [31] proposed an
algorithm named multi-label embedded feature selec-
tion (MEFS) which utilizes the prediction risk and clas-
sifier to evaluate the features importance in feature
subset and backward search strategy to select the best
feature from feature subset step by step. With this,
the selected features are more directly to improve the
classification performance. But with the change of the
training data, the trained model will generate differ-
ent feature rankings, so it is difficult to get relatively
stable feature ranking. This will not be conductive to
further analysis of the data and the generalization of
the algorithm. Furthermore, MEFS cannot overcome the
weakness of reduce the accumulated errors of data itself.

In this paper, due to the proposed EEFS algorithm provid-
ing the feature importance ranking as final result which is
similar as algorithms based on filter methods and different
from algorithms based on wrapper methods only providing
optimal feature subset from the candidate feature subsets,
we only compare our algorithm with algorithms based on fil-
ter and embeddedmethods. Andwe do not involve algorithms
based on wrapper methods in the experimental part.

III. THE PROPOSED ALGORITHM
In this section, our proposed algorithm EEFS, i.e. Ensemble
Embedded Feature Selection, will be presented for multi-
label bioinformatics data feature selection. EEFS can pro-
vide relatively stable feature ranking and reduce the negative
effect of the change of training data. Furthermore, it can
be adjusted on the basis of the multi-label bioinformatics
data structural characteristics for boosting the performance
ofmulti-label classifiers. Specifically, aimed at generating the
feature subset which can be utilized to improve the classifier’s
performance, EEFS employs prediction risk and forward
search strategy to evaluate the importance of features. And
EEFS’s feature selection process cooperates with multi-label
classifier and prediction risk. In detail, the feature selection
capacity of EEFS mainly relies on the classifiers’ learning
ability and the employed evaluation measure which is used
for computing prediction risk.

Prediction risk can evaluate the models’ classification per-
formance. During the learning process of models, prediction
risk is applied to estimate the prediction accuracy of the

Algorithm 1 The EEFS Algorithm
Inputs:

D: bioinformatics training data {(xi,Yi)|1 ≤ i ≤ n}
(xi ∈ X ,Yi ⊆ Y,X = Rd ,Y = {l1, l2, . . . , lq})

L: the loss function in Eq. (4)
µ: the percentage parameter (0 < µ ≤ 100%)
λ: the iteration times (any integer ≥ 1)

Outputs:
r : the feature ranking list

1: r ← ∅//empty feature ranking list
2: u← [1, 2, . . . , d]//u is the complete feature set, initial-

ize it by the original set
3: preRISK ← (0, . . . , 0) with the dimensionality |u|
//initialize preRISK

4: for j = 1 to λ do
5: Dr = (xr ,Y r )//randomly select (µ·n) examples form

training data D
6: model ← train classifier(xr ,Y r )//train a classifier

with the randomly selected data
7: preERR ← test classifier(model, xr ,Y r )//test the

trained classifier and get the Dr error
8: for k = 1 to d do
9: preERR(xr k )← test classifier(model, xr k ,Y r )

//test the trained classifier and get xr k error
10: compute preRISK k

j according to Eq. (3)
11: end for// evaluate each feature’s importance accord-

ing to the prediction risk criterion
12: end for
13: compute preRISK

k
j for each feature according to Eq. (5)

14: r ← rank[preRISK
k
j ]//update the feature ranking list

15: output the final feature ranking list r

models and then select suitable models. The principle of
prediction risk minimization is often used for selecting opti-
mal feature subset in single-label problems. Prediction risk
criteria estimates each feature by computing the difference
between original and updated training data’s results which
are from testing the trained model. The updated training data
means the value of a certain feature for each training example
is replaced by its mean value of all training examples. The
prediction risk (preRISK ) of ith feature is defined as follows:

preRISK = preERR(xi)− preERR (3)

where preERR stands for the prediction error of trained
model on original training data and preERR(xi) stands for
the prediction error of trained model on updated training data
corresponding to ith feature. In experimental part, we employ
average precision, which is a multi-label ranking type of
evaluation measure, to compute preERR and it is defined as
follows:

average precision =
1
n

n∑
i=1

1
|Yi|

∑
lk∈Yi

|R(xi, lk )|
rank(xi, lk )
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TABLE 1. Comparison of the optimal results of Four algorithms with BR classifier on Five datasets.

where

R(xi, lk ) = {lj|rank(xi, lj) ≤ rank(xi, lk ), lj ∈ Yi},

rank(x, l) returns the rank of l ∈ Y based on the descending
order induced from model and n is the number of examples.
Average precision evaluates the average fraction of relevant
labels ranked higher than a particular label lk ∈ Yi.
The preRISK of ith feature captures the preERR differ-

ence between the updated training data which replaces the
ith feature’s value for each example by its mean value of
all examples and the original training data, when they test
the trained model separately. We employ the preRISK value
as the ranking basis of feature importance. When we utilize
the prediction risk to reduce the dimension of feature space
in multi-label bioinformatics data, we employ the evaluation
measures of multi-label learning as the loss function for pre-
diction risk. x ij ∈ R is the value of ith feature for jth example.
The output of a classifier C(x) (x = [x1, . . . , xd ]) is the
predicted label sets Y ′. Let L(Y ′,Y ) denote a multi-label
loss function where Y is the true label set associated with
instance x. Then preERR(xi) is defined as follows:

preERR(xi) = L(C([x1, . . . , x i, . . . , xd ]),Y ) (4)

where x i is the mean value of the ith feature of all exam-
ples and C([x1, . . . , x i, . . . , xd ]) is the prediction value of all
examples with the ith feature replaced by their mean value.
To further improve the performance of EEFS, we randomly

select µ (0 < µ ≤ 100%) percentage of instances from
the original training data to train models, and then utilize
Eq. (4) to compute the prediction risk for each feature. At last,
we repeat this process for λ (In theory, any integer ≥ 1;
In practice, 1 ≤ λ ≤ 20 on the basis of our experimental
experience) times. In the jth (1 ≤ j ≤ λ) iteration, we com-
pute the prediction risk of the ith feature preRISK i

j according

to Eq. (3). The average prediction risk preRISK
i
of ith feature

for all λ iterations is computed as follows:

preRISK
i
=

1
λ

λ∑
j=1

preRISK i
j (5)

In order to better select appropriate parameters µ and λ
in the multi-label bioinformatics feature selection process,
we found a knack of good guiding significance according to
our experimental experience. Firstly, we employ other state-
of-the-art multi-label feature selection algorithms (e.g. based
on filter methods) as benchmark to compute the impor-
tance of each feature. Secondly, we use EEFS with setting:
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TABLE 2. Comparison of the optimal results of four algorithms with CC classifier on five datasets.

µ = 100% and λ = 1 to estimate the importance of each
feature. After that the features are ranked according to their
importance in descending order. Thirdly, we select the same
top percentage of features from the two feature rankings
as feature subsets, and denote them as subsets A and B
respectively, and then utilize multi-label classifiers to test
their performance. Then we set the parameters by comparing
the performance of the two feature subsets. If the perfor-
mance of A is better than B, we set µ close to 100% and
λ small. On the contrary, if the performance of B is better
than A, we set µ away from 100% and λ big. Because
this method essentially reduces the accumulated errors of
data itself by employing ensemble method, it can acquire
satisfactory experimental results. The pseudo code of EEFS
is demonstrated in Algorithm 1.

IV. EXPERIMENTS
A. EXPERIMENTAL DATASETS
Five bioinformatics datasets are employed to help compare
our proposed algorithm with the other state-of-the-art algo-
rithms. For each dataset S = {(xi,Yi)|1 ≤ i ≤ p}, we use
|S|, dim(S),L(S) and F(S) to denote the number of exam-
ples, number of features, number of class labels, and fea-
ture type for |S| respectively. The clinical dataset [34], [35]

comprises a total number of 1566 free text clinical records
label by disease codes. The content of the records is mostly
composed of patient’s impressions reported by some radi-
ologists in free text form. We extract bag-of-words features
from the raw text and further transform word counts into TF-
IDF features. Only the word frequencies of the top 232 words
are kept after stop words filtering and word stemming [36].
The disease labels are expressed by a group of ICD-9-CM
codes [37]. It contains a list of carefully categorized disease
entries, coded by distinguished numbers, which can be used
to classify the clinical records into their relevant diseases.
In our experiments, we restrict the label size to top 10 for anal-
ysis and algorithm comparisons. Also as clinical text data,
the data processing mode of medical dataset [34] is similar
to clinical. It comprises 978 text medical records, 217 top
frequencies words, and 20 labels. Two protein datasets,
which are plant [38], [39] and virus [40], [41], with experi-
mentally determined subcellular location are obtained from
Cell-Ploc 2.0 [42]. In these two datasets, protein sequences
were totally collected from the Swiss-Prot database at
http://www.ebi.ac.uk/swissprot/. We use go protein repre-
sentation method, which is widely used in many existing
protein subcellular localization systems, to generate features
of protein examples [43]–[45]. Information of these two
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TABLE 3. Comparison of the optimal results of four algorithms with MLkNN classifier on five datasets.

protein datasets are described as follows: 1) 969 different
proteins with 224 go features distributed among 12 subcel-
lular location for plant cells; 2) 206 different proteins with
185 go features distributed among 6 subcellular location for
virus cells. The yeast dataset [2] is formed by micro-array
expression data and phylogenetic profiles with 2417 genes.
The input dimension is 103. Each gene is associated with
a set of functional labels whose size can be 14. Table 4
briefly demonstrates the characteristics of the experimental
datasets.

B. MULTI-LABEL FEATURE SELECTION ALGORITHMS
We compare our proposed algorithm with the following
three algorithms: Multi-label embedded feature selection
(MEFS) [31], χ2 based maximal and average type of filter
multi-label feature selection (max and avg) [23].
• MEFS: The basic idea of this algorithm is to utilize
the prediction risk and classifier to evaluate the features
importance in feature subset and backward search strat-
egy to select the best feature form feature subset step by
step to form feature ranking.

• max: The basic idea of this algorithm is to calculate the
dependency score with a χ2 based evaluation statistic
between a feature and a label separately. The maximal

dependency score of a certain feature across all labels
stands for the final importance score of this feature.
According to the importance score of each feature,
we get feature ranking in descending order.

• avg: The basic idea of avg is similar tomax. Dependency
scores for a certain feature on all labels are averaged to
form the final importance score for this feature.

C. MULTI-LABEL CLASSIFIERS
In order to eliminate the bias of classifiers, three multi-label
classifiers, which are Binary Relevance (BR) [46], Classi-
fier Chain (CC) [47] and Multi-Label k-Nearest Neighbor
(MLkNN) [48] are employed in the experiment. BR and CC
are problem transformation method, which transform the
multi-label classification problem into one or more single-
label classification. MLkNN is algorithm adaptation method,
which extends specific learning algorithms in single label
problem to handle multi-label data directly.
• Binary Relevance (BR): The basic idea of this algorithm
is to decompose the multi-label learning problem into q
independent binary classification problems, where each
binary classification problem corresponds to a possible
label in the label space. In brief, it trains and tests models
for each label.
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FIGURE 1. Best performance of EEFS with BR, CC and MLkNN classifiers on five datasets compared with
other three algorithms. (Each dataset connects all the evaluation measures with different color curves
simultaneously and the number of color curves on the left half circle denotes the rank performance of EEFS
corresponding to each evaluation measure).

• Classifier Chain (CC): The basic idea of classifier chain
is to transform the multi-label learning problem into a
chain of binary classification problems, where subse-
quent binary classifiers in the chain is built upon the
predictions of preceding ones. In brief, it treats label as
new feature with original feature space to predict next
label in a chain way.

• Multi-Label k-Nearest Neighbor (MLkNN). The basic
idea of this algorithm is adapting k-nearest neighbor
techniques to deal with multi-label data, where max-
imum a posteriori (MAP) rule is utilized to make
prediction by reasoning with the labeling information
embodied in the neighbors. In brief, it designs a new
algorithm based on k-nearest neighbor techniques for
multi-label data.

D. EVALUATION MEASURES
In the multi-label learning community, it is well known that
the performance evaluation of multi-label learning differs
from that of classical single-label learning because each
example could have multiple labels simultaneously. There-
fore five standard evaluation measures, which are multi-label

accuracy (mlACC), precision (mlPRE), recall (mlREC),
F1 (mlF1) and subset accuracy (ACC), are introduced for
evaluating the performance of our proposed method from
multiple aspects more exactly [49], [50]. The five evaluation
measures are defined as follows:

mlACC =
1
m

m∑
i=1

|Yi
⋂
Y ′i |

|Yi
⋃
Y ′i |

mlPRE =
1
m

m∑
i=1

|Yi
⋂
Y ′i |

|Y ′i |

mlREC =
1
m

m∑
i=1

|Yi
⋂
Y ′i |

|Yi|

mlF1 =
2 · mlPRE · mlREC
mlPRE + mlREC

ACC =
1
m

p∑
i=1

1(Yi ≡ Y ′i )

where m is the number of test examples, Yi and Y ′i are the
set of true labels and the set of predicted labels of each
instance, respectively. mlF1 is the harmonic mean of mlREC
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FIGURE 2. Performance of the four algorithms with BR classifier on five datasets (TPoF: Top percentage of feature ranking in descending order
according to their importance).

and mlPRE . For the five evaluation measures, note that the
bigger the measure value, the better the performance.

E. EXPERIMENT CONFIGURATION
In the experiments, multi-label ranking type of evaluation
measure average precision [51], [52] is employed as preERR
to compute prediction risk. EEFS is compared with 3 other
state-of-the-art feature selection methods MEFS, max and
avg. 3 classifiers and 5 evaluation measures previously

described are all implemented in the experiment for an
exhaustive assessment. In the experiment, we select top 25%,
50%, 75% and 100% percentage of the features, which are
ranked in a descending order according to their importance,
to demonstrate the results and we employ 10-fold cross vali-
dation in the experimental part. For the setting of parameters
µ and λ of EEFS, we set µ = 80% and λ = 5 for BR and
CC and µ = 50% and λ = 15 for MLkNN according to the
previous analysis of experimental experience we mentioned.
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FIGURE 3. Performance of the four algorithms with BR classifier on five datasets (TPoF: Top percentage of feature ranking in descending order
according to their importance).

V. RESULTS ANALYSIS
In this section, we will analyze the experimental results in
detail. All results with 3 classifiers, 4 algorithms and 5 eval-
uation measures on five multi-label bioinformatics datasets
are demonstrated in Table 1-3 and Figure 1-4. In Table 1-3,
the optimal results means the selected best performance of
each algorithms among the four top percentages (25%, 50%,
70%, 100%) of features with corresponding multi-label

classifiers and evaluation measures. The bold-faced values
represent the best performance among all the algorithms
in Table 1-3.We use benchmark represent the cross validation
classification results of corresponding multi-label classifiers
and evaluation measures about the related datasets with all
the features (no feature selection). As shown in Table 1-3,
compared with benchmark, EEFS ranks 1st in 90.7% cases
(BR: 76.0%, CC: 100%, MLkNN: 96.0%) and equally 1st
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FIGURE 4. Performance of the four algorithms with BR classifier on five datasets (TPoF: Top percentage of feature ranking in descending order
according to their importance).

in 9.3% cases (BR: 24.0%, CC: 0%, MLkNN: 4.0%) which
demonstrates the multi-label feature selection effectiveness
of EEFS. As shown in Table 1-3, and Figure 1, compared
with other three algorithms, EEFS ranks 1st in 72.0% cases
(BR: 72.0%, CC: 60.0%, MLkNN: 84.0%) and equally
1st in 2.7% cases (BR: 4.0%, CC: 0%, MLkNN: 4.0%).
In Figure 1, each dataset under BR, CC and MLkNN clas-
sifiers connects all the evaluation measures with different
color curves simultaneously. Different color curves represent

different rank status and the number of color curves on
the left half circle denotes the best performance of EEFS
corresponding to each evaluation measure compared with
other three algorithms. For example, under BR, we can see
EEFS achieves 5 blue curves (ranking 1st) on clinical for five
evaluation measures, 1 blue curve (ranking 1st) on medical
for mlREC, and 4 yellow curves (ranking 3rd) on medical for
other four evaluation measures. In Figure 2-4, the x-axes rep-
resent the top percentage of the feature importance ranking
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TABLE 4. Characteristics of the experimental datasets.

numbers and y-axes represent the performance values of
different multi-label evaluation measures. The turning points
of different color lines represent corresponding classification
results of the selected feature subsets with different feature
selection algorithms. The green lines (Peak) represent the best
results in each evaluation measure. Based on the above exper-
imental results, the following observations can be apparently
made:

A. PERFORMANCE COMPARISON BETWEEN
EEFS AND MEFS:
The optimal results of EEFS and MEFS shown in Table 1-3
demonstrate that our algorithm EEFS, which ranks 1st
in 81.3% cases (BR: 72.0%, CC: 84.0%, MLkNN: 88.0%)
and equally 1st in 8.0% cases (BR: 20.0%, CC: 0%,
MLkNN: 4.0%), is absolutely better than MEFS with all
the 3 classifiers on 3 multi-label bioinformatics datasets and
5 evaluation measures. As shown in Figure 2-4, when the size
of feature subset is small which is top 25% features, EEFS
ranks 1st in 80.0% cases (BR: 76.0%, CC: 84.0%, MLkNN:
80.0%), which indicates that EEFS can better evaluate the
feature importance than MEFS. The superior performance
of EEFS against MEFS clearly verifies the effectiveness of
reducing the accumulated errors of data itself which could
improve the performance of feature selection.

Furthermore, according to the algorithm computational
complexity and mechanism, EEFS is higher computational
efficiency than MEFS. For example, for training data with n
instances, d features and q labels, to get the feature ranking,
EEFS needs to train λ models with µ ∗ n instances for each
model and test d times to get each feature’s importance for
each model. MEFS needs to train (d − 1) models to get
a feature ranking. In detail, the ith model of MEFS which
is trained based on (d − i + 1) features with n instances
needs test (d − i+ 1) times to get each feature’s importance.
In experiments, MEFS is more time consuming than EEFS in
getting the final feature ranking part and they are the same in
other parts.

B. PERFORMANCE COMPARISON AMONG
EEFS, MAX AND AVG:
As shown in Table 1-3, compared withmax and avg across all
evaluation measures and classifiers, EEFS ranks 1st in 73.3%
cases (BR: 72.0%, CC: 60.0%, MLkNN: 80.0%). As shown
in Figure 2-4, when the size of feature subset is small which is
top 25% features, EEFS ranks 1st in 60.0% cases (BR: 64.0%,

CC: 48.0%, MLkNN: 68.0%). These phenomenons, when
top 25% features are selected, indicate that: 1) For BR and
MLkNN, EEFS can better evaluate the feature importance
than max and avg; 2) For CC, EEFS is not good as max and
avg. When we analyze it in detail, we find the performance
of EEFS on plant and virus impacts the results of feature
selection. For plant and virus on top 25% features, EEFS
ranks 1st in 70% cases with BR and 100% cases with CC,
but it ranks 1st in 10% cases with CC. This phenomenon is
because of the characteristics of CC classifier and go features
of the protein datasets. CC employs label as new feature with
original feature space to predict next label, but the labels
structure do not match the structure of go features. Finally,
it gets the poor performance.

All results indicate that, during the process of multi-
label feature selection, EEFS can utilize: 1) The correlations
between multiple labels and features; 2) The correlations
within labels. In contrast, the other two algorithms, max and
avg, are implemented by transforming sing-label methods
to multi-label methods according to Eq. (1) and Eq. (2),
respectively. Therefore, they can only utilize the relationship
between single label and single feature which leads to their
worse performance than EEFS.

VI. CONCLUSION
In this paper, we propose a novel algorithm named EEFS,
i.e. Ensemble Embedded Feature Selection, which can deal
with the multi-label feature selection problems in bioinfor-
matics data. EEFS can provide relatively stable ranking of
feature importance and reduce the negative effect from the
change of training data by randomly selecting partial training
examples and utilizing iteration to compute the prediction
risk. As illustrated in the experimental results of most cases,
the performance of EEFS is better than MEFS because of
that it can reduce the accumulated errors of data itself by
employing ensemble method. And it is better than other two
filter multi-label feature selection algorithms, i.e., max and
avg because of that it can utilize: 1) the correlations between
multiple labels and features, 2) the correlations within labels.

Inspired by this work, we will further explore the mecha-
nism of embedded multi-label feature selection methods for
bioinformatics data and propose a more efficient algorithm in
the future.
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