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Abstract: Spatio-temporal data fusion refers to the technique of combining high temporal resolution
from coarse satellite images and high spatial resolution from fine satellite images. However, data
availability remains a major limitation in algorithm development. Existing spatio-temporal data
fusion algorithms require at least one known image pair between the fine and coarse resolution
image. However, data which come from two different satellite platforms do not necessarily have an
overlap in their overpass times, hence restricting the application of spatio-temporal data fusion. In
this paper, a new algorithm named Hopfield Neural Network SPatio-tempOral daTa fusion model
(HNN-SPOT) is developed by utilizing the optimization concept in the Hopfield neural network
(HNN) for spatio-temporal image fusion. The algorithm derives a synthesized fine resolution image
from a coarse spatial resolution satellite image (similar to downscaling), with the use of one fine
resolution image taken on an arbitrary date and one coarse image taken on a predicted date. The
HNN-SPOT particularly addresses the problem when the fine resolution and coarse resolution images
are acquired from different satellite overpass times over the same geographic extent. Both simulated
datasets and real datasets over Hong Kong and Australia have been used in the evaluation of
HNN-SPOT. Results showed that HNN-SPOT was comparable with an existing fusion algorithm, the
spatial and temporal adaptive reflectance fusion model (STARFM). HNN-SPOT assumes consistent
spatial structure for the target area between the date of data acquisition and the prediction date.
Therefore, it is more applicable to geographical areas with little or no land cover change. It is
shown that HNN-SPOT can produce accurate fusion results with >90% of correlation coefficient
over consistent land covers. For areas that have undergone land cover changes, HNN-SPOT can
still produce a prediction about the outlines and the tone of the features, if they are large enough to
be recorded in the coarse resolution image at the prediction date. HNN-SPOT provides a relatively
new approach in spatio-temporal data fusion, and further improvements can be made by modifying
or adding new goals and constraints in its HNN architecture. Owing to its lower demand for data
prerequisites, HNN-SPOT is expected to increase the applicability of fine-scale applications in remote
sensing, such as environmental modeling and monitoring.
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1. Introduction

Satellite remote sensing for monitoring the geophysical environment has developed rapidly
in recent decades. However, earth observation is often constrained by the spatial and temporal
resolutions of the satellite images. For example, Landsat satellites capture images with moderate spatial
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resolution (30 m) but with a long revisit time of 16 days. When cloud contamination is considered,
only 65% of images are adequately cloud-free to be used for earth observation [1]. Hence, the temporal
resolution of usable Landsat images is relatively low. In contrast, the MODerate resolution Imaging
Spectroradiometer (MODIS) can provide daily images, but at coarser spatial resolution of 250 m,
500 m, and 1 km. In order to utilize different data acquisition capabilities, numerous studies have been
conducted to integrate the spatial and temporal resolutions, known as spatio-temporal fusion [2–12].
With the integration of high spatial resolution and high temporal resolution, information provided by
different satellites can be better utilized, especially for applications requiring both frequent coverage
and high spatial details, such as diurnal reflectance analysis and 24-hour temperature monitoring [13].
These applications can help in environmental modeling and monitoring, and can further assist in
making decisions about urban planning [2].

Among existing spatio-temporal data fusion algorithms, the spatial and temporal adaptive
reflectance fusion model (STARFM) is the first model developed [3] and it has been widely applied for
monitoring environmental changes [5,14]. STARFM was originally designed to fuse the reflectance
data of Landsat (at 30 m resolution) and MODIS (at 500 m resolution). It uses one known pair of
Landsat and MODIS images and one MODIS image at the prediction date. STARFM assumes that for a
pure coarse pixel where only one land cover type exists, the changes in fine pixels within that coarse
pixel can be implied directly by the changes in that coarse pixel. For heterogeneous coarse pixels where
there are two or more land cover types, a weighted function is used for prediction, which assigns
higher weights to the neighboring fine pixels where they are physically closer and spectrally similar
to the coarse pixels. Subsequently, several algorithms have been developed to enhance STARFM.
For example, the spatial temporal adaptive algorithm for mapping reflectance change (STARRCH)
attempts to capture episodic events but more input images are required by this algorithm [5]. The
enhanced STARFM, namely ESTARFM, improves the fusion results in heterogeneous areas by applying
the linear spectral unmixing (LSU) theory [15] and the concept of conversion coefficient [11]. The
spatio-temporal adaptive data fusion algorithm for temperature mapping (SADFAT) was developed to
fuse land surface temperature (LST) between Landsat TM and MODIS to produce a daily LST product
at 120 m spatial resolution [8]. A fusion model was then developed combining the extreme learning
machine (ELM) algorithm and SADFAT to generate 30 m LST products from Landsat ETM+ TIR and
MODIS data [2]. Zhu et al. (2016) developed the flexible spatiotemporal data fusion (FSDAF) algorithm
using one known pair of fine and coarse images to fuse reflectance data [12] In FSDAF, the intermediate
result of thin plate spline (TPS) interpolation is used to assist residual distribution. Therefore, it should
have the ability to capture land cover change and episodic events.

Another research area of spatio-temporal data fusion is dictionary-pair learning [6,7]. The
sparse-representation-based spatio-temporal reflectance fusion model (SPSTEM) establishes structural
correspondences between fine resolution images and the corresponding coarse images for a given
area [6]. In SPSTEM, two dictionaries are first trained using the fine and coarse resolution differencing
image patches at two known dates, by adopting an optimization equation based on sparse representation
and sparse coding. Then the fine resolution differencing image patches associated with the prediction
date are estimated by applying the same sparse representation coefficients of the low-resolution
image patches. SPSTEM was later modified to adapt only one fine and coarse image pair for the
spatio-temporal data fusion. This was done by introducing a two-layer fusion framework, which first
predicted the target image at medium resolution, followed by the desired fine resolution, to tackle the
problem of large scale difference between fine and coarse images [7]. In order to tackle the drawback of
insufficient prior knowledge for sparse representation such as cluster and joint structural sparsity [16]
developed an optimization model for spatio-temporal data fusion using semi-coupled dictionary
learning and structural sparsity.

Recently, a spatio-temporal data fusion model using deep convolutional neural networks (CNNs)
was developed [17]. Two five-layer CNNs are constructed to firstly learn the mapping relationship
between MODIS and the low-spatial-resolution (LSR) Landsat images (the first CNN), and then to learn
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the super-resolution from the LSR Landsat images to the Landsat images with the original resolution
(the second CNN). A training stage and a prediction stage are incorporated in this fusion model.

Although several methods have been developed about spatio-temporal data fusion, there are still
some limitations due to stringent data requirements. The CNN fusion algorithm requires abundant data
for training the relationship between fine and coarse satellite images. Some fusion algorithms [2,5,6,8,11]
require at least two known fine and coarse image pairs, one before and one after the prediction date.
This prerequisite prohibits near real-time applications, e.g., to derive real-time fine resolution satellite
images based on real-time coarse images from geostationary satellites. In such applications, only
images before the prediction time are known and therefore fusion algorithms requiring at least two
known image pairs cannot be used. Although fusion algorithms requiring only one known image pair
have recently been developed [3,7,12,16], they rely on the spatial correspondence between the fine
and coarse resolution images. This only limits the fusion models to satellite platforms which have the
same overpass times. However, in real applications, satellite images may not have the same overpass
times and hence this poses a great challenge to the issue. In this paper, a new spatio-temporal data
fusion algorithm, the Hopfield Neural Network SPatiotempOral daTa fusion model (HNN-SPOT) is
developed, having the ability to use one fine resolution image at an arbitrary date and one coarse
resolution image at the prediction date, to predict the fine resolution image at the prediction date
using the optimization concept in the Hopfield neural network (HNN). An important merit of the
HNN-SPOT is that it enables image fusion for satellites crossing the same geographic area with different
overpass times. This method has a different concept to the existing one, as HNN-SPOT derives a
synthesized fine resolution image for the coarser-resolution satellite at the prediction date, whereas
existing methods derive a synthesized image for the finer-resolution satellite at the prediction date by
utilizing the spatial relationship between the coarse and fine spatial resolution images at the known
date. The difference of this new concept is depicted in Figures 1 and 2.
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Figure 2. Architecture of HNN-SPOT, the newly proposed spatio-temporal data fusion model. Suppose
t1 represents the known date and t2 represents the prediction date.

2. Methodology

HNN is a type of recurrent artificial neural network and it is shown that it can always converge
to a stable or equilibrium state with the use of symmetric weights of each neuron pair without
self-connection [18]. This convergence property can therefore be used in energy minimization problems
where the energy is minimized at the equilibrium state [19]. In real world problems, an energy can be
defined as the summation of the goal to be achieved and the constraints to be followed [20]:

Energy = Goal + Constraints. (1)

HNN can then be used as a minimization tool to find the minimum energy for which the goal
and the constraints are balanced. In remote sensing, HNN has been used in applications of feature
identification/tracking; for example, for ice, clouds, and ocean currents [21], and for super-resolution
target identification and mapping [20,22]. In this paper, HNN-SPOT is developed, and it further
demonstrates in the process of spatio-temporal data fusion, for enhancing the spatial resolution of
coarse resolution images.

In HNN-SPOT, one fine resolution image at an arbitrary date (noted as Ft1) and coarse resolution
image at the prediction date (noted as Ct2) are used to derive the fine resolution image at the prediction
date (noted as Ft2). Intrinsically, the fusion model strikes a balance between the spatial details in Ft1
and the spectral response value in Ct2, and therefore the energy function can be literally expressed as:

Energy = Spatial details in fine resolution + Spectral response in coarse resolution. (2)

In order to model the above energy function, the network architecture should firstly be well-defined.
Thus, each pixel in the fine resolution space is deemed as a neuron and each neuron is identified by its
location at the ith row and the jth column, denoted as ui j. Each neuron in the fine resolution space lies
in its corresponding coarse pixel at the xth row and the yth column in the coarse resolution space and
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there are S2 neurons in each coarse pixel for the scale factor of S between the fine and coarse resolution
images (Figure 3). The network is then initialized with the pixel values in Ft1 as the initial state of
each neuron.
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In spatio-temporal image fusion, due to the fact that the minimum energy of the HNN is unknown,
it should be implemented with the view of the neuron’s motion. From the Euler method, the neuron
values can be simulated as in Equation (3) [20]:

ui j(t + dt) = ui j(t) +
dui j(t)

dt
dt, (3)

where dt is the time step and
dui j
dt is the rate of change of neuron input, which is the negative of the

equation of motion in HNN [20]:
dui j

dt
= −

dEi j

dvi j
, (4)

where Ei j is the energy and vi j is the neuron output.
dEi j
dvi j

can then be estimated as:

dEi j

dvi j
= k1

dSpati j

dvi j
+ k2

dSpeci j

dvi j
, (5)

where k1 and k2 are the weights for the two energy parameters,
dSpati j

dvi j
describes the action for a neuron

considering the spatial details in Ft1 and
dSpeci j

dvi j
describes the action for a neuron considering the spectral

response in Ct2. In HNN-SPOT, the term
dSpati j

dvi j
is formulated through the use of correlation coefficient

(see Equation (6)) between the input fine resolution image Ft1 and the predicted fine resolution image
Ft2. In order to retain the spatial details, the neuron output is arranged such that the correlation
coefficient between Ft1 and Ft2 is identical, with the assumption of no land cover change:

dSpati j
dvi j

= − 1
2

(
1− tan h

(
ri j,w − thresr

)
λ
)
(F1i j −

∑i+w
m=i−w

∑ j+w
n= j−w F1mn

(2w+1)2 +

∑i+w

m = i−w
∑ j+w

n = j−w
vmn

(2w+1)2 − vi j), (6)

where tanh is a mathematical function resulting an output value bounded between −1 and 1 (illustrated
in Figure 4), w is the half window size for the window where the correlation coefficient is computed,
ri j,w is the correlation coefficient between Ft1 and Ft2 centered at location (i, j) with half window size w,
thresr is the threshold that the correlation coefficient is expected between Ft1 and Ft2, λ is the gain that
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controls the steepness of the tanh function (larger λ means a steeper tanh), and F1i j is the pixel value of
Ft1 at location (i, j). In Equation (6), if the neurons in a certain window fail to satisfy the threshold
condition of correlation coefficient (the first part of the equation, i.e., − 1

2

(
1− tan h

(
ri j,w − thresr

)
λ
)
), then

the center neuron is modified to enhance the correlation coefficient (the second part of the equation,

i.e., (F1i j −

∑i+w
m=i−w

∑ j+w
n= j−w F1mn

(2w+1)2 +

∑i+w

m = i−w
∑ j+w

n = j−w
vmn

(2w+1)2 − vi j)).
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The term
dSpeci j

dvi j
can be modeled using the spectral response in Ct2. Assuming that a coarse pixel

represents the mean value of the fine pixels belonging to it:

dSpeci j

dvi j
=

1
S2

∑
m ∈ x

∑
n ∈y

vmn − C2xy, (7)

where C2xy is the pixel value of Ct2 at location (x, y). With Equation (7), the neuron output will increase
in the situation that a coarse pixel value is greater than the mean of its fine pixels, and vice versa.

To balance the fine spatial details and the coarse spectral responses in the data fusion problem,
Equation (3) will implement iteratively until the mean of the absolute difference between the current
and the previous neuron output is less than or equal to a small value, ε:

∑
i

∑
j

∣∣∣ui j(t + dt) − ui j(t)
∣∣∣

ui j(t)
/ij ≤ ε. (8)

After converging to a stable state for the HNN algorithm, the preliminary (first round) fusion
result would normally be generated. However, this preliminary result contains a blocking effect due to
the formation in Equation (7), which is a block-based operation, and therefore the second-round of the
HNN algorithm will be operated to tackle this problem. In the second-round operation, the initial
neuron state is set to the pixel values of Ft1 again. However, the first-round result is considered as the
coarse resolution image at the prediction date instead of Ct2. The other part of the calculation process
remains the same as in the first-round operation except for Equation (7), which is modified as:

dSpeci j
dvi j

=

∑i+w

m = i−w
∑ j+w

n = j−w
vmn

(2w+1)2 −

∑i+w

m = i−w
∑ j+w

n = j−w
F2_1stmn

(2w+1)2

(
f or 2nd round

)
, (9)

where F2_1stmn is the pixel value of the predicted image of Ft2 after the first-round operation at location
(m, n). Equation (9), compared to Equation (7), distributes the spectral information inside each moving
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window rather than each coarse image block. This formulation assumes that the spectral response has
been predicted in an acceptable level for Ft2 in the first-round operation (although there is a blocking
effect) and therefore the first-round spectral information can be used to guide the spectral information
distribution in the second-round HNN operation without causing the blocking effect.

Through the mentioned HNN-based architecture, the satellite image at fine resolution can be
predicted using only two images: one fine image at an arbitrary date and one coarse image at the
prediction date. However, it should be noted that, unlike other existing fusion algorithms that require
at least one known fine-coarse image pair at the known date, HNN-SPOT predicts the fine resolution
image for the satellite images with coarser resolution while other algorithms predict another fine
resolution image for the satellite with finer resolution (see Figures 1 and 2).

3. Evaluation of Algorithm Performance

To evaluate the HNN-SPOT algorithm, simulated datasets and real datasets were prepared. The
simulated dataset was prepared for the purpose of assessing the theoretical accuracy of the fusion
algorithm, where only a scale difference exists between the fine and coarse resolution images. Thus,
the coarse resolution images at the prediction dates were simulated by upscaling the fine resolution
satellite images at the prediction dates using the nearest-neighbor approach. Three simulated datasets
were prepared with different satellite images and with different scale factors (from scale factor of
3 to 16). The first site selected is Lantau Island together with the International Airport of Hong Kong.
In this study area, the fusion of Landsat–MODIS satellite images was simulated with scale factor of 16.
As observed from the Landsat 8 images collected on 31 December 2013 and 18 October 2015, there is a
newly built reclamation island near the airport. The second site is located at the Hong Kong Island.
The fusion between Sentinel 2 and Landsat images was simulated with scale factor of 3. There is a
remarkable change for the vegetation pattern in the racecourse when comparing the Sentinel 2 satellite
images collected on 1 January 2016 and 14 February 2017. The last simulated dataset is located at the
Werribee South in Victoria, Australia where there was remarkable land cover change due to agricultural
practices. Fusion was performed between PlanetScope and Landsat images (scale factor = 10) using
two PlanetScope images on 31 May 2018 and 22 June 2018 (Table 1).

Table 1. Details of study areas for simulated datasets.

Study Area Site Names Descriptions on Land
Cover

Satellite Combinations
(Quantity being Fused)

Dates of Data
Acquisition

1
Lantau Island and
International Airport
(Hong Kong, China)

Land cover with
vegetation, manmade
structures and sea

Landsat visible at 30 m +
resampled Landsat

31 December 2013

(22.2632◦N, 113.9489◦E) A new artificial island was
built near the airport

(MODIS-like) visible at
*480 m (reflectance)

18 October 2015 (P)

2
Hong Kong Island (Hong
Kong, China)

Land cover with vegetation
and urban structures

Sentinel-2 visible at 10 m +
resampled

1 Jannary 2016

(22.2618◦N, 114.1815◦E) Remarkable vegetation
change was observed for
the racecourse

Sentinel-2 (Landsat-like)
visible at 30 m (reflectance)

14 February 2017 (P)

3
Werribee South (Victoria,
Australia)

Farmland with significant
tonal change

PlanetScope visible at 3 m +
resampled

22 June 2018

(37.9328◦S, 114.6997◦E) PlanetScope (Landsat-like)
visible at 30 m (radiance)

31 May 2018 (P)

Remarks: P: Prediction date; *480 m: Spatial resolution of 480 m, instead of 500 m, was used for the MODIS-like
image for achieving integral scale factor in data fusion.

In the simulated datasets, only the scale factor differs between the fine resolution and coarse
resolution images (Figure 5). However, in real data fusion, there are more problems including
inconsistency and misalignment between different satellite sensors, i.e., differences between the viewing
angles, solar geometries, and spectral characteristics of the sensors used. In addition, registering
different satellite images to the same coordinate system may introduce geometric error. Therefore, the
HNN-SPOT algorithm was also tested with the real dataset to demonstrate its applicability to real
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world applications (Figure 6). Two study sites in Australia were selected to test the fusion algorithm
for their spatial and temporal characteristics respectively [23]. The tests apply to real data fusion
between Landsat and MODIS reflectance with scale factor of 16. The site Coleambally irrigation
area is considered as spatially heterogeneous due to crop phenology differences over the irrigation
area. The Landsat reflectance on 2 November 2001 and MODIS reflectance (resampled to 480 m using
nearest-neighbor method) on 27 April 2002 were collected for running the HNN-SPOT algorithm.
The second study site—the Lower Gwydir Catchment—is considered as temporally dynamic since
there was a flood in mid-December 2004. The Landsat reflectance on 26 November 2004 and MODIS
reflectance (resampled to 480 m using nearest neighbor method) on 12 December 2004 were collected
by applying the HNN-SPOT algorithm (Table 2).Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 23 
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Figure 5. Simulated datasets: (a): Landsat 8 on 12/31/2013 (30 m) for study area 1; (b): Resampled
Landsat 8 on 10/18/2015 (480 m) for study area 1; (c): Landsat 8 on 10/18/2015 (30 m) for study area 1;
(d): Sentinel-2 on 1/1/2016 (10 m) for study area 2; (e): Resampled Sentinel-2 on 2/14/2017 (30 m) for
study area 2; (f): Sentinel-2 on 2/14/2017 (10 m) for study area 2; (g): PlanetScope on 6/22/2018 (3 m)
for study area 3; (h): Resampled PlanetScope on 5/31/2018 (30 m) for study area 3; (i): PlanetScope on
5/31/2018 (3 m) for study area 3.
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Figure 6. Real datasets: (a): Landsat on 11/2/2001 (30 m) for study area 4; (b): MODIS on 4/27/2002
(480 m) for study area 4; (c): Landsat on 4/27/2002 (30 m) for study area 4; (d): Landsat on 11/26/2004
(30 m) for study area 5; (e): MODIS on 12/12/2004 (480 m) for study area 5; (f): Landsat on 12/12/2004
(30 m) for study area 5.

Table 2. Details of study areas for real datasets.

Study Area Site Names Descriptions on
Land Cover

Satellite Combinations
(Quantity being Fused)

Dates of Data
Acquisition

4
Coleambally Irrigation
Area (New South Wales,
Australia)

Crop phenology in
irrigation area

Landsat visible at 30 m +
resampled MODIS visible
at 480 m (reflectance)

2 November 2001

(34.9069◦S, 145.9546◦E) 27 April 2002 (P)

5
Lower Gwydir Catchment
(North New South Wale,
Australia)

Flooding in
mid-December,
2004

Landsat visible at 30 m +
resampled MODIS visible
at 480 m (reflectance)

26 November 2004

(29.1604◦S, 149.2694◦E) 12 December 2004 (P)

Remarks: P: Prediction date.

To achieve compatibility in setting the parameters in the HNN-SPOT, for all cases being studied,
the window size was set to be the same as the scale factor between the fine and coarse images. The
weights k1 and k2 were both set as 1 for assuring equal importance of achieving spatial detail in Ft1 and
spectral response in Ct2. thresr was defined as 1 with the assumption that the detailed spatial structure
in Ft1 remains unchanged when achieving the goal of spatial detail. λ was defined as 100, a practically
usual value [22]. ε was set to a universal value of 1% indicating the convergence of the HNN, and the
use of the unit of percentage can assure the fusion ability in different types of quantities. The influence
of different parameter settings to the performance of the HNN-SPOT algorithm will be discussed in
detail in Section 5. The STARFM algorithm was also programmed as a benchmark in evaluating the
HNN-SPOT algorithm for its popularity and acceptability in the field of spatio-temporal data fusion.
Some other advanced data fusion algorithms were not evaluated in this paper since the HNN-SPOT
algorithm is mainly developed to address the research problem of spatio-temporal data fusion when
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satellite images are limited, specifically when a known pair of images cannot be collected. It is out of
the research scope to improve the fusion accuracy with sufficient known image pairs.

In running STARFM, since it requires one more coarse resolution image at the known date for
prediction compared to HNN-SPOT, the coarse resolution images were prepared for running the
STARFM algorithm. For simulated datasets, the coarse resolution images were prepared by resampling
the fine resolution images at the known date to coarse resolution using nearest-neighbor algorithm. For
real datasets, the real coarse resolution images (i.e., the MODIS images) were collected at the known
dates. The STARFM algorithm was programmed based on [3]. The searching window size was set
as 1 coarse pixel so that it is comparable to the window size defined in HNN-SPOT. Since STARFM
requires classification data to search for similar pixels, fine resolution classification maps at the known
dates were prepared for all study sites. The classification maps were produced using the K-means
unsupervised classification algorithm with 4 classes.

To evaluate the fusion results of HNN-SPOT, both quantitative and qualitative measures were
adopted. For quantitative assessments, the measures used include the root mean square error (RMSE) to
measure the difference between the actual reflectance/radiance and the predicted reflectance/radiance,
average difference (AD) indicating the overall bias, correlation coefficient (r) assessing the linear
relationship between the actual reflectance/radiance and the predicted reflectance/radiance, and
structural similarity (SSIM) [24] comparing the visual structure between the actual image and the
predicted image. It is noted that a positive AD indicates overestimation, and SSIM close to 1 indicates
a high similarity between the compared images [12]. For qualitative measures, the fusion results
were assessed based on visual comparison on the spatial and tonal similarity between the predicted
and the true images. Some obvious features on the images were discussed for whether they were
captured successfully.

4. Results

Referring to the tests done in the study areas using simulated datasets, i.e., study area 1–3, both
HNN-SPOT and STARFM produced satisfactory results with low RMSE and AD, and high r and
SSIM (see Table 3). The fusion accuracy of HNN-SPOT in these sites was found to be comparable
to that of STARFM, even with slightly higher accuracy. Possible reasons for the compatible fusion
result by HNN-SPOT compared to STARFM can be due to (1) the similar assumption of the sampling
theory between the fine and coarse pixels, and (2) the same usage of moving window in the algorithm,
although different mechanisms are applied in the two models. The fusion tasks for study areas 1–3 can
be considered as elementary since most of the areas remain unchanged in their spatial details, which
indicates that the spatial details of the fine resolution images can be captured over the unchanged areas.
Although some spatial features/land uses in study areas 1–3 were changed, the areas of change are
large enough to be captured by the coarse resolution images and the fusion algorithms can still use
the coarse spectral information to produce satisfactory predictions, although with indistinct object
shapes. For example, referring to Figure 7 (study area 1), the vegetation area, where the land cover is
consistent, can be favorably predicted with close spatial structure and spectral tone. For the newly built
reclamation island near the Hong Kong International Airport, it can still be captured in a relatively
indistinct shape although there is no information about its spatial details at the known date. Referring
to Figure 8 (study area 2), the unchanged urban structures can be captured satisfactorily and the
changing vegetation pattern in the racecourse can still be captured but appears blurred. In Figure 9
(study area 3), the overall spatial details and spectral tone of the cropland were successfully predicted.
However, for the changed areas, the fine spatial patterns (e.g., the strips) cannot be produced due to
the absence of such details in the fine resolution image at the known date. The fusion accuracies are
consistent for HNN-SPOT in study areas 1–3, however, for STARFM, there is a significant decline in
accuracy for study area 2. This may imply that HNN-SPOT is stable for different scale factors, while
STARFM may not be.
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Table 3. Quantitative assessments on HNN-SPOT and STARFM (for study area 1-3).

RMSE AD r SSIM

Study area 1: Lantau Island and Hong Kong International Airport (scale factor = 16)
Reflectance fused by HNN-SPOT
Blue 0.0036 0.0003 0.9645 0.9625
Green 0.0047 0.0003 0.9493 0.9458
Red 0.0065 0.0001 0.9363 0.9310
Reflectance fused by STARFM
Blue 0.0037 −0.0002 0.9632 0.9611
Green 0.0050 −0.0003 0.9442 0.9394
Red 0.0072 −0.0006 0.9230 0.9119

Study area 2: Hong Kong Island (scale factor = 3)
Reflectance fused by HNN-SPOT
Blue 0.0122 −0.0003 0.9463 0.9446
Green 0.0098 −0.0002 0.9366 0.9340
Red 0.0085 −0.0003 0.9388 0.9363
Reflectance fused by STARFM
Blue 0.0187 −0.0009 0.8682 0.8600
Green 0.0146 −0.0001 0.8544 0.8457
Red 0.0123 −0.0002 0.8656 0.8608

Study area 3: Werribee South (scale factor = 10)
Radiance fused by HNN-SPOT (W/m2srµm)
Blue 1.4702 0.0122 0.9176 0.9165
Green 1.3320 0.0080 0.9390 0.9379
Red 1.6454 0.0066 0.9344 0.9332
Radiance fused by STARFM (W/m2srµm)
Blue 1.6065 0.0336 0.8943 0.8942
Green 1.5078 0.0476 0.9169 0.9169
Red 1.8133 0.0675 0.9149 0.9148
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Figure 7. Fusion results for Lantau Island and the Hong Kong International Airport on 18 October
2015, zoomed to the unchanged vegetation area (images in the 2nd row) and the newly built artificial
island (images in the 3rd row). (a) Landsat 8 at 30 m; (b) fused image at 30 m by HNN-SPOT; (c) fused
image at 30 m by STARFM.
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Figure 8. Fusion results for the Hong Kong Island on 14 February 2017, zoomed to a piece of the
unchanged area with half urban and half vegetation cover (images in the 2nd row) and the racecourse
with notable changes (images in the 3rd row). (a) Sentinel-2 at 10 m; (b) fused image at 10 m by
HNN-SPOT; (c) fused image at 10 m by STARFM.

For study areas 4 and 5, they are regarded as challenging sites for data fusion, since the spatial
structures vary significantly, especially for the Coleambally irrigation area. Here, the changing spatial
structures over the Landsat image are relatively small compared with the MODIS image. Therefore, it
will be difficult for fusion algorithms to produce accurate results if only the coarse resolution image
is available at the prediction date. In addition to the challenge due to abundant change of spatial
structures, the inconsistency of sensor characteristics such as different spectral bands and observation
angles also pose challenges in the fusion implementations and induce errors in the fusion results. In
Table 4, both HNN-SPOT and STARFM show unsatisfactory results with low r and SSIM. This suggests
the fusion algorithms cannot predict the spatial structures accurately. Referring to Figure 10, both
HNN-SPOT and STARFM cannot produce precise tonal behavior in the irrigation areas. This is due to
the assumption of consistent spatial patterns between the known date and the prediction date for both
fusion algorithms. Therefore, for HNN-SPOT, it distributes the coarse spectral information of MODIS
at the prediction date to the spatial structures of Landsat at the known date, instead of constructing
new spatial structures as expected in the Landsat image at the prediction date. The fusion results
from both HNN-SPOT and STARFM indicate that the flooded areas were loosely captured without
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concrete shape (Figure 11). This problem is also due to the assumption of consistent land cover pattern
over the same geographic extent between the known date and the prediction date. Comparing the
quantitative measures for HNN-SPOT and STARFM over study areas 4 and 5, STARFM shows more
promising results in the Coleambally irrigation area while results of HNN-SPOT are more promising
in the lower Gwydir catchment. As suggested by [23], the Coleambally irrigation area is deemed as
spatially dynamic and the lower Gwydir catchment is deemed as temporally dynamic. This may
suggest that the inclusion of a spatial relationship between the fine resolution image and the coarse
resolution image at the known date is more useful in modeling spatial dynamics, but not necessary for
the temporal dynamics.
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the 2nd row and the 3rd row). (a) PlanetScope at 3 m; (b) fused image at 3 m by HNN-SPOT; (c) fused
image at 3 m by STARFM.
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Table 4. Quantitative assessments on HNN-SPOT and STARFM (for study area 4 and 5).

RMSE AD r SSIM

Study area 4: Coleambally Irrigation Area (scale factor = 16)
Reflectance fused by HNN-SPOT
Blue 0.0506 −0.0494 0.4062 0.3545
Green 0.0496 −0.0469 0.3746 0.3183
Red 0.0583 −0.0518 0.4256 0.3521
Reflectance fused by STARFM
Blue 0.0440 −0.0425 0.4086 0.3740
Green 0.0405 −0.0369 0.3892 0.3581
Red 0.0476 −0.0387 0.4272 0.3918

Study area 5: Lower Gwydir Catchment (scale factor = 16))
Reflectance fused by HNN-SPOT (W/m2srµm)
Blue 0.0143 −0.0039 0.6973 0.6927
Green 0.0217 −0.0065 0.6927 0.6870
Red 0.0271 −0.0077 0.6967 0.6919
Reflectance fused by STARFM (W/m2srµm)
Blue 0.0169 0.0087 0.6606 0.6527
Green 0.0235 0.0095 0.6605 0.6497
Red 0.0294 0.0112 0.6605 0.6525
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Figure 10. Fusion results for Coleambally irrigation area on 27 April 2002, zoomed to two changing
irrigation areas (images in the 2nd row and the 3rd row). (a) Landsat at 30 m; (b) fused image at 30 m
by HNN-SPOT; (c) fused image at 30 m by STARFM.
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Figure 11. Fusion results for lower Gwydir catchment on 12 December 2004, zoomed to two areas
covered by water (images in the 2nd row and the 3rd row). (a) Landsat at 30 m; (b) fused image at 30 m
by HNN-SPOT; (c) fused image at 30 m by STARFM.

The test results using both the simulated datasets and real datasets show that HNN-SPOT is
compatible with STARFM, a benchmark algorithm in spatio-temporal data fusion. The HNN-SPOT
algorithm should be useful in efficiently distributing the coarse spectral information at the prediction
date to the spatial details, which is assumed unchanged, at the known date. If there are changes
in spatial structure which are evident enough to be captured by the coarse resolution image at the
prediction date, HNN-SPOT can still produce preliminary estimations for them, although with low
details. If there are changes in spatial details which cannot be evidently captured in the coarse
resolution image (due to large scale factor), HNN-SPOT fails to produce satisfactory results for the
new spatial arrangements. In this regard, HNN-SPOT should be considered as a fusion algorithm
for land cover with consistent spatial structures, when observation data are limited to perform more
advanced data fusion algorithms.

5. Sensitivity Tests

Several parameters were input into the HNN-SPOT algorithm. This section analyzes the influence
of different parameter settings on the fusion results. In conducting the sensitivity tests, only the target
parameter was varied while others were kept constant. The blue reflectance band of Lantau Island and
the Hong Kong International Airport area (study area 1) was used for the sensitivity test.
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5.1. Varying the Window Size

The window size in HNN-SPOT determines the extent of area to be covered in calculating the
correlation coefficient between the fine images at the known date and at the prediction date. Smaller
window size indicates that the correlation coefficient is determined using a smaller area extent, and
vice versa. To evaluate the impact of different window sizes on fusion results, window sizes from
1 coarse pixel to 3 coarse pixels were tested. In Figure 12, it is shown that the RMSE increases and
r decreases as window size increases. This can be explained by the fact that stronger correlation
between fine images at the known date and the prediction date is easier to achieve with larger window
size. Therefore, when larger window sizes are used, the algorithm loses the rigorous requirement in
maintaining fine spatial details. It should be noted that this argument assumes consistent land cover
between the known date and the prediction date, and therefore it may not be applicable to areas with
significant spatial changes.
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5.2. Varying the Weights k1 and k2

The weights, for the importance of maintaining the fine spatial details (k1) and coarse spectral
response (k2), affect the convergence of neurons in the HNN and therefore should be analyzed in
sensitivity tests. Different combinations of k1 and k2 have been tested from their low impacts (less
weight) to their high impacts (more weight) (Table 5). Figure 13 shows that the combinations of
(k1 = 0.50, k2 = 1.50) and (k1 = 0.75, k2 = 1.25) produces the most accurate fusion results for study
area 1. When higher weights are given to the component of maintaining the fine spatial details at
the known date (i.e., when k1 increases and k2 decreases), the fusion results show more discrepancy.
This suggests that maintaining the original spatial arrangement at the known date cannot help in
improving the fusion accuracy. This can be due to the varying spatial structures in land cover between
the known date and the prediction date, which violates the assumption of consistent spatial pattern
(the component assigned with weight k1). Regarding the combinations of k1 and k2 in producing the
optimal fusion results, it may imply that the coarse spectral information is comparably more useful in
generating reliable fusion results. However, it does not imply that maintaining fine spatial structure is
not important because when k1 is too low (i.e., when k1 = 0.25), the discrepancy in the fusion results
begins to increase.
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Table 5. Different combinations of k1 and k2.

Test Number k1 k2

1 0.25 1.75
2 0.50 1.50
3 0.75 1.25
4 1.0 1.0
5 1.25 0.75
6 1.50 0.50
7 1.75 0.25
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5.3. Varying the Threshold of correlation coefficient

In HNN-SPOT, the threshold of correlation coefficient is used to control the requirement of
correlation coefficient between the known fine resolution image and the fused image to be predicted,
as one of the components to be balanced. Setting thresr to 1 indicates the assumption of consistent land
cover between the known date and the prediction date. When it is defined as below 1, such assumption
becomes less strict. In the testing of the requirement on the correlation coefficient between the fine
resolution images, the value of thresr is varied for [1.0, 0.8, 0.6, 0.4, 0.2]. In Figure 14, it shows that
the fusion result is the most accurate when thresr is set to 1.0, where consistent land cover is assumed.
Most of the spatial structure in study area 1 remains unchanged and therefore the information of fine
spatial details at the known date is useful in prediction. For this reason, fully utilizing the fine spatial
details by setting 1.0 to thresr should produce the most accurate fusion result. Decreasing the value
of thresr uses less fine spatial details information for guiding the prediction, hence resulting in more
discrepancies in the fusion results.
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6. Discussion

HNN-SPOT is developed to tackle the spatio-temporal data fusion problem when observation data
are limited. The rationale of HNN-SPOT is based on using one fine resolution image at an arbitrary date
and one coarse resolution image at the prediction date. Due to more accurate fusion results generated
by HNN-SPOT was observed on the consistent land covers, it is recommended that the two dates used
in data fusion should be reasonably close for a higher chance that the land cover remains consistent.
The appropriateness of the time period between the known date and the prediction date depends on
different criteria such as the extent of the fusion area and the revisit time of the satellite providing fine
resolution images. In a normal case, the closer the two dates, the more accurate the fusion results will
be, since there will not be large spatial change in the fusion area. However, sometimes this practice will
not give better results due to a sudden change in the land cover, for example, flooding and snow fall.

Compared to existing spatio-temporal data fusion algorithms, HNN-SPOT uses only two images
and this significantly reduces the data prerequisite. This is advantageous in terms of increasing the
applicability of the data fusion technique when observation data are limited. For example, it improves
the feasibility of spatio-temporal data fusion in areas with frequent cloud contamination, where it is
difficult to collect several clear fine resolution images here. In addition, it enables data fusion between
two satellites covering the same area but with different overpass times (where an image pair of fine
and coarse resolution images cannot be obtained), and this is the major advantage of HNN-SPOT,
compared with other current fusion algorithms. With minimal data input, HNN-SPOT also minimizes
some preprocessing errors such as land use classification in STARFM-like algorithms.

Besides of the advantage of data minimization, HNN-SPOT can be easily modified for future
improvements owing to the HNN-based architecture. As stated in Equation (1), an energy function
is defined by the goals and constraints in a problem, and therefore, the HNN fusion model can be
easily modified by adding new goals and appropriately formulated new constraints. In the current
formulation of HNN-SPOT, fine spatial detail and coarse spectral response are balanced with equal
weight. More research could be conducted in the future to improve the algorithms in HNN-SPOT in
order to increase its ability in spatio-temporal image fusion.

Although data minimization stands out as a merit in the development of the HNN-SPOT, its
prediction accuracy decreases when more land cover changes occur. For balancing data requirement
and prediction accuracy, the accuracy of HNN-SPOT could be improved by including one more fine
resolution image in the prediction, although this would increase the data prerequisite. To start with,
the HNN-SPOT model is implemented for the fine resolution image before the prediction date and
the coarse resolution image at the prediction date, resulting in a fused image (referred to as Fused1).
The HNN-SPOT is then implemented again for the fine resolution image after the prediction date and
the same coarse resolution image at that prediction date, resulting in another fused image (referred
to as Fused2). Fused1 and Fused2 are then combined to predict the final fused fine resolution image
through appropriate interpolation. For example, if linear growth is assumed for the area that is fused,
a linear time weight can then be applied to Fused1 and Fused2 in estimating the final fused image. The
advantage of this method is the prediction of the fused image by referring to the spatial details in two
fine resolution images. When there is land cover change at the prediction date and such change still
exists in the fine resolution image after the prediction date, this modification of HNN-SPOT can use the
fine spatial information on the image after the prediction date. It can therefore predict more accurate
fusion results as it does not rely on only the spectral signal in the coarse image at the prediction date
(as in the original version of HNN-SPOT). However, when there is land cover change at the prediction
date but this change no longer exists in the fine resolution image after the prediction date, such an
additionally acquired image will not help in improving the fusion accuracy.

To apply HNN in the field of remote sensing, the developed HNN-SPOT algorithm is a new
HNN-based model used for continuous values prediction. Previous applications, for example feature
tracking and super-resolution mapping, produce discrete values such as 0 and 1 or class numbers,
and are therefore limited to classification-based applications. However, in HNN-SPOT, quantities
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with continuous values such as radiance can be predicted. Thus, the development of HNN-SPOT
provides a new approach in applying HNN to estimate quantities with continuous values in remote
sensing applications.

Limitations in HNN-SPOT include its prediction capability for objects with changing shape or
spatial structure, which is lower than that for objects with constant shape or spatial structure. This is
due to the formulation that the information of spatial detail relies on the previous fine resolution image.
Therefore, there is no reference of spatial structure for areas which undergo substantial change. In
order to accurately capture objects which undergo change, fine satellite images of another day can be
additionally included in the HNN-SPOT algorithm but more data would then be needed (as described
previously). Therefore, future effort will be made to focus on producing more accurate prediction
results over areas with land cover change. Another limitation of HNN-SPOT is the processing time,
which may be multiples of existing fusion algorithms, due to the iterations involved in the HNN
algorithm. However, this problem can be mitigated by using more powerful central processing unit
(CPU) or graphics processing unit (GPU) in the computer.

7. Conclusions

This paper presents a newly developed spatio-temporal data fusion algorithm, HNN-SPOT, which
utilizes the optimization property in the HNN algorithm to assist data fusion. HNN-SPOT uses one
fine resolution image at an arbitrary date and one coarse resolution image at the prediction date
to synthesize a fine resolution image at the prediction date. This is done by balancing the given
information of fine spatial detail and coarse spectral response. Results show that HNN-SPOT is
compatible with STARFM, a well-known and currently used data fusion algorithm, although less
data are used in HNN-SPOT. HNN-SPOT can generate accurate fusion results for areas with less land
cover change, at a low RMSE and high r (>90%). However, the prediction accuracies drop when
extensive changes occur spatially (with r around 40%) and temporally (with r around 70%). Therefore,
it is recommended to apply HNN-SPOT over the areas with less land cover change, and hence the
times between the date when the fine resolution is collected, and the prediction date should be close
enough. A possible case to apply HNN-SPOT is to generate time-series high resolution images in
a clear day from the geostationary satellites, which usually provide coarse satellite images in high
temporal frequency. This is applicable because the land cover usually remains consistent within
a day, which meets the assumption of the HNN-SPOT algorithm. Compared with current fusion
techniques, HNN-SPOT decreases the data input to two images only. Therefore, it enables data fusion
for satellites covering the same area but with different overpass times (e.g. fusion between MODIS and
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images), which could
not be achieved in the past. HNN-SPOT has shown with promising accuracy of fusion applications
over areas with consistent land covers. HNN-SPOT brings a new approach to spatio-temporal data
fusion with the use of the HNN architecture and it is expected to be improved in the future to increase
its applicability in assisting fine-scale environmental modeling and monitoring.
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