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ABSTRACT Fatigue driving is the main cause of traffic accidents. Analysis of electroencephalogram (EEG)
signals has attracted wide attention for identifying fatigue driving. With the development of the Internet
of Vehicles (IoV), we hope to establish an EEG-based IoV traffic management system to improve traffic
safety. In the proposed system, real-time diagnosis is a significant factor, and improvement of the detection
speed is our main concern. EEG signals generate a large amount of spatially oriented data over a relatively
short duration; hence, their dimension needs to be reduced effectively before being analysed. We proposes a
feature reduction method, based on a novel weighted principal component analysis (WPCA) algorithm for
EEG signals. First, the EEG features are extracted by an autoregressive (AR)model. Second, we calculate the
influence of different features on the classified performance of fatigue state. The accuracy reduction values
of different features are normalised as the weights of the features. Finally, these weights are assigned to the
WPCA to reduce the EEG features. To verify the effectiveness of the algorithm, we carried out a simulated
driving experiment involving eight participants. For comparison, power spectral density and differential
entropy models were also introduced to extract EEG features. Support Vector Machine was adopted as a
classifier to establish a fatigue driving classification experiment. The experimental results show that the
WPCA method can effectively reduce the feature dimension of different EEG feature extraction methods,
speed up calculations, and achieve a much higher classification accuracy of fatigue driving.

INDEX TERMS AR model, driving fatigue detection, feature reduction, Internet of Vehicles, WPCA
algorithm.

I. INTRODUCTION
The Internet of Things (IoT) is a methodology that can
connect objects through the Internet to work together to
achieve new goals [1]. The Internet of Vehicles (IoV) is an
application of the IoT, which can collect information about
vehicles and drivers [2]. Among this information, fatigue
driving has received much attention.

In the past ten years, the number of cars in China has
increased dramatically, and the number of traffic accidents
has increased [3]. According to relevant reports, China has
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become one of the countries defined as having frequent traf-
fic accidents. Many factors can result in traffic accidents,
the main one being fatigue driving. In a fatigued state, drivers
tend to be distracted, think less actively, and have slower
reactions, all of which increase the possibility of traffic acci-
dents [4]. Therefore, it is particularly important to detect
driver fatigue state accurately and quickly. Driving fatigue
detection, based on physiological information, is an objec-
tive means of detecting and identifying driver fatigue state
through changes in physiological indicators [5]. Studies have
shown that the body’s fatigue state can be effectively detected
and evaluated by electrophysiological information, such as
body temperature, blood pressure, electrocardiogram (ECG),
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electroencephalogram (EEG), and electromyography (EMG).
Among them, analysis of EEG signals has accepted wide
attention.

EEG reflects the electrophysiological signals of the cra-
nial nervous system [6], and can be used to detect and
analyse driver fatigue state. For example, Gao et al. pro-
posed an EEG-based spatio-temporal convolutional neural
network to detect driver fatigue [7], whilst a graph anal-
ysis method of functional brain network topology (using
minimum spanning tree) was proposed by Chen et al. for
detecting driver drowsiness [8].Wang et al. developed a novel
real-time driving fatigue detection methodology, based on
dry EEG signals [9], and Pei et al. proposed a method based
on EEG signal analysis to study the fatigue characteristics
of drivers of different ages [10]. Wang et al. proposed a
method for analysing feature fatigue EEG signals based on
wavelet entropy [11], whilst Hu et al. proposed a driving
fatigue detection method based on EEG signals using fuzzy
entropy [12]. Min et al. proposed a method based on multi-
entropy fusion of EEG system to detect driver fatigue [13].
Wang et al. proposed an EEG-based system for evaluating
driver fatigue with only one electrode by ensemble learn-
ing [14]. Pathak and Jayanthy designed a portable, low-cost
brain-computer interface drowsiness-detection system [15].
Cheng et al. proposed an EEG-based prediction system that
transforms the measured EEG record into image-like data for
estimating the drowsiness level of drivers [16]. Gao et al.
proposed a novel relative wavelet entropy complex network
for improving EEG-based fatigue driving classification [17].
Foong et al. proposed an iterative negative-unlabeled learning
algorithm for detecting cross-subject of passive fatigue from
labelled alert and unlabeled driving EEG data [18]. Luo et al.
proposed an adaptive multi-scale entropy feature extraction
algorithm for fatigue driving detection [19]. Han et al. intro-
duced complex network theory to study the evolution of brain
dynamics under different rhythms of EEG signals during
several periods of the simulated driving [20].

EEG signals generate a large amount of spatially
oriented data over relatively short durations, which leads to
a big data problem. Big data requires secure storage and
high computing resources for real-time processing [21]–[23].
To increase the processing efficiency, and satisfy the real-time
requirement more effectively, the dimension of EEG signals
need to be reduced properly. Principal component analy-
sis (PCA) is a commonly used dimension reduction method.
It can analyse the main influencing factors from multiple
contexts, reveal the essence of entities, and simplify complex
problems. Liu et al. proposed a hybrid dimension feature-
reduction scheme using 14 different features extracted from
EEG recordings [24]. To reorder the combined features into
max-relevance with the labels and min-redundancy of each
feature, maximum relevance minimum redundancy (mRMR)
was applied. PCA was used to further reduce the gen-
erated features for extracting the principal components.
Bousseta et al. extracted EEG features by continuous
wavelet transform (CWT) and empirical mode decomposition

(EMD) [25]. PCA was introduced for feature dimension
reduction, and the left and right handmotion imaging classifi-
cation was performed by using a linear and radial basis func-
tion (RBF) kernel function with a Support Vector Machine
(SVM) classifier. Sun et al. proposed a fusion algorithm
based on PCA for nonlinear global features and power spec-
tral entropy [26]. Combining the power spectral entropy
of EEG and the nonlinear attribute features (such as Hurst
index), PCA was introduced for dimension reduction and
feature fusion, and SVM was used as a classifier for emotion
recognition. Neshov et al. proposed an algorithm, which
could identify five psychological tasks using 6-channel EEG
data [27]. The main aim was to divide the original EEG
signals into several frames and calculate their spectrum, apply
the Gaussian second derivative to extract features, and use
PCA to reduce feature dimension. Li et al. extracted 8 positive
and negative emotions from a dataset, representing the data
of 14 channels from the different regions of the brain [28].
Based on wavelet transform, δ, θ , α, and β rhythms were
extracted. On this basis, PCA was used to fuse EEG fea-
tures of wavelet features, approximate entropy and Hurst
exponents, and to reduce feature dimension. Zarei et al. pro-
posed a feature extraction method [29], which was combined
with PCA and the cross-covariance technique (CCOV). The
algorithm extracted discriminant information from themental
state, based on EEG signals in a brain-computer interface
technology application, and applied correlation-based vari-
able selection.

In the application of PCA, predecessors are based on data
variance reduction and treat each dimension feature equally.
However, different features play different roles in the recog-
nition process; therefore, it is necessary to assign different
weights to the feature values [30]. Weighted PCA (WPCA)
weights the original feature data, and finds the linear com-
bination with the largest variance according to the idea of
PCA [31].

With the development of the IoV, we propose an
EEG-based IoV trafficmanagement system to improve traffic
safety [32]–[37]. The proposed system is composed of a
fatigue detection system, the IoV, and a traffic management
platform, as shown in Fig.1.

The fatigue detection system includes an electric source
imaging (ESI) neuroscan system and a fatigue diagnosis sys-
tem. The ESI neuroscan system is equipped with 40 elec-
trodes, which are arranged according to the International
10−20 system, with a sampling frequency of 200 Hz. Among
the 40 electrodes, in addition to the 4 electrodes as the internal
structure, 2 are defined as reference electrodes and 4 (placed
across the horizontal and vertical directions) are used tomoni-
tor eye movement. Therefore, the remaining 30 electrodes are
used to collect EEG signals. The fatigue diagnostic system is
a supercomputer equipped withWPCA and SVM algorithms.
WPCA algorithm is a dimension reduction method, and SVM
is an efficient supervised two-category classifier.

Working principle of the EEG based IoV traffic man-
agement system: The system is able to detect the driver’s
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FIGURE 1. EEG-based IoV traffic management system.

fatigue status in real time. It works online and guarantees
processing time. The driver’s EEG signals are collected by
the ESI neuroscan system and transmitted to the fatigue
diagnosis system through a 5G network in real-time. Prior
to acquisition, the skin impedance of the EEG electrodes
is adjusted to below 5 k� by injecting conductive gel. The
fatigue diagnosis system reduces the EEG signals using the
WPCA algorithm, diagnoses fatigue status using SVM, and
uploads the detection result to the IoV. If fatigue is detected,
the traffic management platform will remind the driver to
either limit their speed or stop and have a rest, whilst warning
the surrounding vehicles. Of course, the platform also collects
the date, time, location, and frequency statistics of fatigue
for each driver. Accordingly, the system can improve traffic
safety.

Real-time diagnosis is of significant importance in
an EEG-based IoV traffic management system; hence,
we need to improve the detection speed. Because EEG is a
high-frequency signal, a large amount of data is generated in
a short period, meaning that methods to reduce the dimension
of EEG signals need to be studied intensively.

In this paper, we propose a feature reduction method based
on a novel WPCA algorithm for EEG signals. The autore-
gressive (AR) model is introduced to extract the features
of the EEG signals recorded by drivers during a simulated
driving experiment. We calculate the influence of different
features on the fatigue state classification performance. Then,
the accuracy reduction values of different features are nor-
malised as the weights of the features. SVM is selected as
the classifier, and accuracy, sensitivity, and specificity are
used as classification evaluation indicators. Simultaneously,
three sets of control experiments (SVM, PCA-SVM, and
WPCA-SVM) are designed.

The rest of this paper is organised as follows:
Section 2 introduces the simulation driving experiment and
data acquisition. Section 3 describes and explains the com-
ponent of the WPCA. Experimental results and discussions
are explained in Section 4. Finally, the summary is presented
in Section 5.

II. SIMULATION DRIVING EXPERIMENT
AND DATA ACQUISITION
In the simulated driving experiment, 8 right-handed college
students aged 19 to 26 (4 males and 4 females; mean age:
22.73) volunteered to participate in the experiment, and no
one has mental illness. In the simulation of EEG, eight
subjects are able to reveal the effectiveness of the proposed
method [7], [38], [39]. Two days before the experiment,
subjects were asked to avoid ingesting any anti-fatigue related
products. Further, they were also required to maintain reason-
able rest and sleep of more than 7 h a night. Because none
of the subjects had access to the driving simulator, they had
to practice driving before the experiment until they became
proficient.

We conducted the experiment at the Intelligent Systems
Laboratory in the Tianjin University Complex Network.
We used the PGFD001 driving simulator, which was
equipped with a pedal, steering wheel, and clutch. In the
virtual driving software 3DInstructor2, we used the ordinary
car (Phaeton2.0L), which incorporated automatic shifting by
default. In addition, a webcam 360D618, projector, and stereo
speakers were added to enhance perception. The experimen-
tal setup is shown in Fig.2.

Full-scalp EEG signals were collected in an isolated and
quiet room. In addition, we also monitored the subjects’
facial status through a front-facing camera to verify fatigue.
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FIGURE 2. Experimental setup: (a) The experimental scene from the perspective of the researchers.
(b) Brain caps of the neuroscan system.

Before the experiment, it took 10 min to set up the scene,
and 20 min to practice driving. After the experiment started,
the subjects continued driving until they were reported to
have mild fatigue, which was usually after 30 minutes, prior
to this the drivers were considered to be in an alert state.

Following 10 min of continuous driving (as a transition),
the subjects were subjected to another 30 min driving in
a fatigued state. The recording time for each subject was
close to 90 minutes, which varied slightly due to individual
differences.

To record the drivers’ fatigued state, the EEG record-
ing device is equipped with an ESI neuroscan system with
40 electrodes, which are arranged according to the Interna-
tional 10-20 system, with a sampling frequency of 200 Hz.
Prior to acquisition, the skin impedance of the EEG elec-
trodes was adjusted to below 5 k� by injecting conductive
gel. During the experiment, all subjects were required to
minimise unnecessary body movements and maintain a con-
stant driving speed to avoid collisions. Among the 40 elec-
trodes, in addition to the 4 electrodes as the internal structure,
2 are defined as reference electrodes and 4 (placed across
the horizontal and vertical directions) are used to monitor
eye movement. The original EEG signals were subjected
to interference based on high frequency and low frequency
noise based on eye electricity; therefore, they needed to
be pre-processed by the EEGLAB toolbox. We obtained
30-channel EEG signals after eliminating the interference of
noise and electro-optical artefacts.

From the collected data we selected the first 10 min of the
alert state as the non-fatigue data, and the last 10 min of the
fatigue state as the fatigue data. Data were split by a sliding
window with a fixed length of 1 s and no overlap. After the
data segmentation was completed, we had acquired 1200 sets
of samples from each subject.

III. WEIGHTED PRINCIPAL COMPONENT ANALYSIS
To satisfy the requirement of real-time data acquisition,
we need to reduce the dimension of the EEG signals.
The commonly used dimension reduction method is PCA,

which can analyse the main influencing factors from mul-
tiple contexts, reveal the essence of entities, and simplify
complex problems. The purpose of calculating the principal
component is to transform the data into a new coordinate
system, and project the high-dimensional data into a lower
dimensional space. The main idea of PCA is to find a linear
combination that can account for the largest change in the
value of the initial variable, which also means finding a
linear combination with the largest variance. PCA is based
on data variance reduction, and treats each dimension feature
equally. However, different features play different roles in the
recognition process. It is conceivable to strengthen some key
features of recognition, while weakening certain non-critical
features (such as little correlation information), to improve
the recognition accuracy. Based on this, we propose a WPCA
method. The WPCA algorithm flow chart is shown in Fig.3.

ARmodel has been widely introduced into EEG researches
[40]–[44]. The advantage of AR model lies in its inherent
ability to simulate the peak spectrum of EEG signals. It is
an all-pole model that can effectively solve the problem of
sharp changes in the spectrum, and requires the selection of
the model order number. If the AR model order is too low,
the signal cannot be captured successfully. However, if it is
too high, more noise is captured.

The principle of AR model is as follows:

x(t) =
p∑
k=i

a(k)x(t − k)+ e(t), (1)

where x(t) represents the EEG data at time t , p represents the
AR order number, e(t) is the white noise sequence, and a(k)
represents the AR model coefficients.

We tested the 3rd, 4th,. . .,7th, and 8th order AR models.
The experimental results showed that the 3rd, 4th, and 5th

order AR models were optimum. Hence the 3rd, 4th, and 5th

order AR models were used as feature extractors. The size of
the AR features is equal to the AR order number multiplied
by 30 EEG channel units. Therefore, the 3rd, 4th, and 5th
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FIGURE 3. The WPCA algorithm flow chart.

order AR models obtained 90, 120, and 150 feature units,
respectively.

For comparison, power spectral density (PSD) and
differential entropy (DE) were also used as feature
extractors. The PSD of each of the frequency bands
were calculated by discrete Fourier transform (DFT).
The DE is equal to the logarithm of energy spec-
trum (ES) in a certain frequency band [45]. EEG
includes five frequency bands: δ(1 − 3Hz), θ (4 − 7Hz),
α(8− 13Hz), β(14− 30Hz) and γ (31− 50Hz). Each of fre-
quency bands can obtain 5 feature units; hence, 30 channels
can obtain 150 feature units.

To improve recognition accuracy, reduce the training
time of the recognition model, and increase learning
speed, we need to focus on dimension reduction of the
high-dimensional feature parameters, by selecting some prin-
cipal elements with high contribution rates to constitute the
indicators of fatigue recognition EEG signals [46], [47].

The dimension reduction algorithm is described as follows:
1) Calculate the weights:
Assuming the proposed feature is n-dimensional, SVM

is introduced to train the n-dimensional data, and obtain
the classification accuracy A. The first dimensional data
is removed, and the remaining n − 1 dimensional data is
trained by SVM. Hence, we can obtain the classification
accuracy A1. Then, the second dimensional data is removed,
and we can obtain the classification accuracy A2 by SVM,
and so on. Accordingly, the accuracy A1,A2, . . . ,An of the n

classifications can be obtained. If each accuracy is different
from accuracy A, then n differences (D1,D2, . . . ,Dn) can be
obtained. 

D1 = A− A1
D2 = A− A2
. . . (i = 1, 2, . . . , n).
Dn = A− An

(2)

If the difference is positive, this indicates that the
dimension feature has a positive influence on the classifica-
tion, otherwise, there is a negative impact. The n differences
are normalised as weights for each dimension feature.

Normalisation function:

wi =
Di − Dmin

Dmax − Dmin
(i = 1, 2, . . . , n), (3)

where Di is the data before normalisation, Dmax is the maxi-
mum value of the sample, Dmin is the minimum value of the
sample, and wi is the data after normalisation.
2) For the weights wi(i = 1, 2, n), we construct a weight

diagonal matrixWn∗n:

Wn∗n =


w1

w2
. . .

wn

. (4)

3) Write the extracted data sample set as an m ∗ n
dimensional matrix:

Xm∗n =


x11 x12 · · · x1n
x21 x22 · · · x2n
· · · · · · · · · · · ·

xm1 xm2 · · · xmn

. (5)

4) Introduce a weight diagonal matrix Wn∗n to construct
weighted new data:

Zm∗n = Xm∗n ∗Wn∗n

=


x11 x12 · · · x1n
x21 x22 · · · x2n
· · · · · · · · · · · ·

xm1 xm2 · · · xmn

 ∗

w1

w2
. . .

wn



=


z11 z12 · · · z1n
z21 z22 · · · z2n
· · · · · · · · · · · ·

zm1 zm2 · · · zmn

. (6)

5) Calculate the covariance matrix C ′ of the input data
matrix Zm∗n:

C ′ =
1

n− 1
ZTZ . (7)

6) Decomposition of the covariance matrix:

λiui = C ′ui, i = 1, 2, · · · , n. (8)

The eigenvalues λ1, λ2, . . . , λn of the covariance matrix
(arranged in descending order) and the corresponding uni-
tized eigenvectors u1, u2, . . . , un are calculated.
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7) Select the principal component according to the
cumulative contribution rate and construct the mapping
matrix P′:
When taking the first n principal components, the cumula-

tive contribution rate of the ith(i ≤ n) principal components
is calculated as follows:

αi =

i∑
j=1
λj

n∑
j=1
λj

. (9)

According to the cumulative contribution rate, the first k
feature vectors are selected and combined to form a mapping
matrix P′:

P′ = [u1, u2, · · · , uk ] . (10)

8) Use the mappingmatrix to obtain the reconstructed EEG
data features:

Y ′ = ZP′. (11)

IV. EXPERIMENTAL RESULTS AND ANALYSIS
SVMwas adopted as a classifier to establish a fatigue driving
classification experiment. SVM is an efficient supervised
two-category classifier, which plays an important role in
data classification for small samples, nonlinear, and high
dimensional modes. SVM has been widely utilized in EEG
classification researches [48]–[53]. We established three sets
of experimental methods: (1) SVM; (2) PCA-SVM (with a
cumulative contribution rate of 0.95); and (3) WPCA-SVM
(with a cumulative contribution rate of 0.95).

To verify the reliability of the experimental results,
this paper used a 10-fold cross-validation method. Here,
the dataset is divided into 10 parts; 1 part as the test set, and
the remaining 9 as the training set. The cross-validation is
repeated 10 times so that each copy can be tested once as a
test set, and the average of the 10 test data is taken as the
result.

To assess the classification results, the following three
indicators are used [4]:

Accuracy =
TP+ TN

TP+ FN + FP+ TN
∗ 100%, (12)

Sensitivity =
TP

TP+ FN
∗ 100%, (13)

Specificity =
TN

TN + FP
∗ 100%. (14)

Here, TP is the number of positive samples that are cor-
rectly identified (the number of samples correctly recognised
as fatigue driving); TN is the number of negative samples
that are correctly identified (the number of samples correctly
recognised as normal driving); FN is the number of positive
samples that are not recognised (the number of samples for
fatigue driving as normal driving); and FP is the number
of negative samples that are not recognised (the number of
samples for normal driving as fatigue driving). The accuracy

rate reflects the proportion of the samples with the correct
classification to the overall samples. The sensitivity reflects
the classification accuracy of the positive samples, and the
specificity reflects the classification accuracy of the negative
samples.

For the EEG data of eight subjects, the experimental results
are shown in Fig.4.

Based on the experimental results of eight subjects, the
following was established: Comparing the five feature extrac-
tion methods, the 4th order AR model achieved the best
classification results. When using the WPCA-SVM, all three
indicators reached the highest value. Individual differences
had a significant impact on the experiment. For example,
the accuracy of subject 2 was clearly lower than the other
seven subjects. We averaged the test results for eight subjects,
as shown in Table 1.

Comparing the three experimental methods, the three
performance indicators ofWPCA-SVMwere better than both
PCA-SVM and single SVM without dimension reduction.

Comparing the five feature extraction methods:
i) Extract features by the 3rd order AR model: When

using WPCA-SVM, the accuracy, sensitivity, and
specificity increased by 5.71%, 5.85%, and 6.12%,
respectively, compared with the classification results
using SVM alone; the accuracy, sensitivity, and speci-
ficity increased by 3.50%, 3.88%, and 3.14%, respec-
tively, compared with the classification results of
PCA-SVM.

ii) Extract features by the 4th order ARmodel:When using
WPCA-SVM, the accuracy, sensitivity, and speci-
ficity increased by 4.39%, 4.33%, and 4.51%, respec-
tively, compared with the classification results using
SVM alone; the accuracy, sensitivity, and specificity
increased by 3.11%, 2.97%, and 3.28%, respectively,
compared with the classification results of PCA-SVM.

iii) Extract features by the 5th order ARmodel:When using
WPCA-SVM, the accuracy, sensitivity, and speci-
ficity increased by 6.78%, 7.24%, and 6.41%, respec-
tively, compared with the classification results using
SVM alone; the accuracy, sensitivity, and specificity
increased by 5.28%, 5.57%, and 4.98%, respectively,
compared with the classification results of PCA-SVM.

iv) Extract features by PSD: When using WPCA-SVM,
the accuracy, sensitivity, and specificity increased by
6.75%, 7.06%, and 6.56%, respectively, comparedwith
the classification results using SVM alone; the accu-
racy, sensitivity, and specificity increased by 5.12%,
5.05%, and 5.20%, respectively, compared with the
classification results of PCA-SVM.

v) Extract features by DE: When using WPCA-SVM,
the accuracy, sensitivity, and specificity increased by
5.82%, 6.01%, and 5.67%, respectively, comparedwith
the classification results using SVM alone; the accu-
racy, sensitivity, and specificity increased by 3.99%,
4.06%, and 3.89%, respectively, compared with the
classification results of PCA-SVM.
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FIGURE 4. Eight subjects’ experimental results.

We could find that the classification results were optimum
when the 4th order AR model was used. When using the

SVM classifier alone, all three indicators were greater than
93%;when using PCA-SVM, all three indicators were greater
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TABLE 1. Average results for eight subjects.

TABLE 2. Comparison of features and the amount of data.

than 95%. Therefore, when using WPCA-SVM, the three
indicators achieved the highest, but only by a small margin.

We compared the number of features and data volume
before and after dimension reduction, where the amount of
data was calculated through

theamountof data = samples× channels× features. (15)

We averaged the results for 8 subjects, as shown in Table 2.
It was found that by using PCA for dimension reduction,

the feature dimension significantly declined. Using WPCA,
the feature dimension (and the amount of data) decreased
more obviously, and this made the proposed WPCA an effec-
tive solution for the EEG big data processing problem.

The following overall observations can be attained:
1) Comparison of the three experimental methods showed

that when the SVM classifier was used alone, the data
feature dimension was higher, which made the classifi-
cation task more difficult. When using PCA to reduce
the dimension, each dimension feature was treated
equally, but the different features played different roles
in the identification process. When using WPCA to
reduce the dimension, the weights were determined
in relation to the importance of different features in
the recognition. This enhanced certain features that
identified key features and attenuated redundant fea-
ture information. Therefore, the experimental results of
WPCA-SVM were superior to SVM and PCA-SVM,
and all indicators were improved.

2) The classification results obtained by extracting
features with the 4th order AR model were the best,
and the three indicators could reach the highest value
compared to the other five feature extraction methods.
This was because the 4th order AR model could track
EEG signals accurately, and did not capture too much
noise. When the 3rd AR model was used as a feature
extractor, because only three features were extracted
per channel, the EEG signals could not be well char-
acterised. However, more noise was captured due to
the higher order number when the 5th AR model was
used as a feature extractor. When using PSD or DE to
extract features, the performance indicators were lower
than those of the 4th order AR model. Thus, it can
be illustrated that better classification results can be
obtained when using the 4th order AR model.

3) Due to individual physiological differences, the
accuracy of the results of Subject 2 was slightly lower
than for the other subjects. The experimental results
showed that the 4th order AR model could extract the
features of EEG signals excellently, which was the
basis for accurate classification in real time. Compared
with SVM and PCA-SVM, the proposed WPCA-SVM
had a higher accuracy of fatigue detection, although
the extent of improvement in accuracy was affected
by individual differences. There were differences in
the accuracy of subjects’ fatigue state detection, but
on the whole, the accuracy was improved after using
WPCA-SVM. Therefore, these individual differences
hardly affected the effectiveness of the proposed
WPCA method.

4) The high frequency EEG signals in a short time interval
contained a large amount of raw sample data, which
led to a big data analysis problem. Large-scale data
presented challenges for real-time analysis and stor-
age. Accordingly, we proposed a WPCA algorithm to
reduce the dimension of the original data, according to
the impact of different attributes on the classification
results. The algorithm reduced the feature dimension,
and improved the accuracy of the classification, which
facilitated big data processing.

V. SUMMARY
In this paper, an EEG-based IoV traffic management system
has been proposed to improve traffic safety. We proposed a
feature reductionmethod, based on a novelWPCA algorithm,
to reduce the dimension of EEG signals for the purpose of
real-time requirement. To verify the algorithm, we carried
out a simulated driving experiment involving eight subjects.
For comparison, the 3rd, 4th, and 5th order AR models, PSD,
and DE were used as feature extractors. We determined the
weights according to the importance of different features in
the recognition, and SVM was selected as the classifier. The
accuracy, sensitivity, and specificity were introduced as the
classification evaluation indicators. At the same time, three
experimental methods (SVM, PCA-SVM, andWPCA-SVM)
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were designed for each feature extractor. The experimental
results indicated that when using the 4th order AR model to
extract features, the classification results of the 8 subjects
could attain the highest accuracy. Compared to SVM and
PCA-SVM, the proposed WPCA-SVM achieved the best
performance with various feature extraction methods. Over-
all, the algorithm greatly reduced the amount of data and
improved the accuracy of the classification, which was more
suitable for big data processing.

This method can be effectively applied to EEG-based IoV
traffic management systems, meeting real-time requirements.
Future research could focus on optimising the above tech-
nologies and studying real-time driving fatigue detection
systems.
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