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ABSTRACT
Artificial neural network (ANN) is widely being used in engineering applications in order to provide
predicting models to estimate the performance of the studied system under specific working con-
ditions. One of the significant characteristics that are highly practical in fluid mechanics and heat
transfer systems is the dynamic viscosity which highly affects pressure drop and also has an influ-
ence on the heat transfer performance. Due to the lack of a precise model to predict the dynamic
viscosity, in this research, experimentallymeasured dynamic viscosity of SiO2/ethylene glycol–water
nanofluid data is collected from the literature and used to present a smart model based on the
ANN technique. In order to provide a precise smart model, Multilayer Perceptron (MLP) and Radial
Basis Function (RBF) algorithms are applied in the neural network. The accuracy of the proposed
model is validated through performing error analysis. It is monitored that the employed approach is
highly potent in estimating high accuracy responses since the results ofmean square and correlation
coefficient analyses are 5.5 and 0.998 Pa s.
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1. Introduction

Nanofluids are formed by adding nano-sized parti-
cles (1–100 nm) into conventional working fluids such
as water, ethylene glycol, propylene glycol, glycol, and
engine oil (Ahmadi, Sadeghzadeh, Raffiee, & Chau, 2019;
Maddah et al., 2018; Mahyari, Karimipour, & Afrand,
2019). Insertion of nano-sized materials into the base
fluid could significantly amend thermal characteristics
such as thermal conductivity and also improve the heat
transfer rate (Ahmadi et al., 2018; Kahani, Ahmadi,
Tatar, & Sadeghzadeh, 2018). Wide variety of organic
and inorganic nano-sized materials are employed in
the preparation of nanofluids (Ramezanizadeh, Alhuyi
Nazari, Ahmadi, & Açıkkalp, 2018). These materials
can be classified into metals such as Ag, Al, and Fe
(Alawi, Sidik, Xian, Kean, & Kazi, 2018; Ghalandari,
Mirzadeh Koohshahi, Mohamadian, Shamshirband, &
Chau, 2019), ceramics including Al2O3, CuO, Fe3O4,
SiO2, and TiO2, and the group of inorganics such
as graphene, single-walled carbon nanotubes (SWC-
NTs) or multi-walled carbon nanotubes (MWCNTs)
(Cardellini, Fasano, Bozorg Bigdeli, Chiavazzo, & Asi-
nari, 2016; Ghasemi & Karimipour, 2018; Moldoveanu,
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Huminic, Minea, & Huminic, 2018). Interesting features
of nanofluids have attracted and created an opportunity
for researchers in several fields of engineering to probe
physical specifications of these materials such as ther-
mal conductivity and dynamic viscosity (Azari, Kalbasi,
Derakhshandeh, & Rahimi, 2013; Nazari, Ahmadi,
Sadeghzadeh, Shafii, & Goodarzi, 2019; Ramezanizadeh,
Alhuyi Nazari, Ahmadi, & Chau, 2019; Sahoo, Das,
Vajjha, & Satti, 2013). Ceramics such as silica nanopar-
ticles demonstrated suitable stability, appropriate iner-
tia to chemical reactions, lower density, lower electrical
and thermal conductivities in comparison to metallic
nanoparticles (Dalkılıç et al., 2018; Hamid, Azmi, Nabil,
Mamat, & Sharma, 2018). In order to address wear resis-
tance and stability in high temperatures, considerably
silica nanoparticles could be employed as a substitute for
metallic nanoparticles. While numerous investigations
analyzed the thermal conductivity ofmetallic oxides such
as Al2O3 (Gupta, Singh, Kumar, & Said, 2017), a few
just focused on assessing the impact of applying sil-
ica nanoparticles on the thermal conductivity and the
dynamic viscosity of the nanofluid. Bobbo et al. (Bobbo
et al., 2011)measured the thermal conductivity of SiO2 in
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water as the base fluid. Escher et al. (Escher et al., 2011)
fabricated high concentrations of SiO2/water nanofluid
and measured the thermal conductivity. It was moni-
tored that there was no considerable difference between
themeasurements and the values of thermal conductivity
which were obtained through the effective medium the-
ory (EMT). In contrary, Peñas et al. (Peñas, de Zárate, &
Khayet, 2008) monitored a deviation between the mea-
sured values and the EMT outputs. Abdolbaqi et al.
(Abdolbaqi et al., 2016) stated that thermal conductiv-
ity was affected by the concentration of the nanofluid,
nature of the base fluid, and also its temperature. Talib
et al. (Talib et al., 2015) approved the impact of base
fluid and concentration on the thermal conductivity.
The authors experimented SiO2/ethylene glycol/water
in different concentrations (0.1–0.5%). Kulkarni et al.
(Kulkarni, Namburu, Bargar, & Das, 2008) carried out an
experiment to determine the influence of applying SiO2
nanoparticles at the various size (20, 50, and 100 nm)
in a fluid consisted of water–ethylene glycol (40:60). It
was monitored that increasing the size of the nanoparti-
cles boosted up the heat transfer performance. It was also
expressed that increasing the concentration of nanopar-
ticles caused to increase the value of the pressure drop.
Azmi et al. (Azmi et al., 2013) carried out an experimental
investigation to analyze the effect of applying SiO2/water
nanofluid in a circular tube. In the experiment, the vol-
ume concentration of the nanofluid was varied in the
range of 0–4%, the average particle size was 22 nm, Re
number in the range of 5000–27,000, 30°C as the bulk
temperature, and boundary condition of constant heat
flux were considered. It was found out from the results
that increasing the volume concentration was yielded
to increase the heat transfer coefficient up to 3% and
more than this concentration the heat transfer coefficient
followed a decreasing trend.

Various computationalmethods are employed in engi-
neering applications to bring about targeted objectives
such as predicting the output, behavior or a specific
feature (Chuntian & Chau, 2002; Fotovatikhah et al.,
2018; Taherei Ghazvinei et al., 2018). Artificial Neu-
ral Network (ANN) is one of this methods which is
widely applied in engineering application specifically
for the purpose of predicting or estimating (Ahmadi,
2015; Ahmadi &Mahmoudi, 2016; Chau, 2017; Hajikho-
daverdikhan, Nazari, Mohsenizadeh, Shamshirband, &
Chau, 2018; Wu & Chau, 2011). Razavi et al. (Razavi
et al., 2019) studied the ability of ANFIS and LSSVM
in predicting the effect of metal-based and metal-oxides
nanofluids on the thermal performance. Amani et al.
(Amani, Amani, Jumpholkul, Mahian, & Wongwises,
2018) employed ANN structures and genetic algorithms
to propose a correlation for estimating the pressure drop

and the Nusselt number of a flow while SiO2 nanopar-
ticles were applied. Sadeghzadeh et al. (Sadeghzadeh
et al., 2019) used machine learning methods to evalu-
ate the impact of using nanofluids in solar thermal col-
lectors. Ramezanizadeh et al. (Ramezanizadeh, Alhuyi
Nazari, Ahmadi, Lorenzini, & Pop, 2019) performed
a review study and discussed the application of intel-
ligent approaches in estimating thermal conductivity
of nanofluids. In another study, Ramezanizadeh et al.
(Ramezanizadeh, Ahmadi, Ahmadi, & Alhuyi Nazari,
2019) evaluated various intelligent techniques to propose
amodel to forecast the dynamic viscosity ofAl2O3–water.
Ahmadi et al. (Ahmadi, Mohseni-Gharyehsafa, et al.,
2019) used several connectionist techniques to estimate
dynamic viscosity of Ag nanoparticles in water. Sepehr
et al. (Sepehr, Baghban, Ghanbari, Bozorgvar, & Bagh-
ban, 2018) employed LSSVM method to predict the
dynamic viscosity of n-alkanes. Zhao et al. (Zhao, Wen,
Yang, Li, & Wang, 2015) investigated the potential of
radial basis function neural networks (RBF) method
in estimating viscosity of water-based nanofluids, i.e.
Al2O3–water and CuO–water. Baghban et al. (Bagh-
ban et al., 2019) performed an investigation to evaluate
heat transfer performance of SiO2–water nanofluid in a
quadrangular-shaped cross section. The authors assessed
convective heat transfer coefficient under certain oper-
ational conditions of Re, Pr, and concentration of the
nanoparticles. The experimental outputs thenwere intro-
duced to various machine learning approaches including
LSSVM, ANFIS, and PSO to present an accurate model
which had this ability to predict the heat transfer behavior
of the flow containing nanofluid at specified conditions.

In this study, a previously published database is used
to estimate the dynamic viscosity of a nanofluid which is
SiO2/ethylene glycol–water by applying ANN techniques
(Kulkarni et al., 2008; Namburu, Kulkarni, Dandekar, &
Das, 2007). TheDynamic viscosity is selected since it is an
important parameter in fluid dynamic and heat transfer
processes. ANN techniques have this potential to provide
a numerical model with high precision output in order to
save time and costs of real experiments. Multilayer per-
ceptron (MLP) and RBF approaches were selected and
applied to the gathered experimental data. Error analy-
sis has been performed to demonstrate the accuracy of
the presented model outputs.

2. Methodology

Several smart methods have been applied for predicting
the thermal specifications of nanofluids so far. Among
them, MLP and RBF are illustrated to be the most typical
and also practical approach. The positive side of apply-
ing RBF network is the much robustness while the MLP
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Figure 1. Schematic description of the study procedure.

showed a weakness to adversarial noise. In general, the
comparative assessment between more precise results in
MLP and higher robustness determines the selection of
MLP or RBF technique.

The applied methodology is depicted in Figure 1.
Based on this figure, the 160 collected data from the lit-
erature (Kulkarni et al., 2008; Namburu et al., 2007) was
introduced to an ANN model, MLP and RBF, and then
the outputs of the model were assessed through error
analysis. 160 data were extracted from the following ref-
erences.Moreover, 24 data was employed in the test stage,
24 data was applied in the validation stage, and other
remaining 112 was utilized in the training stage. The
input variables of this study are Concentration ratio, par-
ticle size and temperature. The output function of this
study is viscosity. The proposed model fundamental is
briefly discussed in the following figure.

2.1. MLP artificial neural network

MLP is an ANN approach which is vastly employed in
optimization purposes (Zendehboudi,Wang,&Li, 2017).
The schematic illustration of the MLP-ANN approach is
presented in Figure 2.

Based on Figure 2, the MLP method comprises dif-
ferent nodes which are categorized into three layers: the
input data are inserted into the first layer which is known
as the input layer, a middle layers which are named as
hidden layers, and the output layer illustrating the final
estimation resulted out of the network. Each node has its
own specific weight vector in order to form a connection
with the nodes which are placed in the following layer.

In MLP-ANN, each node has this potential to act as the
receiver, processor, and provider of the output response.
The input layer’ nodes are totally summed up and deliv-
ered as an input of the hidden layer (Zendehboudi &
Li, 2017). Considering X as the input vector of the MLP
approach: X = [x1, x2, x3, . . . , xn]T, then, nj expressed
the hidden layer input associating to the jth node:

nj =
n∑

i=1
ωjixi + j j = 1, 2, . . . .,K, (1)

where ωji is the inter-connections weight of jth node in
the hidden layer and the ith node in the input layer, θ rep-
resents the threshold of the jth node in the hidden layer,
and K indicates the number of nodes in the hidden layer.
In order to supply the total input of the hidden nodes in
the hidden layer, utilization of a transfer function, f, is
necessary:

yj = f (nj) = f (
n∑
i=1

ωjixi + θj) j = 1, 2, . . . ,K. (2)

Transfer functions are characterized and can be
employed for different applications. The output of each
node in the hidden layer is multiplied by its correspond-
ing output weight connector. While the number of vari-
ables is the defining function in determining the number
of neurons in the input and output layers of the MLP
model, there is no approved method for specifying the
size or the numbers of neurons in the hidden layers.
The complexity of the model, amount of training data,
amount of test data, and also the existed noise in the
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Figure 2. Schematic illustration of the MLP-ANNmethod (Zendehboudi et al., 2017).

Figure 3. A typical RBF layout (Zendehboudi & Tatar, 2017).

employed data are the affecting factor in determining the
number of hidden layers (Du& Swamy, 2006). Therefore,
neurons are continuously added to the hidden layer to
obtain the optimum amount of neurons based on an iter-
ation procedure. Presence of a training stage is vital in the
formation of an estimating MLP model. The estimating
procedure is happened by setting the weight and biases
according to the data sets of input and output. The MLP
model requires a training phase and to address this issue
Backpropagation (BP) algorithm is employed to set the
weights and biases (Goh, 1995).

2.2. RBF network

The RBF neural network has some advantages over other
approaches. These advantages are its direct layout, exact
precision, and also fast training phase. The RBF net-
work is an effective feed-forward neural network layout.
Figure 3 demonstrates a typical structure of the RBF
method.

The RBF algorithm is comprised of an input layer,
a hidden layer, and an output layer. Every node in dif-
ferent layers is thoroughly connected to the previous
layer of the algorithm. The input data is inserted to the
input layer and a node is assigned to each data and then
directly transferred into the hidden layer. In the last stage,
weighted links are employed to deliver data to the output
layer. In the RBF approach, the momentous stage is the
hidden layer. In the hidden layer, the RBF is performed
as the activation function to generate the distance vector
multiplied by the corresponding bias. The hidden layer is
charged to plan the input vectors to a new space (Zende-
hboudi & Tatar, 2017). The hidden layer produces the jth
neuron as the output which is obtained as follows:

Zj = Z(||X − �j||) = exp

(
−||X − �j||2

2ξ 2j

)
, (3)

where Z states the RBF function which is here the
Gaussian function, X indicates the input vector, �j
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Figure 4. A three layer NNmodel with an arrangement of 3–7–1–1 to estimate the viscosity of nanofluid.

expresses the weight factor, and ξj denotes the standard
deviation. The symbol of || || expresses the Euclidean
norm. The standard deviation is calculated as

ξ = θm√
�
, (4)

where θm indicates the largest center-to-center distance.
� denotes the number of centers. At last, the weighted
sum of the signals from the hidden layer transferred and
gathered into the output layer:

γ =
A∑
j=1

ωjZj, (5)

where ωj represents the weight vectors and it is obtained
through the training stage.

3. ANNmodeling structure

Neural Network (NN) is a data-guidedmodel. Therefore,
experimental data is required to build the model. In this
study, the neural network utilized three sets of data and
predict the corresponding output objective. The accept-
able range of input–output data is illustrated in Figure 4.
Each NN is constructed on a specific topology. Here, the
topology is defined as the structure of the network. As can
be seen in Figure 4, the utilized neural network is formed
of three layers in order to estimate the target output, i.e.
the viscosity of SiO2 /ethylene glycol–water nanofluid.

A series of weighted coefficients are used to link input
and output. (2*5)10 edges are placed between the first
layer and the second layer. Five (1*5) edges are placed
between the second and third layers. A weight is assigned
to each edge. The weights of these edges are presented as
a [IW]2∗5 matrix and a [LW]5∗1 matrix, respectively. The
output is yielded from input data as follows:

μ = [LW]1×5 × tan h

⎛
⎝[IW]5×2 ×

⎡
⎣ ḋ
phi
T

⎤
⎦
3×1

+ [b1]5×1

⎞
⎠+ [b2]1×1. (6)

Figure 5. Modeled versus experimentally measured data – vali-
dation step (24 data).

Based on Equation (6), the output objective of the
neural network is simply calculated through a mathe-
matical formulation. The elements of [IW]5×2, [LW]1×5,
[b1]5×1, [b2]1×1 matrices are not known and are ran-
domly assigned in the first iteration. During the training
process, the elements of these matrices are manipulated
in such a way that the output of the output (μNN) coin-
cides with the real measured output (μreal) and decreases
the calculation error.

Model data error (in %) for three sets of training,
testing, and validating is illustrated in Figures 6–7. The
calculated modeling error of the training, validating, and
testing steps are obtained as less than 0.5%, 0.6%, and 1%,
respectively. The modeling error of the test stage is nat-
urally more than modeling errors of train and validation
steps since test data is not involved in the training step.

In Figure 8, the horizontal axis represents the actual
viscosity and the vertical axis is the amount of viscosity
yielded from the modeling procedure. Ideally, when the
model is completely accurate, all points are located on
the bisector of the 1st quadrant. The process is not ideal
in practice. Therefore, due to inaccuracies some points
scattered around the bisector line. The best passing line
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Figure 6. Modeled versus experimentally measured data – test
step (24 data).

(MSE) and the correlation coefficient for all sets includ-
ing training, validation, test, and total modeling process
are illustrated in Figures 9 and 10.

In this section, a comparison was made between the
results obtained from the NN modeling with the mea-
surements. The total number of data used in the model-
ing procedure is 160, 112 for training, 24 for monitoring,
and the rest for testing the network, as illustrated in the
following, Figure 11.

Figure 7. Modeled versus experimentally measured data – train-
ing step (112 data).

The modeling error of the neural network is illus-
trated in Figure 12. The difference between the model’s
response with the actual measurements is defined as the
modeling error. The histogram diagram of the error is
demonstrated in Figure 12. The histogram diagram of
the error is calculated by dividing the total error interval
into 20 equal segments and after that obtaining associ-
ated frequency of each interval and finally form the sets of
training, validation, and testing. In fact, the frequency of

Figure 8. The regression line for training, validation, and test datasets.
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Figure 9. Mean Square Error (MSE) for training, validation, test,
and in total.

Figure 10. The correlation coefficient of training, validation, test,
and in total.

Figure 11. Comparison between the obtained results from the
model with the actual measurements.

model prediction error in each sub-interval is presented
in Figure 12.

Control of theMSE is considered as the stopping point
for the training stage. Therefore, MSE curve is drawn by

Figure 12. Histogram diagram of the error and the error fre-
quency in each sub-interval.

Figure 13. Mean Square error diagram in different iterations of
the training stage of the viscosity estimating process.

considering the number of iterations of the training stage
(Figure 13). Monitoring MSE for test and validation data
is performed similar to the training data in various itera-
tions, andwhen the validation data error starts to rise, the
training phase should be ended. Iteration number 8 is the
point which the most generalization occurs. In order to
enhance the generalization trend and to lower overfitting,
the training process is set to be stopped when the valida-
tion error reaches its minimum value. Furthermore, the
mean square error (MSE) in every stage, i.e. training, val-
idation, and test, is analyzed and demonstrated that the
MSE results are approximately equal. Therefore, it can be
seen that the overfitting issue does not happen.

The error fluctuation of the training stage is illus-
trated in Figure 14. The value of MSE is progressively
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Figure 14. Error fluctuation during the training stage.

calculated in each iteration for the validation data. The
stopping point of the training stage is when the validation
error starts to reduce. The value of the validation error
is not reducing in six iterations, therefore, the algorithm
should be continued. The number 6, validation check,
is defined as the stop training index and can be eas-
ily adjusted in the software. The output response of the
model is extracted when the validation error reaches its
lowest value. In Figure 14, from 8th to 14th iterations (6
consecutive iterations), the validation error has an aug-
menting development. Therefore, the training algorithm
is terminated and the eighth iteration is reported as the
output. The mean square error is calculated as follows:

MSE =
n∑

i=1

(μNN − μReal)
2

Ne
, (7)

where μNN and μReal are the obtained value of the
nanofluid’s viscosity from the neural network model and
the measured value from the experiments, respectively.
Ne represents the total number of samples.

In Figure 15, the horizontal axis expresses the differ-
ence between the actual and estimated viscosity of the
nanofluid and the vertical axis demonstrates the error
rate obtained from the modeling. A meaningful relation-
ship can be seen and illustrates that the predicting process
has been successfully performed. To make a compari-
son between the presented model and other works which
were previously published in the literature, i.e. the FCM-
ANFISmodel (Mehrabi, Sharifpur,&Meyer, 2013),Mean
relative error of the results were calculated and a compar-
ison was made (Table 1). Based on the comparison, the
MRE of both intelligent techniques is in the same vicin-
ity and the employed model of this study has a smaller

Figure 15. Range of error between estimated and real data.

Table 1. MRE comparison of the FCM-ANFIS model and the
applied MLP-RBF model of this study.

FCM-ANFIS This study

Mean relative error (MRE) 11% 9.7%

MRE in comparison to the FCM-ANFIS model.

MRE =
n∑

i=1
100 × |(μNN − μReal)|

Ne
. (8)

4. Conclusion

In order to demonstrate the significant role of intelli-
gent methods in engineering mediums, dynamic viscos-
ity of SiO2–water–ethylene glycol nanofluid was studied
by the ANN approach. In this investigation, 160 exper-
imentally measured data were collected from the liter-
ature. ANN approach is employed to model the effect
of adding SiO2 on the dynamic viscosity of the ethylene
glycol–water fluid to be used in further investigations
of fluid dynamic or heat transfer researches. MLP-RBF
estimation algorithm is selected and their outputs are
assessed through error analysis. It was obtained from the
results that the model demonstrated acceptable output
which was so close to the actual measurements. Error
analysis illustrated that the implemented method was
able to model the dynamic viscosity with high accu-
racy since the MSE and the correlation coefficient were
obtained 5.5 and 0.998 Pa s, respectively. It can be high-
lighted that the accuracy of themodel can be enhanced by
providing amore complete dataset. Therefore, it is highly
recommended to collect more real data through experi-
ments to demonstrate and to approve the validity of the
model.
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Appendix

Table A1. Weights and biases of the MLP neural networks.

Hidden layer Output layer

Weight Biases Weight Bias

Neuron ϕ Size T bj bk

1 0.78845 12.7723 −3.954 7.5468 2.2986 1.0966
2 0.28628 −4.4808 0.76853 −1.6808 2.0457
3 0.091406 17.0011 1.0539 3.877 −2.0247
4 2.2719 −8.2645 −4.9167 −9.7804 0.41152
5 18.2464 −0.06705 9.6483 −15.7871 −0.07045
6 −0.038527 −0.17537 1.2785 1.7151 −2.5001
7 −0.82137 −7.9087 5.2944 4.8629 −1.9015
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