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ABSTRACT 

 
Severe weather poses a significant threat to flight safety and operation 

efficiency. A rerouting path is essential for aircraft to elude severe weather. 

Two issues related to rerouting are how to design a flight path and how to 

reduce operation time. We adopted ant colony optimization to design flight 

paths. The optimal time of departure was achieved through sensitivity 

analysis on various weights. Compared with current ground delay programs, 

the proposed solution can obtain the balance between total time and fuel 

consumption. 

 

Keywords: Air Traffic Management， Fuel Consumption，Ant Colony 

Optimization，Time Cost， Real-time Reroute.  

 

 

ACRONYMS 

 

ATC: Air Traffic Control 

ATFM: Air Traffic Flow Management 

ACO: Ant Colony Optimization 

BADA: Base of Aircraft Data 

FAA: Federal Aviation Administration 

FPL: Filed Flight Plan Message 

FFA: Flight Forbidden Area 

GDP: Ground Delay Programs 

LP: Linear Programming 

NWS: National Weather Service 

TAS: True Airspeed 

WS: Wind Speed 

 

                                                 
* Manuscript received, January 18, 2019, final revision, May 23, 2019 
** To whom correspondence should be addressed, E-mail: lt.hsu@polyu.edu.hk 

 



Dabin Xue   Rui Sun   Li-Ta Hsu 356 

I. INTRODUCTION 
 

The aviation industry has developed at an astounding 

pace over the past decades. Nevertheless, it is estimated 

that adverse weather results in about 70% delay events 

according to Federal Aviation Administration (FAA) 

statistics. Adverse weather, such as rain, fog, ice, snow, 

and dust, is a crucial factor for air traffic congestion. Under 

this situation, Air Traffic Flow Management (ATFM) 

plays an essential role. Traditional ATFM measures 

include Ground Delay Programs (GDP) and rerouting to 

avoid severe weather-affected regions. The former is an 

important strategy in ATFM and the purpose is to convert 

airborne delay into safer and more economic ground delay 

[1] with the sacrifice of the time cost. The latter is to 

achieve the minimum time cost and improve the airline 

operation efficiency but with the cost of fuel consumption 

because of a longer flight distance. 

In recent years, this topic has attracted lots of 

attentions from researchers. Agustin et al [2] present a 

model to minimize objective functions, which allows for 

flight cancelation, total ground and air holding cost, delay 

cost for flights, penalty of alternative routes, etc. 

Bertsimas and Patterson [3] indicate that air traffic control 

(ATC) can adjust aircrafts’ time of departure (ground-

holding) or speed (airborne) in order to reduce the 

influence of traffic congestion in the air traffic system. 

Krozel et al [4] develop an objective function in order to 

balance the influence of weather-related delays and 

concerns for the workload of air traffic controllers or pilots. 

Today, civil aviation faces two challenges: 

minimization of flight fuel consumption and minimization 

of elapsed flight time. To achieve these goals, 

Mirosavljevic et al show the impact of climb regime on 

flight profile of turbo-fan aircraft considering the usage of 

time, fuel and costs [5]. Liu et al build a real-time gate 

assignment model, and the delay costs of multi agent can 

be minimized simultaneously; the fuel consumption of 

each airline can be basically equalized by mixed set 

programming [6]. Turgut et al have indicated that each 

flight can save more than 40 kg fuel and 2 minutes time on 

average using continuous descent approach procedures 

instead of conventional procedures [7]. Wilson and Hafner 

have conducted three scenario simulations for the landings 

based on the airport of Atlanta and stated that the best 

saving conclusions on time, fuel consumption and distance 

they found are 45 hours, US$80,000 and 9,000 nautical 

miles per day [8]. Harada et al use dynamic programming 

for the trajectory optimization, and the research findings 

suggest that flight fuel consumption and flight distance can 

be saved by 312 kg and 19.7 km, respectively, on average 

for the object flights [9].  

Any destructive weather phenomenon, which are 

hazardous to human life and property, is known as severe 

weather [10]. In order to ensure flight safety in severe 

weather, it is important to design a flight route for aircrafts 

to avoid the weather-affected zones. Wang et al [11] 

address the problem of determining a rerouting path, 

taking account of danger zones, flight segment length, 

turning angle and turning point number. Li et al [12] 

propose a new reroute planning method which is based on 

the multi-objective planning algorithm in terms of zonal 

severe weather areas. Bertsimas and Patterson [13] deal 

with the problem of searching for a path for aircrafts 

rerouting in terms of dynamically changing weather 

conditions in order to minimize delay costs. 

Most of the aforementioned literatures on rerouting 

focus on the shortest path in stationary severe weather and 

conventional algorithms such as Dijkstra algorithm, 

Bellman-Ford algorithm. A* search algorithm have been 

made a further study [14], which can be used for the issue 

of mobile robot searching path to avoid obstacles. In paper 

[15, 16], grid-based search methods are applied to find a 

flight path around severe weather cells.  

Researchers have developed many shortest path 

algorithms that are based on forecasted weather 

information in recent years. A rerouting algorithm has 

been investigated by Sridhar [17] in order to reroute 

around airspace whose capacities are exceeded. Prete [18] 

uses the A* algorithm to reduce the optimal routing 

problem by searching a graph for a shortest-path. Krozel 

[19] designs alternative paths for pre-departure flights 

around convective weather airspaces utilizing the latest 

weather forecast. However, none have made a study on the 

relationship between GDP and flight distance by dynamic 

rerouting. Conventionally, the time of departure is only 

decided by air traffic controllers, so airlines do not have 

flexible choices to decide the time to take off. However, as 

a result of detouring a severe weather area, an 

appropriately selected time of departure could 

significantly reduce the total cost, considering the 

relationship between fuel consumption and the total time 

including ground holding and travel time, as shown in our 

case study (see Figure 8). Moreover, the problems of 

finding the shortest flight path are solved separately and 

sequentially, the solutions would be suboptimal in practice, 

especially in dynamic weather conditions. In order to 

minimize flight distance, we have proposed a real-time 

rerouting algorithm. This paper makes contributions in the 

following three aspects: 

(1) The optimization problem proposed in this paper seeks 

a balance between fuel consumption and total 

operation time including delay time and flight time by 

quantitatively analyzing their trade-offs. The 

optimization framework can be applied to scenarios 

with different priorities given to passengers and 

airlines. 

(2) We use preceding radar image (Doppler weather radar 

mosaic) to demonstrate severe weather-affected region, 

because it is the foundation of real time rerouting. In 

this paper, we present a new model to define the flight 

forbidden area (FFA), and take pilots driving 

preference into consideration. Our filtering tool can be 

adjusted to filter different national weather service 

(NWS) levels to meet users’ need of pilots and air 

traffic controllers. 

(3) Ant colony optimization (ACO) is used to search for 

the shortest path for rerouting. A case study is 

conducted in order to avoid severe weather. Compared 

to stationary reroute, the results in dynamic reroute 

have shown a significant decrease in flight path length.  
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The rest of this paper is organized as follows. Section 

II introduces weather processing and equations of fuel 

consumption and flight time. Section III presents the 

multi-objective optimization. A case study of a flight path 

from Zhengzhou to Guangzhou is conducted in Section IV. 

Finally, Section V gives some concluding remarks. 

 

II. WEATHER AND MODELS 
 

A. Weather and Models 

The input weather information, namely Doppler 

weather radar mosaic, shown in a two-dimensional form, 

is from China Central Meteorological Observatory 

(www.nmc.cn). The various vertically integrated liquid 

data, which are the integral of the reflectivity reading over 

a vertical column of airspace, are shown in different colors 

(see Figure 1 (a)). These data are divided into 7 weather 

levels (NWS Level from 0 to 6) according to 

measurements of radar reflectivity (in dBz), and they do 

have different effect on airplane operation safety (see 

Table 1 [4]). 

As for the classification of FFA, researchers have 

defined FFA based on the severe weather forecast 

telegraph [20]. Li has proposed the method for 

establishing the static flight forbidden area using Graham 

algorithm and FFAs are divided into three categories, 

namely block FFA, zonal distribution FFA and scattered 

points distribution FFA in terms of the difference in the 

shape, influence scope, scale and distribution feature of 

FFA [21]. However, in the above two papers, the driving 

preference of pilots has not been taken into consideration. 

Rhoda et al [22] have indicated that pilots would choose 

to penetrate level 2 in en-route airspace, however, there are 

no chances that they would penetrate higher reflectivity. In 

our model, we do filtering on raw radar reflectivity data in 

order to eliminate the clusters of green weather cells 

(NWS Level 1 and 2). We retain the severe weather cells 

where NWS Level is 3, 4, 5 or 6(see Figure 1 (b)), namely 

FFA, because we use the weather avoidance algorithm, ant 

colony optimization, to avoid all such cells (NWS Level 3 

or above). 

 

 

 

 

(a) 
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(b) 

Figure 1 Raw Doppler weather radar mosaic as input (a) and processed radar mosaic as output (b) 

 

 

Table 1 NWS standard reflectivity levels, and weather classification 
 

NWS 

Level 

Rainfall Rate a 

(mm/hr) 
Reflectivity b (dBZ) Color Type 

0 a<0.49 b<18 None None 

1 0.49≤a<2.7 18≤b<30 Light Green Light Mist 

2 2.7≤a<13.3 30≤b<41 Dark Green Moderate 

3 13.3≤a<27.3 41≤b<46 Yellow Hazardous 

4 27.3≤a<48.6 46≤b<50 Orange Very Hazardous 

5 48.6≤a<133.2 50≤b<57 Deep Orange Intense 

6 a≥133.2 b≥57 Red Extreme 

 

 

B. Fuel consumption and flight time 

In this model, we only consider rerouting in 

horizontal plane. Because radar weather mosaic is 

published in 6-minute interval, we assume that each leg 

covers 6 minutes. Base of Aircraft Data (BADA) is used 

to calculate fuel consumption [23]. For the jet and 

turboprop engines, the thrust-specific fuel consumption, 𝜂 

(in kg/(min·kN)), is a function of the true airspeed, 𝑇𝐴𝑆 

(in knots), which is a scalar here. 

 

𝜂𝑖 = 𝐶𝑓1 × (1 +
𝑇𝐴𝑆𝑖

𝐶𝑓2
)                          (1) 

 

where constants 𝐶𝑓1 and 𝐶𝑓2 are available from BADA 

and depend on the aircraft type. The nominal fuel flow, 𝐹 

(in kg/min), can then be calculated based on the thrust, 

𝑇ℎ𝑟 (in N), which also depends on the TAS implicitly: 

𝐹𝑖 =
𝜂𝑖×𝑇ℎ𝑟

1000
                                  (2) 

 

Accordingly, the fuel consumption at altitude 𝑖  is 

defined as (in kg): 

 

ℱ𝑖 = 𝐹𝑖 × 𝑇 × 60                             (3) 

 

where 𝑇 (in h) is the flying time obtained from Equation 

(4) without consider wind speed. Wind speed is a vector 

and 𝐿 is flight distance (in km). 

 

𝑇 =
𝐿

1.852×𝑇𝐴𝑆
                                (4) 

 

In order to illustrate the different fuel consumption in 

different flight altitude, we take aircraft A319 as an 

example. Figure 2 (a) shows that there is a decrease in fuel 
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consumption (unit in kg/min) from 7,500 to 11,900 meters, 

and an increase with 𝑇𝐴𝑆  increasing. However, fuel 

consumption (unit in kg) at a given flight distance in 

1000km will reach the minimum shown as the valley in 

Figure 2 (b), when 𝑇𝐴𝑆 is adjusted to a special value. 

 

 

(a) 

 

(b) 

Figure 2 Fuel consumption in kg/min (a) and kg per 1000 km (b) 

 
 

III. THE MULTI-OBJECTIVE 

OPTIMIZATION PROBLEM 

 
It is a common practice for the ATC to change 

airplane time of departure to meet the requirement of 

different stakeholders such as airlines and passengers. In 

this section, we present the multi-objective optimization. 

The variables, objectives and constraints for the objective 

function will be described in details as follows. 

 

A. Variables 

The proposed optimization problem seeks the 

optimal decisions of time of departure in order to minimize 

fuel consumption, flight time and delay time. We outline 

the following variables and their definitions: 
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𝑖: Index of flight altitude 

𝐴𝑇𝐷: Actual time of departure, decision variables 

𝐸𝑇𝐷 Estimated time of departure 

𝐷𝑇: Delay time caused by GDP 

𝐹𝑇: Flight time airborne 

ℱ𝐶: Actual fuel consumption 

𝐿: Rerouting path length 

ℱ𝑢𝑒𝑙∗: Planned fuel consumption 

𝑇𝑖𝑚𝑒∗: Planned flight time 

𝑀𝐷𝑇: Maximum delay time caused by GDP 

 

 

B. Objective function 

When the aircraft is detouring at altitude   𝑖 , true 

airspeed (TAS) affects the flight time, and fuel 

consumption also relies on TAS and flight time. In our 

model, TAS is considered as a constant according to flight 

regulations from Filed Flight Plan Message (FPL). 

Therefore, the rerouting path length is a parameter that will 

affect the objective function: 

 

min     𝛼 ×
ℱ𝐶

ℱ𝑢𝑒𝑙∗ + 𝛽 ×
𝐹𝑇

𝑇𝑖𝑚𝑒∗ + 𝛾 ×
𝐷𝑇

𝑇𝑖𝑚𝑒∗         ( 5 ) 

 

where 𝐹𝑢𝑒𝑙∗ and 𝑇𝑖𝑚𝑒∗ are planned fuel consumption 

and flight time from FPL, respectively. 𝐹∗ is the nominal 

fuel flow in FPL altitude. In the above expression, we have 

that 

 

𝐹𝑇 = 𝐿 𝑇𝐴𝑆⁄                                  (6) 

 

ℱ𝐶𝑖 = 𝐹𝑖 × 𝐹𝑇 × 60                           (7) 

 

ℱ𝑢𝑒𝑙∗ = 𝐹∗ × 𝑇𝑖𝑚𝑒∗ × 60                      (8) 

 

𝐷𝑇 = 𝐴𝐷𝑇 − 𝐸𝐷𝑇                            (9) 

 

After simplifying the objective function, we have a 

new objective function shown as follows: 

 

min     (𝛼 ×
𝐹𝑖

𝐹∗ + 𝛽) ×
𝐹𝑇

𝑇𝑖𝑚𝑒∗ + 𝛾 ×
𝐷𝑇

𝑇𝑖𝑚𝑒∗
          (10) 

 

Because 𝑇𝑖𝑚𝑒∗ is a constant, our objective function 

can be expressed as: 

 

min     (𝛼 ×
𝐹𝑖

𝐹∗ + 𝛽) × 𝐹𝑇 + 𝛾 × 𝐷𝑇             (11) 

 

For simplification, we set  𝛿 = 𝛼 × 𝐹𝑖 𝐹∗⁄ + 𝛽. The 

final objective function is expressed as weighted sum of 

flight time and delay time: 

 

min     𝛿 × 𝐹𝑇 + 𝛾 × 𝐷                        (12) 

C. Constrains 

We impose the constraints on the optimization 

problem as follows: 

 

𝐷𝑇 ≤ 𝑀𝐷𝑇                                 (13) 

 

𝛿 + 𝛾 = 1                                  (14) 

 

𝛿, 𝛾 ∈ [0,1]                                 (15) 

 

𝑖 ∈ {1,2, … 𝑀}                               (16) 

 

Constraint (13) stipulates that delay time must be less 

than or equal to maximum delay time. Otherwise, airlines 

would have to compensate passengers for long delay; (14)-

(15) express the constraints for the weights; (15) specifies 

the feasible weight range, which is simply a non-negative 

constraint; (16) provides the set of feasible flight altitude 

indexes according to flight regulation. 

 

D. Algorithm 

In order to meet the requirement of real-time 

rerouting, we have designed a novel real-time rerouting 

algorithm based on ant colony optimization (ACO). Real-

time rerouting algorithm is illustrated in Figure 3. Firstly, 

if the planned route is influenced by severe weather, ACO 

is used to design the reroute path based on the severe 

weather area at time  𝑡. Then a new polygon is created by 

superposing severe weather at time   𝑡  and   𝑡 + 1 . An 

encounter detection is necessary to judge whether flight 

route will penetrate severe weather cells. Note the flight 

route is only 6-minute-flight. If there is an encounter, we 

will design reroute path again based on the severe area at 

time  𝑡 and  𝑡 + 1. Then the airplane will fly for 6 minutes 

to a new point, which is a new starting rerouting point. 

This method is executed until airplane arrives at the 

destination, namely final rerouting point. At last, total 

reroute distance 𝐿 can be obtained. 
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Figure 3 System architecture for dynamic reroute 
 

 

The steps of ACO is explained as follows [24]. 

Step 1: Design a set of cells with 1 or 0 to represent the 

inaccessible and accessible areas of the airspace. 

In this paper, the grid numbered as 1 means that 

there is hazardous weather in this cell. 

Step 2: Initialization of the pheromone matrix. Setting the 

starting point and destination point. In this step of 

calculation, we assume that pheromone for any 

location is equal.  

Step 3: Select a node, which the ants are moving into the 

next step. Calculate the probability of heading to 

each node on the basic of pheromone in each node 

based on Equation (17). Finally, apply roulette 

algorithm for selecting next starting node.  

 

𝑝𝑖𝑗
𝑘 = {

[𝜏𝑖𝑗(𝑡)]
𝑎

×[𝜂𝑖𝑗]
𝑏

∑ [𝜏𝑖𝑗(𝑡)]
𝑎

×[𝜂𝑖𝑗]
𝑏

𝑘∈𝑁(𝑘)

,                 𝑗 ∈ 𝑁(𝑘)

0,                                                      𝑜𝑡ℎ𝑒𝑟𝑠

                          (17) 

 

Note: 

𝜏𝑖𝑗(𝑡): pheromone density in arc (𝑖, 𝑗) 

𝜂𝑖𝑗: heuristic information relevant to arc (𝑖, 𝑗) 

𝑎 ,𝑏: weight parameter of 𝜏𝑖𝑗(𝑡) and 𝜂𝑖𝑗,respectively 

𝑁(𝑘): feasible solution component set 

Step 4: Update path and path length. 

Step 5: Repeat Step 3 and 4 until ants arrive at destination 

point or there is no way to go. 

Step 6: Repeat Step 3 to 5 until iterative process of m 

ants in some generation end. 

Step 7: Update pheromone matrix. The ants are excluded 

in the calculation if they have not arrived at the 

destination. For the calculation details, please see 

Equation (18) and (19). 

 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) × 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗             (18) 

 

∆𝜏𝑖𝑗(𝑡) = {

𝑄

𝐿𝑘(𝑡)
,          𝑎𝑛𝑡 𝑘  𝑝𝑎𝑠𝑠 𝑖, 𝑗 

0,   𝑎𝑛𝑡 𝑘 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑝𝑎𝑠𝑠 𝑖, 𝑗
          (19) 

where 𝜌 ∈ (0,1]  is pheromone evaporation parameter. 

Symbol  𝑄 is again a positive constant and 𝐿𝑘(𝑡) is the 

objective function value of the solution. 

Step 8: Repeat Step 3 to 7 until iterative process of the 𝑛𝑡ℎ 

generation. 

 

The values of each symbol adapted in Section IV are 

as follows: 𝑎 = 1; 𝑏 = 7; 𝜌 = 0.3; 𝑄 = 1. 

 

As the time of aircraft departure is discrete, we can 

get various delay time and flight time. As will be 

demonstrated, the model is a linear program and hence any 

Linear Programming (LP) solver can solve this problem. 
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IV. CASE STUDY 

 

A. Reroute based on dynamic severe weather 

As an example, we consider a flight path from ZHCC 

(Zhengzhou) to ZGGG (Guangzhou) with a distance of 

1,070 km (from waypoint ZHO to waypoint P113) traveled 

by a B748 aircraft with a mass of 366,340 kg. 𝑇𝐴𝑆=900 

km/h. Figure 4 shows the severe weather area and affected 

flight route. According to airlines regulations, the 

maximum delay time 𝑀𝐷𝑇  is 30 minutes, if the delay 

time is more than 30 minutes, airlines have to pay the 

penalty. ℱ𝑢𝑒𝑙∗, 𝑇𝑖𝑚𝑒∗ and flight altitude are 12,740 kg, 

71 min and 9,800 m from FPL. 

 

 

 

Figure 4 Severe weather area and affected flight routes 
 

 

The radar mosaics are from 14:12 to 16:06 on April 

09 2017. An example shown at 14:12 after the weather 

processing and hexagon envelop model processing is 

illustrated in Figure 5 (a). 

After that, we place the flight forbidden area in the 

54×54 grid-based background (see Figure 5 (b)), which are 

typically two dimensional grids with grid spacing of about 

15km. We assume that the top left corner is the 

origin  (0,0). The horizontal and vertical axes are x-axis 

and y-axis. 

According to FPL, the flight should expected time 

over ( 𝐸𝑇𝑂 ) ZHO at 14:12 and the estimated time of 

departure (ETD) is 13:57, because it takes 15 minutes for 

aircraft from Zhengzhou airport to ZHO. We assume that 

point ZHO is the starting reroute point, and P113 is the 

ending reroute point. Based on severe weather at 14:12, 

we use ACO to design rerouting path for the first 6-minute 

interval shown in Figure 6 (a). The aircraft flies 90 km in 

6 minutes before next rerouting, on condition that 𝑇𝐴𝑆 is 

a constant at 900 km/h. A circle is created with the S as its 

center and 90 kilometer distance as a radius. The 

intersection point of the ring and planed route is the next 

starting point for rerouting. We set this point as 𝑠1. Using 

the method described in Figure 6, we can design the 

optimal reroute path step by step. To illustrate the 

iterations for a rerouting running, Figure 7 shows the trend 

of convergence curve. When the iteration reach 40, the 

optimal flight path and minimum flight path distance are 

obtained.  
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(a)                                        (b) 
 

Figure 5 FFA at 14:12 flight path from ZHCC to ZGGG 
 
 

   

 
(a) 𝑡 = 1                                  (b) 𝑡 = 2 

 

   

 
(c) 𝑡 = 3                                  (d) 𝑡 = 4 
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(e) 𝑡 = 5                                  (f)  𝑡 = 6 

 

   

 
(g) 𝑡 = 7                                  (h)  𝑡 = 8 

 

   

 
(i) 𝑡 = 9                                  (j)  𝑡 = 10 

 
Figure 6 Reroute path from 14:12 to 15:06 
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Figure 7 Trend of convergence curve for a rerouting running.  

 
 

B. Discussion 

Table 2 has shown that there is a decrease in flight 

distance both in stationary reroute and dynamic reroute 

with the increase of   𝐷𝑇  generally. In this case study, 

optimal reroute path is on the west of FFA, and FFA is 

from west to east on the whole, but sometimes it dose 

move from east to west on a small scale, so there is a 

protrusion in Figure 8. Figure 8 shows the difference 

between stationary and dynamic reroutes obviously. Flight 

distance by dynamic reroute is approximately 6% shorter 

than that by stationary reroute. Note that this is an 

improvement that will save fuel consumption and reduce 

flight time. 

 

Table 2 Comparison between stationary and dynamic reroutes 
 

𝐴𝑇𝐷 𝐷𝑇 (min) 𝐸𝑇𝑂 
Stationary reroute 

(km) 

Dynamic reroute 

(km) 

13:57 0 14:12 1067 1017 

14:03 6 14:18 1053 990 

14:09 12 14:24 1048 980 

14:15 18 14:30 1032 969 

14:21 24 14:36 1026 981 

14:27 30 14:42 1024 939 

 

 

 

 

Figure 8 Comparison between stationary and dynamic reroutes at different delay time 
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C. Sensitivity Analysis 

The sensitively analysis is to analyze how the output 

responses to the changes of the input variables [25]. In this 

section, we would make a discussion about the 

relationship between the delay time and flight time to find 

out the optimal time of departure for the designed 

algorithm. Delay time can be obtained by equation (9). 

When the airlines adopt different   𝐴𝑇𝐷 , there are 

substantial differences in 𝐷𝑇  and   𝐹𝑇  (see Table 3). 

Nominal fuel flow can be calculated, and the result is  

𝐹 = 178.6 𝑘𝑔/𝑚𝑖𝑛.  

 

Table 3 Results in different time of departure 
 

𝐴𝑇𝐷 𝐷𝑇 (min) 𝐸𝑇𝑂 𝐹𝑇 (min) ℱ𝐶 (kg) 𝐿 (km) 

13:57 0 14:12 67.8 12,109 1,017 

14:03 6 14:18 66 11,788 990 

14:09 12 14:24 65.3 11,663 980 

14:15 18 14:30 64.6 11,538 969 

14:21 24 14:36 65.4 11,680 981 

14:27 30 14:42 62.6 11,180 939 

 

Table 4 has shown the trade-off between delay time 

and flight time in the optimal solution, as 𝛿 (flight time 

weight) changes from 0 to 1. The optimal time of departure 

for 𝛿 = 0 ,0.1, … , 0.7 is a constant 14:12. When  𝛿 = 0.8, 

δ = 0.9  and   𝛿 = 1 , the optimal time of departure are 

14:18, 14:30 and 14:42, respectively. Figure 9 shows 

Pareto frontier about flight time and delay time. 

 

 

Table 4 The trade-off between 𝐷𝑇 and 𝐹𝑇 in the optimal solution 
 

𝛿 𝐷𝑇 (min) 𝐹𝑇 (min) 𝐴𝑇𝐷 

0 0 67.8 13:57 

0.1 0 67.8 13:57 

0.2 0 67.8 13:57 

0.3 0 67.8 13:57 

0.4 0 67.8 13:57 

0.5 0 67.8 13:57 

0.6 0 67.8 13:57 

0.7 0 67.8 13:57 

0.8 6 66 14:03 

0.9 18 64.6 14:15 

1 30 62.6 14:27 

 

 

 

Figure 9 Pareto frontier about delay time and flight time 
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V. CONCLUSIONS 
 

This paper investigates the problem of choosing the 

optimal time of departure in the presence of severe weather. 

We propose a multi-objective optimization problem, 

considering weather-induced costs such as fuel 

consumption cost and time cost. The key parameters are 

delay time, flight time and fuel consumption. FFA can be 

obtained according to pilots’ preference by filtering raw 

radar reflectivity data, which is the foundation for 

designing flight path to detour severe weather by ACO. 

Case study results show there is a decrease about 6% in 

flight distance by dynamic rerouting compared to 

stationary rerouting. When the aircraft is given different 

time of departure, delay time and flight time are various 

correspondingly. As the tradeoff 𝛿  varies, the optimal 

delay time and the flight time are shown in Pareto frontier. 

This method will provide a suitable decision on optimal 

time of departure for airlines and passengers. 
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