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Abstract: Reservoir planning without the explicit accommodation of evaporation loss leads to errors
in capacity estimates. However, whenever evaporation loss is considered, its quantification uses
linear approximations of the intrinsically nonlinear height–area–storage (H–A–S) relationship to
estimate the reservoir area, leading to bias in capacity estimates. In this work, biases resulting from
using various H–A–S models are evaluated. These models include linear and nonlinear functions,
either specifically developed for the case-study sites or available in the Global Reservoir and Dam
(GRanD) database. All empirically derived approximations used data for two dams in India: the
Bhakra on Sutlej River and the Pong on the Beas River, both tributaries of the Indus River. The results
showed that linear H–A–S models underestimate the exposed surface area of the Pong reservoir by
up to 11.19%; the bias at Bhakra was much less. The GRanD H–A–S model performed very poorly at
both reservoirs, producing overprediction in exposed reservoir area of up to 100% and 415% at the
Pong and Bhakra reservoirs, respectively. Analyses also showed that up to 29% increase in reservoir
capacity is required to compensate for the effect of net evaporation loss at low demand levels. As
demand increases, the required evaporation-correction capacity decreases in proportional terms and
is indistinguishable for all H–A–S models. Finally, recommendations are made on using the results
for evaporation adjustment at nongauged sites in the region.
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1. Introduction

In arid and semiarid regions where the intermittent nature of river flows creates challenges
in meeting water demands, these reservoirs constitute a significant component of water-supply
infrastructure [1]. Thus, reservoirs are relied upon to balance the variability in flow profiles associated
with droughts or erratic rainfall patterns in order to meet water demand with some degree of
reliability [1–3].

Traditionally, planning for sizing reservoirs uses historic runoff data records at the reservoir site
and must account for all consumptive demands placed on the system. Some of these demands (e.g.,
water supply and irrigation) are tangible, and can be readily identified and quantified. However, there
are additional water demands that are less tangible but may be significant, in that, if their effects are
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omitted, the resulting reservoir size would be based on a wrong or biased measurement [4,5]. Among
these less-tangible demands, prominent is evaporation loss [4], although as shown by, e.g., de Araujo
et al. [6], capacity reduction due to sedimentation is also important; however, consideration of this is
outside the scope of the current study. Thus, as noted by Montaseri and Adeloye [7], it is important
to explicitly accommodate the evaporation loss in question in reservoir-planning analysis to avoid
mis-sizing the reservoir capacity.

However, a persisting challenge in reservoir-planning and -operation analysis has to do with how
to explicitly accommodate evaporation loss in reservoir mass-balance equations that form the basis of
such analyses [1,2]. This is founded on the premise that volumetric evaporation loss is determined
as the product of net evaporation depth (evaporation rate minus depth of direct precipitation) and
the corresponding exposed surface area of the reservoir [8]. Planning analysts have attempted to
address this by deploying reservoir height–area–storage (H–A–S) functional formulations to estimate
the exposed surface area of reservoirs at different storage states [1,8,9].

Where reservoir planning is based on the versatile behavior-analysis (BA) approach [8,10], H–A–S,
or more specifically the area–storage function, must be linear to be tractable. To achieve this, the
intrinsically nonlinear area–storage relationship is often approximated by a linear function between
the top of the dead storage and the top of the active storage level in the reservoir [9]. However, there
has been no systematic scrutiny of the biases that this might produce in the estimated reservoir area,
and the effect of biases on capacity.

Possibilities for remedying the bias of linear approximations include using the H–A–S function in
its true nonlinear form. Examples of such nonlinear functions are the H–A–S relationships developed
from the Global Reservoir and Dam (GRanD) database [11] that are used in many regional and global
water-resource studies. The GRanD models were developed using data from several world reservoirs
and are nonlinear in conformity with the intrinsic nonlinear nature of the relationships. Another
possibility is to use evaporation as water depth as in, e.g., the Water Evaluation and Planning (WEAP)
tool [12], which completely removes the need for the exposed surface area.

The aim of this study is to assess the effect of different empirical formulations of H–A–S reservoir
relationships on reservoir area and capacity estimates. This was achieved by:

(i). empirically fitting linear and nonlinear H–A–S functions to the observed bathymetric area,
volume, and height data for the selected reservoirs, as well as extracting existing functions in the
GRanD database;

(ii). assessing the biases or errors associated with the use of various functions for predicting the
exposed surface areas of reservoirs at different reservoir storage states;

(iii). carrying out reservoir-planning analyses with and without evaporation consideration, and hence
assessing the evaporation effects on capacity estimates for various H–A–S functions; and

(iv). critically examining the results in (ii) and (iii) to identify the most effective model(s) for explicitly
accommodating evaporation loss in reservoir-planning analysis and make recommendations.

2. Materials and Methods

2.1. Data Collection

The study required runoff, evaporation, and rainfall data of case-study reservoirs for the
implementation of reservoir-planning analysis. Additionally, topographical data in the form of
the corresponding H–A–S relationship at the analyzed reservoir sites were also required for developing
the empirical functions to directly incorporate the evaporation loss in planning analysis. The study
used the data for two reservoirs located on the Beas and Sutlej Rivers, respectively, the main tributaries
of the Indus River in India. The two reservoirs are close, both located in the state of Himachal Pradesh,
and are the main case-study reservoirs for an ongoing large-scale research program on sustaining
water resources in the Indian Himalayas under climate change (SusHi-Wat: Sustainable Himalayan
Water Resources in a Changing Climate, Project NE/N016394/1). The current work contributes to the
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overall successful implementation of the research project. All the required data were sourced from the
Bhakra-Beas Management Board (BBMB), which is responsible for the management and operation of
the two reservoirs.

For the Bhakra reservoir on Sutlej River, the monthly time series of evaporation rates, direct
rainfall, inflow, and releases spanning from January 2000 to December 2006 were collected. For the
Pong reservoir on Beas River, the monthly data spanned from January 2001 to December 2010. The
time series of the net evaporation depth were calculated as the difference between the time series of
the measured evaporation rates and direct precipitation for each reservoir. Although these data are
relatively short to assess long-term behavior, they were the only ones available from the BBMB at the
time. The shortness also informed the decision to employ a monthly rather than annual temporal scale
for planning analyses, thereby capturing both the within-year and over-year storage needs. Daily
temporal scale is detailed for planning analyses too.

2.2. Reservoir-Planning Techniques for Accommodating Evaporation Loss

Since the linear mass-balance equation of a BA is incompatible with a nonlinear H–A–S relationship,
alternative reservoir-planning analysis techniques are required when adopting nonlinear H–A–S
formulations. Modified sequent peak algorithm mSPA [10] was used in the study because it can
handle any H–A–S formulation, whether linear or nonlinear. Apart from this versatility of the mSPA,
the approach also has other advantages over a BA, including the uniqueness of its outcome and its
immunity against the misbehavior first identified with the BA by Pretto et al. [13], in which the plot
against the record length of the median and other statistics of the distribution of capacity exhibited an
unusual hump.

All empirical H–A–S models developed as part of the current work and the GRanD model are
the area–storage type, while the WEAP tool uses a height–storage formulation. The ways the two
formulations are used in the mSPA are described in the following subsections.

2.2.1. MSPA with Area–Storage Function

The mSPA involves two main steps: Step 1, in which capacity without accounting for evaporation
is estimated, and Step, 2 in which evaporation is included.

Step 1: Approximate (without evaporation) capacity estimation

Let: Kt = cumulative volumetric deficit at the beginning of time t, (m3); Kt+1 = corresponding
volumetric deficit at the end of time t or at the beginning of time t + 1, (m3); Dt = demand during time t,
(m3); Qt = inflow during time t, (m3); and N = total number of simulation period. Then, for an initially
full reservoir in which there is no deficit, i.e., K0 = 0.0:

(i). Determine Kt+1 = max (0.0, Kt + Dt − Qt) for all time periods, t = 1, 2, . . . , N
(ii). If KN = K0, then go to (iii); else, if this is the first iteration, set K0 = KN and go to (i); else, STOP:

the SPA has failed because gross period demand is higher than the average inflow.
(iii). Reservoir active storage capacity, Ka = max(Kt).

Step 2: Adjustment for volumetric evaporation loss

(i). Determine reservoir states St using the Ka and Kt obtained in Step 1, i.e.,

St = Ka − Kt; 0 ≤ t ≤ N (1)

Note that as a critical period technique, the initial storage state, So = Ka, i.e., the reservoir is
initially full.
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(ii). Using St, determine = corresponding exposed area At from the H–A–S model. The mean exposed
surface area in interval [t, t + 1] becomes:

Av = 0.5 (At + At+1) (2)

(iii). Determine the net evaporation volume (m3) in the interval, EVt, as:

EVt = Av (Et − Pt)

where Et and Pt are the evaporation and precipitation depths (m), respectively, during t.
(iv). Rerun Step 1 to now include evaporation. This effectively involves modifying Step 1i to:

Kt+1 = max (0.0, Kt + Dt + EVt − Qt); 0 ≤ t ≤ N

Evaporation-adjusted capacity Ka* then becomes:

Ka* = max (Kt + 1).

(v). However, as noted by [14], the difference between Ka and Ka* may not be entirely due to the
inclusion of EVt, but also due to a shift in the critical period. To remove this effect, Montaseri and
Adeloye [15] recommend the following iterative steps to obtain the correct evaporation-impacted
active storage-capacity estimate:

a. Using the estimated Ka and Ka*, determine the β =
∣∣∣∣Ka

∗
− Ka

Ka

∣∣∣∣; if β ≤ 0.0001, then STOP,
because Ka* is the exact active storage capacity, otherwise, go to step (b)

b. Set Ka = Ka*
c. Determine the new storages (St) using Equation (1) for all t = 1, 2, . . . , N.
d. Determine new storage capacity Ka* by including the EVt values [8].
e. Go to (a) and check the value of β.

2.2.2. MSPA with Height–Storage Function

The WEAP procedure [12] uses evaporation as water depth, and this is also possible with the
mSPA. In this case, Step 1 is exactly as described in Section 2.2.1. Step 2 is slightly different and is
implemented thus:

(i). Determine St (t = 1, 2, . . . , N) using Equation (1). Using St, determine corresponding height Ht

using the height–storage function.
(ii). Adjust the reservoir level for the effect of net evaporation by algebraically deducting the net

evaporation depth:
Ht,adj = Ht − (Et − Pt) (3)

where Ht,adj is the adjusted reservoir level (m); Ht is the unadjusted reservoir level (m).
(iii). Convert Ht,adj back to adjusted storage St,adj using the height–storage function.
(iv). Determine the volumetric evaporation loss as:

EVt = St,adj − St

(v). Rerun Step 1 to now include evaporation by modifying the expression for Kt+1 to:

Kt+1 = max (0.0, Kt + Dt + EVt − Qt); 0 ≤ t ≤ N
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(vi). Complete the necessary checks as described in Section 2.2.1 (Step 2v) to determine evaporation
adjusted capacity Ka*.

2.3. Specification and Parameterization of H–A–S Models

2.3.1. Nonlinear Area–Storage Equation

Following examples in the literature, e.g., the GRanD database, the intrinsic nonlinear area–storage
relationship was formulated using a power function of form

At = a
(
S′t

)b
(4)

where At is the reservoir surface area (106 m2) at time t, S′t is the corresponding gross (active + dead)
storage volume (106 m3) at t, and a and b are the parameters of the model. The parameters of Equation
(4) were obtained by least-squares regression fitting using the available area–storage data.

2.3.2. Single Linear Area–Storage Equation

Although the area–storage function is intrinsically nonlinear. as illustrated in Figure 1a, the
commonly adopted approach is to approximate the entire part of the function above the dead storage
using a linear function of the form [8,9]:

At = c + d(St); 0 ≤ St ≤ Ka (5)

where c and d are parameters, St is the active storage state, Ka is the active storage capacity of the
reservoir, and all other variables are as defined previously. In particular, parameter “c” is constrained
to be the exposed surface area at the top of the dead storage; thus, “d” is the slope of the linear
approximation in the active storage part. If “c” is constrained to Kd, the dead storage, the only
parameter needing estimation in Equation (5) is slope “d”. The linear approximation of the reservoir
area–storage relationship is also shown schematically in Figure 1a.
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2.3.3. Multiple (3) Piecewise Linear Area–Storage Equations

The use of a single linear function for the entire active storage zone can produce significant errors
in the predicted area depending on the convexity of the function. A way to resolve this problem is
to have multiple, piecewise linear functions. Specifically, for the current study, 3 piecewise linear
area–storage functions (see Figure 1b) were considered:

A1 = c1 + d1
(
S′t

)
; i f S′t < K1 (6)
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A2 = c2 + d2
(
S′t

)
; i f K1 ≤ S′t < K2 (7)

A3 = c3 + d3
(
S′t

)
; i f S′t ≥ K2 (8)

where, K1 and K2 are, respectively, the break points for the first and second models, and all other
variables are as defined previously.

Thus, at storage K1, the estimates of Equations (6) and (7) coincide, i.e.,

c1 + d1K1 = c2 + d2K1 (9)

Rearranging Equation (9) yields:

c2 = c1 + K1(d1 − d2) (10)

Similarly, at K2, the estimates of Equations (7) and (8) coincide, i.e.,

c2 + d2K2 = c3 + d3K2 (11)

leading to
c3 = c2 + K2(d2 − d3) (12)

Putting the expression for c2 from Equation (10) into Equation (11) gives:

c3 = c1 + K1(d1 − d2) + K2(d2 − d3) (13)

Substituting Equation (10) in Equation (7), and Equation (12) in Equation (8) gives revised forms
of the piecewise Equations for A2 and A3 as:

A2 = c1 + K1(d1 − d2) + d2S′t; i f K1 ≤ S′t < K2 (14)

A3 = c1 + K1(d1 − d2) + K2(d2 − d3) + d3S′t; i f S′t ≥ K2 (15)

The expression for A1 in Equation (6) remains unchanged. Equations (6), (14) and (15) constitute a
set of equations whose solution produces the parameters of the models, i.e., slopes (d1, d2 and d3) as
well as the lower limits (c1, K1 and K2) for each segment of the continuous, piecewise linear functions.

In this study, a constrained optimization problem was formulated whose objective (fitness) function
was the minimization of the sum of the squares of the residuals of the estimated reservoir surface area.
The constrained optimization was solved using genetic algorithms to determine the parameters.

2.3.4. Nonlinear Height–Storage Equation

As noted earlier, the WEAP approach uses the height–storage relationship to account for
evaporation. Although implementation in WEAP uses interpolation from the available height–storage
data, it was felt that having a functional relationship makes the associated analysis simpler and more
exact. Thus, in a manner similar to the nonlinear area–storage relationship, a nonlinear function for
height–storage was formulated as:

Ht = h
(
S′t

)n
(16)

where h and n are parameters and all the other symbols are as previously defined. The parameters
of Equation (16) were also determined by least-squares regression fitting using the available
height–storage data.

2.3.5. GRanD Volume–Area Equation

Given the popularity with which the GRanD models are used for regional water-resource
assessment across the globe [16], it was felt that this study would not be complete without testing
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its efficacy at the case-study reservoirs. The generalised GRanD volume–area regression model
was developed from the Global Reservoir and Dam database using 5824 reservoirs [11]. Its main
purpose is to estimate missing reservoir volumes around the world. Although both volume–area and
volume–height–area equations are available in the GRanD database, this study only deployed the
volume–area equation to ensure consistency with the other models in the research.

The GRanD volume–area model takes the particular form:

S′t = 30.68(At)
0.978 (17)

where At is the reservoir surface area at time t (106 m2 or km2); S′t is the corresponding reservoir total
storage volume (106 m3). It should be noted that the scale and exponent in Equation (17) are fixed
as universal.

As noted earlier, GRanD analysis was principally concerned with predicting reservoir capacity (i.e.,
maximum storage) from the corresponding exposed surface area, and the data used for its calibration
involve storage capacity and the corresponding maximum exposed surface area of the candidate
reservoirs included in the analysis. Consequently, it is not a tool for describing how the exposed area
varies with increasing stored volume behind a dam. It should therefore not be surprising if the function
performs poorly when used for the purpose of predicting the at-site area–storage relationship. For
example, while Lehner et al. [11] recorded an R2 of 0.8 during the development of Equation (17), the
use of the equation to predict the at-site area–storage relationship by van Bemmelen et al. [16] only
produced an R2 of 0.54; however, most analysts still use the GRanD equation for the latter purpose.
Indeed, the GRanD model is used for this same purpose in the current study to further demonstrate its
poor performance in local at-site situations.

2.4. Performance Assessment of H–A–S Formulations

The relative performance of various H–A–S functions was assessed using the R2 metric:

R2 =


∑n

i=1

(
Ab,i − µb

)2
−

∑n
i=1

(
Ab,i −Am,i

)2

∑n
i=1

(
Ab,i − µb

)2

 (18)

where Ab,i is the ith observed variable (area or height), Am,i is the ith variable as predicted by the
model, and µb is the mean of the observed variable.

3. Results and Discussion

3.1. Case Study

As case studies, the methodology was tested on two reservoir systems in northern India: the Pong
reservoir and the Bhakra reservoir as shown in Figure 2, which also shows the Pandoh dam, whose
primary purpose is to divert some Beas River flows into the Bhakra reservoir.

The Pong reservoir (also Maharana Pratap Sagar) is a multipurpose (irrigation and hydropower
generation) reservoir system constructed on the River Beas, India [17]. Constructed in 1975 of earth
fill, the reservoir is located at latitude 31◦59′02′′ North and longitude 76◦03′12′′ East. The reservoir
is located at the Himachal Pradesh District of Kangra at the valley of the Himalayas of the Gangetic
plains [17]. This district experiences two seasonal regimes known as the monsoon (rainy) and post
monsoon (dry) seasons. The former occurs from June to September, and the latter spans from October to
May each year. The reservoir’s catchment receives a mean annual precipitation of about 1800 mm [17];
the mean of the annual net evaporation is 493 mm.

The Bhakra reservoir (known locally as the Govind Saga Dam) is also a multipurpose reservoir
system serving flood control, irrigation, and hydroelectric-power generation functions [17]. The
reservoir was constructed on the River Satluj, in the Himachal Pradesh District of Bilaspur. It lies at
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latitude 31◦24′39′′ North and longitude 76◦26′02′′ East. Just like the Pong reservoir in the Himalayas
valley, the district experiences two seasonal regimes, monsoon (rainy) and post monsoon (dry). Mean
annual rainfall for the catchment is approximately 1260 mm [16]; mean annual net evaporation is
571 mm.
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Further particulars about both reservoirs are available in Table 1. An interesting feature in Table 1
is that, while storage capacity at Bhakra exceeds that at Pong, the exposed surface area at full capacity
at the latter is larger. This would suggest that the terrain at the Pong reservoir is plainer, making the
potential volumetric evaporation to be more at a given storage state.

Table 1. Main design characteristics of the Pong and Bhakra reservoirs [18].

Description Pong Reservoir Bhakra Reservoir

Catchment area (km2) 12,560 56,980
Surface area at full capacity (km2) 240 162.48

Gross storage capacity (Mm3) 8570 9621
Active (live) storage capacity (Mm3) 7290 7191

Dead storage capacity (Mm3) 1280 2430
Elevation at top of dam (masl.) 435.86 518.16

Height above river bed (m) 61 167.64
Minimum annual flow (Mm3) 5211 12,346
Maximum annual flow (Mm3) 9621 18,928

Mean annual flow (Mm3) 7621 16,567
CV 0.20 0.15

The main inflows into both reservoirs derive from the runoff of monsoon rainfall; however, a
sizeable contribution comes from the melting of glaciers and seasonal snow. Additionally, the Bhakra
receives diverted water from the Beas at the Pandoh dam to augment its hydropower potential. The
summary statistics of the annual inflows at the two reservoirs are also reproduced in Table 1; the Bhakra
inflows include the Pandoh dam diversion. In general, interannual variability of the inflows at both
sites is low (CV ≤ 0.2), signifying the dominance of within-year storage requirements in comparison to
over-year requirements, which should be expected given the distinct seasonality of the inflows.

Annual net evaporation values are positive, implying that, on an annual basis, evaporation
exceeds rainfall. As noted by Nawaz et al. [19], failure to accommodate net evaporation in planning
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analysis for such a situation leads to undersizing of a reservoir because positive net evaporation is an
additional demand that must be provided for. The monthly behavior of net evaporation is shown in
Figure 3, which is a mixture of positive and negative values, as expected.

1 
 

 

Figure 3. Net monthly depth of evaporation losses (m) at the Pong and Bhakra reservoirs.

3.2. Height–Area–Storage Curves of the Reservoirs

The available topographic data for the two reservoir sites are plotted in Figure 4a (Storage–Area)
and Figure 4b (Storage–Height).
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Figure 4. Plotted available topographical data for (a) Area–Storage and (b) Height–Storage at Pong
and Bhakra Reservoirs.

The steepness of the slopes for each relationship has an influence on the rate of evaporation loss
from the reservoir. As seen in Figure 4a, the area–storage relationship for Pong is steeper than Bhakra,
implying that, at the former site, a small change in reservoir storage significantly alters the exposed
surface area and, by extension, the evaporation loss from the reservoir. This would mean that the
earlier observation regarding the relative spread of both reservoirs, as presented in Table 1, is not
restricted to the top water level alone, but applies throughout the entire area–storage range at the Pong
and Bhakra reservoir sites.

3.3. Height–Area–Storage Models of the Reservoirs

The calibrated H–A–S models are presented in Table 2 for both reservoirs. As a reminder, all
empirical functions apart from the GRanD were calibrated using H–A–S data for the respective
reservoir sites. The GRanD model was taken directly from the database and is therefore the same for
both reservoirs.
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Table 2. Calibrated Pong and Bhakra H–A–S models.

Models
Pong Reservoir Bhakra Reservoir

Equation RMSE R2 Equation RMSE R2

Single Linear A–S A = 77.17 + 0.0311(S) 15.13 0.960 A = 59.16 + 0.0152(S) 1.92 0.997

3-Piecewise Linear A–S

A1 = 5.91 + 0.0613(S′)
(if S′ < 1280 Mm3)

A2 = 40.68 + 0.0341(S′)
(if 1280 ≤ S′ < 4365 Mm3)

A3 = 116.2 + 0.0168(S′)
(if S′ > 4365 Mm3)

4.18 0.970

A1 = 17.18 + 0.0185(S′)
(if S′ < 2430 Mm3)

A2 = 20.32 + 0.0172(S′)
(if 2430 ≤ S′ < 7276 Mm3)

A3 = 32.23 + 0.0155S′

(if S′ > 7276 Mm3)

3.52 0.970

Nonlinear A–S A = 0.7773538(S′)0.6492 3.03 0.998 A = 0.2284(S′)0.7158 2.77 0.993
Nonlinear H–S H = 4.851627(S′)0.3234 0.54 0.999 H = 2.9344(S′)0.4339 1.42 0.997

GRanD Nonlinear S–A S′ = 30.684(A)0.9578 22.72 0.800 S′ = 30.684(A)0.9578 133.24 0.800

Note: S and S′, active and total (active + dead) storage reservoir states, respectively; H–A–S, Height–Area–Storage; RMSE, root mean square error.
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As the R2 values indicate, nonlinear functions are better than linear ones, which should be
expected from the intrinsically nonlinear nature of the relationship. Using three piecewise linear
approximations for the area–storage relationship appears to improve the prediction. As found in the
previous independent studies discussed earlier, the performance of the GRanD model is by far inferior
to all empirical models calibrated in the current study.

The predicted and observed area–storage relationships are compared in Figure 5a,b for the Pong
and Bhakra reservoirs, respectively. As a reminder, the single linear model only applies above the
dead storage, while the other models also cover the dead storage zone. These further confirm the
superiority of the nonlinear approximation over the single, linear approximation. Indeed, for much of
the active storage-capacity regions at both reservoirs, the single linear approximation underpredicts
the exposed surface area of the reservoir, although the situation was more marked at the Pong reservoir,
with maximum underprediction being about 11.2%. Since planning analysis is primarily concerned
with estimating reservoir active storage capacity, it means one could expect this reservoir capacity to be
undersized with linear approximation if net evaporation is positive. The behavior of the linear model
changes to overprediction of the exposed area at very high storage capacity, reaching a maximum
overprediction error of 21%, although as shown in Figure 5a, overprediction only occurred for a very
narrow range of storages.
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Figure 5. Available and predicted surface areas for the (a) Pong and (b) Bhakra reservoirs.

The performance of the GRanD model is not the same for the two reservoirs. While as seen in
Figure 5a, the GRanD model largely underestimates the exposed area of the reservoir at the Pong,
the opposite is true for the Bhakra. For the Pong reservoir, where the bias is downward, bias size
exceeds the single linear approximation, reaching over 100%; consequently, the capacity undersizing
in situations of positive net evaporation is expected to be accentuated when the GRanD model is
applied. The upward bias of the GRanD model for the Bhakra reservoir is even worse, reaching a
maximum of about 415%. Although an overestimate error of 370% was previously recorded by van
Bemmelen et al. [16] with the GRanD model, the maximum error of 415% recorded in this study for the
Bhakra reservoir is further proof that the GRanD model is an unreliable tool for at-site area–storage
predictions. Several regional models have been compared with the GRanD equation, and it generated
poor results [20–22]. Because it overestimates the exposed area of reservoirs, its use results in oversizing
of the reservoir capacity in situations where net evaporation is positive, but undersizing it when net
evaporation is negative.

The performance of the fitted nonlinear height–storage relationships is shown in Figure 6a,b,
which is in line with the high R2 values reported earlier. The fact that the fitted nonlinear height–storage
relationship performs better than its area–storage counterpart has been noted elsewhere [2,23–25].
It is therefore not surprising that the height–storage function has been preferred in implementing
evaporation consideration in the WEAP tool.
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3.4. Assessed Effects of Evaporation Loss on Reservoir Storage Capacity

Reservoir capacity estimates are presented in Tables 3 and 4 for the Pong and Bhakra reservoirs,
respectively. These are for various assumed demands (or yields), expressed as fraction of the mean
annual runoff (MAR) at the respective sites. Reservoir planning analysis was performed using a
monthly data record and, given the marked seasonality of the rainfall in the two catchments as noted
previously, net evaporation is a mixed bag of positive and negative values, with the majority of
the positive values occurring during the postmonsoon months (see Figure 4). It is therefore very
unlikely that the expected impact of the net evaporation would be as high as one would expect if all
monthly net evaporation values were positive. This might change if the projected decrease in monsoon
rainfall, coupled with rises in both temperature and evaporation as a result of climate change, take
hold. However, such issues are not within the purview of the current study and have therefore not
been considered.

Table 3. Pong reservoir active storage-capacity estimates (106 m3).

Yield
(MAR)

Without
Evaporation

With Evaporation for Different H–A–S Formulations

Single
Linear

Multiple
Linear

Nonlinear
A–S

Nonlinear
H–S

GRanD
A–S

0.2 11.5 13.3 13.1 13.1 13 12.5
0.4 76.9 81.8 82.4 82.3 82.1 80.3
0.6 167.6 175.6 176.4 176.3 175.9 174.1
0.7 225.6 239.2 240.5 240.1 239.1 237.4
0.8 336.8 352.5 353.7 353.4 352.5 351.5
0.9 447.9 465.9 466.6 466.4 465.6 465.6

0.98 510.7 529.4 529.5 529.7 524.8 529.2

Note: MAR, mean annual runoff; GRanD, Global Reservoir and Dam.

Table 4. Bhakra reservoir active storage-capacity estimates (106 m3).

Yield
(MAR)

Without
Evaporation

With Evaporation for Different H–A–S Formulations

Single
Linear

Multiple
Linear

Nonlinear
A–S

Nonlinear
H–S

GRanD
A–S

0.2 2.8 3.6 3.6 3.6 3.4 4.1
0.4 82.8 85.2 85.4 85.3 84.6 86.9
0.6 219.5 222.8 223.1 223.0 222.1 226.1
0.7 309.0 313.7 313.9 313.8 312.7 318.4
0.8 400.2 405.3 405.5 405.4 404.1 410.6
0.9 585.5 593.5 593.7 593.6 591.6 602.5

0.98 758.7 768.3 768.4 768.2 766.0 780.3
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Nonetheless, as seen in Tables 3 and 4, consideration of evaporation has resulted in higher reservoir
capacity estimates compared to when evaporation was ignored. In general, for both reservoirs, the
additional capacity required to cope with evaporation increases as demand increases, although in
proportional terms, the reverse is the case due to increasing capacity with demand. The proportional
requirement for the 0.2 MAR demand was very high due to the small capacity estimate for this demand.

Given the good performance of the nonlinear height–storage function (see Figure 6a,b), one would
expect its estimate of reservoir capacity to be the best, and should therefore form the benchmark
for the assessment of the other H–A–S models. For the Pong reservoir (see Table 3), the GRanD
model produced the least evaporation requirement because of its negative bias in the prediction of
the exposed reservoir surface. The single linear approximation model also produced a downward
bias in exposed area predictions, but this bias was less than that of GRanD and has translated into
a higher evaporation requirement when compared to that of GRanD. The nonlinear area–storage
model produced the closest to the nonlinear height–storage in terms of the evaporation requirement,
which should be expected from the performance of the nonlinear area–storage model in predicting the
exposed reservoir surface area.

The results in Table 4 for the Bhakra reservoir convey the same outcome as that of the Pong,
although evaporation requirements in proportional terms were much lower for the former. Another
feature of the results in Table 4 is the higher capacity estimate for the GRanD when compared to the
nonlinear height–storage model. As noted previously, the GRanD model, unlike its performance at the
Pong reservoir, produced an overprediction of the exposed surface area at Bhakra, which has translated
into higher reservoir capacity when compared to the benchmark height–storage model.

The required corrections for evaporation in capacity estimates are graphed in Figure 7a,b to
better illustrate how these change with the adopted H–A–S model. As shown in the figures, the
evaporation adjustment is indistinguishable for all H–A–S models, the only exception being the
GRanD model, whose adjustments were marginally different. Fennessey [26] investigated the impact
of evaporation data time step on capacity adjustment during planning analysis and concluded that
using time series evaporation data produced almost indistinguishable results from using lumped,
seasonal average values of evaporation. There are two possible reasons for the present outcome and
that of Fennessey. First is that, as remarked earlier, the alternating positive and negative values of
monthly net evaporation could be responsible for subduing evaporation-loss correction. However,
a second and perhaps much more important reason concerns the size of the evaporative demand
relative to the tangible consumptive demand. For example, total annual evaporative demand for
the Pong reservoir, assuming a constant surface area of 240 km2, is only 118 Mm3, which, compared
to the consumptive demand at, e.g., 0.2 MAR (=762.1 Mm3), is a mere 7% of the total demand. As
consumptive demand grows, the contribution of evaporative demand to the total annual demand
becomes even more insignificant, dropping to below 2% at 0.8 MAR.
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Figure 7. Evaporation correction as % of capacity in (a) Pong and (b) Bhakra reservoirs.
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Although the H–A–S models are almost indistinguishable in terms of their capacity effects, there
are discernible yield effects. For example, for the Pong reservoir, all the different H–A–S models are
consistent in their trajectories by first declining until the demand of 0.6MAR, after which they rise
slightly at 0.7MAR before resuming the declining trend. The same behavior was exhibited by the
trajectories for the Bhakra, although as noted previously, the capacity needed to cater for evaporation
in proportional terms is lower than that in Pong. Additionally, the rise at 0.7 MAR was less noticeable
at Bhakra, but could still be discerned. The reason for the slight rise at demand of 0.7 MAR is not
immediately clear, but has also been previously observed by Montaseri and Adeloye [7] who analyzed
data catchments in Iran and the UK.

Given the proven superiority in this study of the height–storage model for incorporating
evaporation in reservoir-planning analysis, Figure 8 was produced by averaging its results at both
Pong and Bhakra that can be used as a tool for evaporation correction within the Beas–Sutlaj complex
in the Indus. Figure 8 can therefore be thought of as a regional tool for evaporation correction during
reservoir planning. To use it for this purpose, analysis is first carried out without consideration of
evaporation using a suitable planning technique, e.g., the basic SPA where the site is gauged, or one of
the indirect techniques [8,27] for ungauged sites. From the known demand/MAR to be met by the
reservoir, Figure 8 is entered, and the required evaporation correction is read off from the plot. The
adjusted reservoir capacity estimate then becomes the sum of without-evaporation capacity estimate
and evaporation correction.
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Figure 8. Evaporation correction as % of capacity (average for Pong and Bhakra reservoirs with the
nonlinear H–S model).

Thus, this study has developed a tool that could serve the Indus Basin region of India for the
purpose of correcting for evaporation loss during reservoir planning. While the tool could be considered
to be of limited scope, being based on just two reservoir systems, it shows that the development of
such a useful tool is possible and can be enhanced by more analyses of other case studies. This should
encourage further studies in the region and, indeed, other regions of the world.

4. Conclusions

This study has demonstrated that planning analyses of surface-water reservoirs without the
explicit accommodation of evaporation loss leads to errors in storage-capacity estimates. Specifically,
analyses reported here showed that an increase of up to 29% in reservoir storage capacity is required
to compensate for the effect of net evaporation loss, depending on the applied H–A–S model. The
output of the research is thus expected to positively contribute to the practice and knowledge of
reservoir-planning and operational analyses.
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A further notable outcome of the study is the extremely poor performance of the GRanD H–A–S
models in predicting at-site H–A–S, although its capacity estimates were comparable with those of the
other H–A–S models. This finding with regard to bias in area is significant because of the increasing
use of the GRanD H–A–S models by analysts, either to predict reservoir capacity from the known
surface area or as input into reservoir-planning analysis to accommodate volumetric evaporation loss.
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