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Abstract
Reconstruction of structural health monitoring data is a challenging task, since it involves time series data forecasting
especially in the case with a large block of missing data. In this study, we propose a novel methodology for structural
health monitoring data recovery in the context of Bayesian multi-task learning with multi-dimensional Gaussian process
prior. The proposed methodology stands to model a series of tasks simultaneously rather than modeling each task inde-
pendently while explicitly encoding the correlations among tasks that can be learnt efficiently from data. The primary
advantage of Bayesian multi-task learning for data reconstruction is that it makes more efficient use of the data available
and gives rise to enhanced reconstruction capability by making use of the underlying task relatedness. Since the modeling
performance of the Gaussian process–based Bayesian approach heavily relies on the selected covariance function, partic-
ular focus has been laid on the influences of various kinds of covariance functions including the unblended and composite
(hybrid) ones on reconstruction performance. The instrumented Canton Tower of 600 m high is used as a test bed to
illustrate the effectiveness of the proposed method in reconstruction of structural health monitoring data. The tradi-
tional Bayesian single-task learning approach is also implemented for comparison purpose. The reconstruction results of
the structural health monitoring data show that the proposed Bayesian multi-task learning methodology affords an excel-
lent performance, while the Bayesian single-task learning method is unreliable in certain cases; yet, the selection of covar-
iance function has a significant impact on the reconstruction performance of the proposed methodology. The work
presented in this study also gains insight into how to choose an appropriate covariance function for reconstruction of
missing structural health monitoring data.
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Introduction

Maintaining the efficient, reliable, and safe operation of
vital infrastructure systems such as long-span bridges,
dams, and high-speed railways is critical to securing the
well-being of people, protecting significant capital
investments and sustaining the vitality of regional and
national economy. Structural health monitoring
(SHM), on a continuous basis, provides plentiful infor-
mation regarding structural behavior by various sensors
and traces the health status of existing structures in real
time so that early warnings could be signaled before
catastrophic failure happens.1–5 Integration of SHM
into lifecycle management strategy allows structural
operators and asset managers to rate the structural per-
formance in a real-time way and conduct maintenance

and remedial actions in accordance with the in-service
condition of an infrastructure system throughout its life
cycle. Generally, SHM is the process of conducting con-
dition diagnosis and prognosis for structural compo-
nents or an entire system based on appropriate analyses
of in situ monitoring data successively accumulated by
an array of sensors deployed on the structure.6 As a
consequence, the accuracy and reliability of the
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structural condition assessment results directly depend
on the quality and quantity of the monitoring data.
However, data missing is a common occurrence during
the long-term monitoring process owing to sensor faults
or failures that can be caused by a variety of reasons,
including power depletion, hardware failure, a lack of
timely maintenance, harsh environmental attack, to
name but a few. It is highly desirable to reconstruct the
missing data for the subsequent analysis in order to
achieve an accurate evaluation of structural health
condition.

The research topic of missing data reconstruction
has been widely explored in a variety of fields, such as
geophysics,7 biology,8 and image processing.9 In the
field of SHM, the reconstruction of missing SHM data
has attracted increasing attention from researchers and
numerous methods have been proposed, such as trans-
missibility concept,10,11 inverse optimization
scheme,12,13 empirical mode decomposition (EMD)
combined with finite element (FE) modeling.14,15

However, these approaches, which belong to the
model-based family, require an FE model of the struc-
ture to recover the incomplete measurement data. The
nature of the model-based approaches limits their
applicability in the recovery of site-specific monitoring
data (structural responses, and loading and environ-
mental effects) for complex, large-scale infrastructure
systems under changing environmental and operational
conditions, since it is extremely difficult or even impos-
sible to formulate an accurate FE model that is repre-
sentative of the authentic behavior of the in-service
structure. As an alternative to the model-based
approach, the data-driven approach does not rely on
an FE model and performs analyses directly on the
measured time series data, making it potentially power-
ful in solving SHM problems for large-scale structures.
The data-driven approach is intended to formulate a
statistical model of time series aiming to extract
damage-sensitive features or reveal the underlying pat-
terns that can be utilized to characterize structural
health state.

In the SHM literature, a variety of time series mod-
eling techniques have been proposed, including state-
space (SS) model,16,17 autoregressive (AR) model,18–23

Gaussian process (GP) model,24–26 among others.
These time series models have been extensively investi-
gated for a wide range of SHM applications such as
structural condition classification, sensor fault diagno-
sis, and signal outlier detection, but they had seldom
seen applications in the reconstruction of incomplete
SHM data. Missing data reconstruction is in essence
the solution of a forecast problem; more specifically, a
time series model will be formulated using the available

measurements to estimate the missing values.
Satisfactory reconstruction of very few missing data
during a short time interval or a relatively large amount
of missing data uniformly spaced over the whole time
scale can be readily achieved, since most modeling tools
perform well for a wide range of interpolation scenarios
but only for a small range of extrapolation scenarios
(e.g. limited-step ahead forecasting). Although among
a variety of time series models, the probabilistic, non-
parametric GP model which is built in the context of
Bayesian inference manifests high modeling flexibility
and great expressive power, its extrapolation prediction
capability is fairly limited. As reported by Wan and
Ni,26 the forecasting error associated with GP model
becomes larger as the step of the ahead forecasting
increases. In an attempt to enhance the forecasting
accuracy of GP model for missing data reconstruction,
we propose the use of the multi-task learning (MTL)
strategy in this study to improve the out-of-sample
forecast performance by taking advantage of the task
similarity.

MTL has gained a surge of research interest in the
data mining and machine learning community with the
purpose of classification, regression, and clustering.27

In the MTL paradigm, a collection of related tasks are
learned jointly by extracting appropriate shared infor-
mation across the tasks. It is expected that the intrinsic
relationships among these tasks can be fully exploited
and learning them simultaneously can lead to better
generalization performance than learning each single
task separately; the latter is referred to as single-task
learning (STL). The advantage of MTL over STL tends
to be more pronounced in the circumstances when
training samples are insufficient to uncover the latent
models, and when a set of samples over specific range
are missing for certain tasks, but yet available for other
related tasks. MTL has been recognized to be a power-
ful learning tool for a wide range of practical applica-
tions including speech recognition, disease progression
prediction, document categorization, and so on. From
a Bayesian perspective, MTL can be implemented natu-
rally by placing a common prior distribution over either
of the shared parameters that define the different mod-
els or the multivariate outputs. Bonilla et al.28 proposed
a Bayesian MTL framework with multivariate GP prior
over multiple tasks. More specifically, a separable cov-
ariance structure expressed as a Kronecker product of
the input covariance function and the task covariance
matrix is used for the specification of GP distribution
of a collection of tasks. The GP-based Bayesian MTL
has been successfully used in many areas including robot
dynamics, neuroimaging, and clinical analysis. It is also
worth mentioning that Bayesian-based approaches have
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been widely adopted in SHM for both model-based
implementation29–34 and data-driven solution.35–39

In recognition of its strong capability in modeling
time series data collectively, GP-based Bayesian MTL
is proposed in this study for reconstructing incomplete
SHM data. In particular, the influence of different types
of covariance functions, including the standard ones
and the composite ones resulting from addition and
multiplication operations, on reconstruction perfor-
mance of the proposed Bayesian MTL methodology is
investigated in detail, aiming to provide useful guidance
on selection of an appropriate covariance function for
reconstructing incomplete data. Although the Bayesian
MTL methodology developed in this work is concerned
with the reconstruction of missing SHM data, it is
worth mentioning that the proposed method is also
applicable to the problems of sensor fault diagnosis,
change-point detection, and structural condition classi-
fication. The rest of the article is organized as follows.
In section ‘‘Bayesian modeling with GP prior,’’ the
Bayesian MTL-based data reconstruction methodology
is presented thoroughly, together with the formulation
of the traditional STL model with GP prior. Section
‘‘Canton Tower and on-structure monitoring system’’
describes a supertall building and its on-structure long-
term SHM system, which serves as a test bed for verifi-
cation study. In section ‘‘Reconstruction of SHM data
from Canton Tower,’’ the real-time temperature and
acceleration monitoring data from the instrumented
structure are utilized to demonstrate the reconstruction
capability of the proposed Bayesian MTL methodology
with different settings of covariance functions. We
finally conclude in section ‘‘Conclusion’’ with a sum-
mary of this work.

Bayesian modeling with GP prior

Single-task GP model

We first give a brief introduction to the traditional
GPM which deals with univariate output, termed as
single-task GPM (STGPM). GP is a stochastic process
where any finite subset of a collection of random vari-
ables has a joint Gaussian distribution.40 The GP prior
over latent function evaluations is fully specified by its
mean function and covariance function. The mean
function is in general set to be zero without loss of gen-
erality. Setting zero mean function is mainly because
the prior brief about the latent function’s overall trend
is usually unavailable.41 In contrast, a variety of covar-
iance functions exist in the literature, such as well-
known squared exponential (SE) function, Martern
(MA) function, and periodic (PE) function. If f (x) is a
GP defined by mean function M(x) and covariance
function C(x, x0), we write

f (x);N M(x),C(x, x0)ð Þ ð1Þ

with

M(x) = E f (x)ð Þ ð2Þ

C(x, x0) = E (f (x)�M(x))(f (x0)�M(x0))ð Þ ð3Þ

In many realistic scenarios, we only have the obser-
vations that will be used to infer the latent function.
The observation model that maps the relationship
between the observations and the function values can
be expressed as follows

y = f (x) + e ð4Þ

where the independent and identically distributed
(i.i.d.) Gaussian noise e;N(0,s2

n) accounts for the
practical measurement errors. For deterministic (noise-
free) cases, one just needs to discard the noise term e or
set the variance s2

n to be zero. More details about the
use of STGPM for deterministic scenarios can be found
in previous works.42–46

Given a training data set D = fxi, yign
i = 1 and the

latent function realization f� to be predicted at an unob-
served point x�, one has the following joint Gaussian
distribution

p(y, f�) = N
0

0

� �
,

C+ s2
nI C�

CT
�

~C

� �� �
ð5Þ

where y= ½y1, y2, � � � , yn�T , and the covariance terms ~C,
C�, and C are as follows

~C = C(x�, x�) ð6Þ

C� = C(x1, x�) C(x2, x�) � � � C(xn, x�)½ �T ð7Þ

C=

C(x1, x1) C(x1, x2) � � � C(x1, xn)
C(x2, x1) C(x2, x2) � � � C(x2, xn)

..

. ..
. . .

. ..
.

C(xn, x1) C(x2, xn) � � � C(xn, xn)

2
6664

3
7775: ð8Þ

By applying Bayes’ theorem, the posterior distribu-
tion of f� conditioned on observations is as follows

p(f�jy) = N mf� ,Sf�

� �
ð9Þ

with the mean and variance given by

mf� =C�S
�1
STy ð10Þ

Sf� = ~C � CT
�S�1

STC� ð11Þ

where SST =C + s2
nI.
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Multi-task GP model

In contrast with the STGPM that models each task
independently, the multi-task GPM (MTGPM), as
shown in Figure 1, is configured to learn all tasks simul-
taneously by taking into account the correlation among
them. However, the implementation of MTGPM pro-
ceeds in a manner analogous to STGPM; the former
can be realized through extending the latter by presum-
ing the latent function f (x) to be a vector-valued func-
tion. The key to formulating MTGPM is the definition
of a multi-task kernel for characterizing the correlation
across tasks. The selected multi-task kernel should be
able to effectively depict the input similarity as well as
the task similarity. Following the work done by Bonilla
et al.,28 we adopt the separable multi-task kernel which
is defined as a product of input correlation and task
correlation, with the form of

CMT fp(x), fp0(x
0)

� 	
= C

f
p, p0C(x, x0) ð12Þ

where the input covariance function C(x, x0) encodes the
input similarity, and the covariance matrix C f reveals
inter-task similarity (C f

p, p0 is the (p, p0)-element of C f ),
in which the subscripts p and p# are the task identifiers.

The above separable multi-task kernel with a free-
form task covariance matrix C f independent of inputs
has two attractive features: (a) the separable nature
dramatically eases the computational difficulty in find-
ing the inverse of a high-dimensional and dense covar-
iance matrix, and the covariance matrix related to a
number of samples can be easily structured by perform-
ing Kronecker product operation on the input and task
covariance matrices and (b) the free-form feature
enables the constructed MTGPM to benefit from task
relatedness and to avoid suffering from the effect of
negative transfer, which refers to the phenomenon that

sharing the information among unrelated tasks tends to
undermine the prediction capability. For ensuring a
valid positive definite task covariance matrix, an effec-
tive alternative is to use the Cholesky decomposition,
expressed as follows

C f =LLT ð13Þ

where L is the lower triangular matrix such that

C f =

l11 0 � � � 0

l21 l22 � � � 0

..

. ..
. . .

. ..
.

lm1 lm2 � � � lmm

2
6664

3
7775 ð14Þ

where m is the number of tasks. Aside from guarantee-
ing the positive definiteness of task covariance matrix,
the use of the Cholesky decomposition also enables
modelers to significantly reduce the number of the
parameters to define C f . In particular, the number of
the parameters to specify C f is reduced from m2 to
m(m + 1)=2.

MTGPM is concerned with mapping the multivari-
ate simulator f= f (x), where f is a vector-valued quan-
tity. As mentioned before, the construction of
MTGPM is quite similar to STGPM, and specifically,
we mix all tasks together by treating them as having
one single output associated with an additional task
label vector. Assume we have a training data set
D= fxl, ylg

m
l = 1, where fxl, ylg= f(xi, yi)gnl

i = 1 and nl is the
number of sampling points belonging to the lth task.
Notice that n1 = n2 = � � � = nm corresponds to a complete
experimental design that all tasks share the same input
points; otherwise, it is an incomplete experimental
design. The incomplete experimental design is just the
scenario of missing data that is the focus of this study.
To accommodate MTGPM, the training points are

Figure 1. Modeling paradigms of STGPM and MTGPM.
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rearranged in column such that X= ½x1, 1, . . . ,
x1, n1

, x2, 1, . . . , x2, n2
, . . . , xm, 1, . . . , xm, nm

�T and Y= ½y1, 1,
. . . , y1, n1

, y2, 1, . . . , y2, n2
, . . . , ym, 1, . . . , ym, nm

�T . Similarly,
by applying Bayesian inference, the posterior predictive
distribution over f� at untested input x�, which is also
Gaussian, can be obtained as follows

p(f�) = N(mf� ,Sf�) ð15Þ

with the mean and variance given by

mf� = C f � C�
� 	T

S�1
MTY ð16Þ

Sf� =C f � ~C � C f � C�
� 	T

S�1
MT C f � C�
� 	

ð17Þ

where SMT =C f � C +D� I; D= diag(s2
1, n,s

2
2, n, . . . ,

s2
m, n) denotes the diagonal noise matrix; and the sym-

bol � represents the Kronecker product.

Covariance function

Since zero mean function is presumed for both STGPM
and MTGPM and the free-form task covariance matrix
is predetermined for MTGPM, the remaining task is
the definition of an appropriate covariance (kernel)
function, which may have a crucial impact on the mod-
eling flexibility and expressive power of the GPM. The
selected covariance function will encode our prior dis-
tribution over the underlying function which we wish to
learn. The only constraint on a valid covariance func-
tion is that its created covariance matrix must be defi-
nite positive. However, it is not easy to choose a
reasonable covariance function in practical applica-
tions. A wide variety of covariance functions are avail-
able within the GP framework;40 among them three
popular families of covariance functions are considered
in this study. The first two are the SE covariance func-
tion and MA covariance function, which are commonly
used in engineering and statistical communities, and the
third one is PE covariance function which, as its name
suggests, is effective for modeling a physical system
whose outputs exhibit a PE or cyclic pattern.

The SE covariance function has the form

CSE(x, x0) = h2 exp � x� x0ð Þ2

2‘2

" #
ð18Þ

where h2 is the signal variance, and ‘ is the characteris-
tic length scale. The SE covariance function holds a
favorable feature of automatic relevance determination
(ARD).40 The ARD in the SE covariance function
implies that the inverse of the length scale ‘ measures
how relevant an input is: if the length scale is very large,
the covariance will become nearly independent of that
input, indicating a non-influential input that can be

omitted in principle. In addition, the SE covariance
function is infinitely differentiable, making it powerful
for modeling smoothly varying processes.

In this regard, for certain practical applications, the SE
covariance function might be too restrictive. We, then,
resort to the MA covariance function in the form of

CMA(x, x0) = h2 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 x� x0ð Þ2

‘2

s
+

5 x� x0ð Þ2

3‘2

2
4

3
5

exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 x� x0ð Þ2

‘2

s2
4

3
5

ð19Þ

The MA covariance function results in the fitted
function being twice differentiable, but not infinitely
differentiable, so the MA covariance function is more
appropriate for modeling significantly rough variations
compared to the SE covariance function.

The final covariance function under consideration is
the PE covariance function, expressed as follows

CPE(x, x0) = h2 exp � 1

2‘2
sin2 p(x� x0)

p

� �� �
ð20Þ

where p is the period characteristic. The PE covariance
function is suitable for functions with PE behaviors; it
would be helpful to model SHM data that exhibit sea-
sonal variations.

Product or sum of two different types of covariance
functions provides an effective way to generate compo-
site (hybrid) covariance functions. Given that SHM
data contain seasonal component, the hybrid covar-
iance functions, which are the combination of either SE
or MA covariance function with the PE one by using
sum and product operations, respectively, are consid-
ered in this study. In summary, a total of seven covar-
iance functions are explored, that is, SE, MA, PE,
‘‘SE 3 PE,’’ ‘‘MA 3 PE,’’ ‘‘SE + PE,’’ and
‘‘MA + PE.’’

Estimation of hyperparameters

Now we turn to the estimation of hyperparameters that
govern the GPMs. The hyperparameters in a GPM
include the covariance function parameters and noise
parameter. As for the MTGPM, covariance function
parameters are composed of two parameter groups:
one related to the input covariance function and the
other related to the task covariance matrix. For
instance, when the SE covariance function is selected to
define both STGPM and MTGPM, the resulting
hyperparameters are ΘST = f‘,h,sng and ΘMT =
fl11, l21, l22, . . . , lmm, ‘,h,sng, respectively. In the
Bayesian context, it is common practice to estimate Θ
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through maximizing the marginal likelihood of training
data. In practice, the inference of the hyperparameters
is converted to the solution of an optimization problem
of minimizing the negative logarithmic marginal likeli-
hood (NLML) because the log transformation opera-
tion leads to computational convenience. This
optimization problem can be expressed as follows

Θ̂ = arg min
Θ

L(Θ) ð21Þ

The objective function L(Θ) and its partial deriva-
tives with respect to the hyperparameters are analyti-
cally tractable. For the STGPM, they are

L(ΘST) =
1

2
yT S�1

STy+
1

2
log jSSTj+

n

2
log (2p) ð22Þ

∂L(ΘST)

∂ΘST, i

=
1

2
tr S�1

ST

∂SST

∂ΘST, i

� �
� 1

2
yT S�1

ST

∂SST

∂ΘST, i

S�1
STy

ð23Þ

where j � j, tr( � ), and ( � )T represent the determinant,
trace, and transpose operators, respectively. And for
the MTGPM, they are

L(ΘMT) =
1

2
YT S�1

MTY+
1

2
log jSMTj+

N

2
log (2p) ð24Þ

∂L(ΘMT)

∂ΘMT, i
=

1

2
tr S�1 ∂SMT

∂ΘMT, i

� �
� 1

2
YT S�1

MT

∂SMT

∂MT, i
S�1

MTY

ð25Þ

where N =
Pm

l = 1 nl is the total number of observations.
Since the log-likelihood function may be non-con-

vex, the optimization solution is likely to suffer from
multiple local optima. To reduce the risk of getting
trapped in local minima, the multi-starting point strat-
egy is utilized here in conjunction with the conjugate
gradient (CG) optimizer for hyperparameter estima-
tion.44,45 Specifically, a total of 100 starting points are
randomly generated. Then the NLML value is com-
puted for each case, and among them, 10 starting
points corresponding to the smallest NLML values are
selected as starting values to run the CG routine.
Finally, the resulting hyperparameters with the smallest
NLML value among these 10 pre-selected cases are
accepted as the optimal set of hyperparameters.

Canton Tower and on-structure
monitoring system

Description of Canton Tower

The Canton Tower, formerly known as Guangzhou
New TV Tower, located in Guangzhou, China, assures

a place among the supertall structures worldwide owing
to the virtue of a total height of 600 m. This high-rise
building comprises two structural portions: a 454-m-
high main tower and a 146-m-high antennary mast.
The main tower is a tube-in-tube structure consisting of
a steel lattice outer structure and a reinforced concrete
inner structure. The outer structure has a hyperboloid
form, which is generated by the rotation of two ellipses,
one at foundation level of the main tower and the other
at an imaginary horizontal plan 454 m above the
ground. The tightening resulting from the rotation
between the two ellipses forms a ‘‘waist’’ halfway up
the tower. These two ellipses are rotated relative to one
another, yielding the dynamic turning tower with a
‘‘waist’’ halfway up.

The main tower of tube-in-tube structural form con-
sists of a reinforced concrete inner tube and a steel
outer frame tube. The outer tube is composed of 24
concrete-filled-tube columns, which are uniformly
spaced in an ellipse shape with varying size ranging
from the maximum of 50 m 3 80 m at the base to the
minimum of 20.65 m 3 27.50 m at the waist level and
are interconnected transversely through steel ring
beams and bracings. In contrast, the shape of the inner
tube is a constant ellipse with the cross-section of 14 m
3 17 m. The inner and outer tubes are linked via four
levels of connecting girders and 37 functional floors,
providing a variety of services such as utilities, tour,
catering, and TV and radio signal transmission facili-
ties. On the top of the main tower is the antennary
mast, which is a steel spatial structure with an octago-
nal cross-section of 14 m in the maximum diagonal.

SHM system

To ensure the safety of the Canton Tower in both in-
construction and post-construction (in-service) stages,
a sophisticated long-term SHM system has been imple-
mented for integrated in-construction and in-service
monitoring of this landmark building.47,48 After com-
pleting the erection of the structure in May 2009, the
permanently deployed SHM system operates with a
total of over 800 sensors of various kinds, such as GPS
system, accelerometers, wind pressure meters, FBG
temperature and strain sensors, and digital video cam-
eras. The temperature and acceleration monitoring
data acquired will be used in this study to demonstrate
the applicability of the proposed Bayesian MTL-based
data reconstruction methodology. Figure 2 shows the
deployment of both temperature sensors and acceler-
ometers on the Canton Tower, and the location details
of the used temperature sensors are illustrated in
Figure 3.
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Reconstruction of SHM data from Canton
Tower

Reconstruction of temperature measurements

The temperature data are used first to demonstrate the
reconstruction capability of the proposed Bayesian
MTL methodology. Without loss of generality, three
temperature sensors deployed at cross-section 5, as

shown in Figure 3, are selected to demonstrate the
reconstruction capability of the proposed Bayesian
MTL methodology. Specifically, two of them are asso-
ciated with measurement points 3 and 4 of inner tube,
while the remaining one is associated with measurement
point 1 of outer tube, as shown in Figure 3. For illus-
tration convenience, these three temperature sensors
are denoted as ‘‘TE 1,’’ ‘‘TE 2,’’ and ‘‘TE 3,’’

Figure 2. Deployment of temperature sensors and accelerometers on Canton Tower.
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respectively. Figure 4 shows the daily maximum tem-
perature data in the year of 2014 monitored by the
three temperature sensors in concern.

In this study, one-sixth of the total monitoring data
from one temperature sensor is removed to simulate
missing data. To fully explore the influence of loca-
tion(s) of missing data and different combination of
tasks on data reconstruction capability of MTGPM, a
total of five cases are introduced as follows:

Case 1. Missing data location is at the end of task ‘‘TE
1,’’ and tasks ‘‘TE 1’’ and ‘‘TE 2’’ are used for
MTGPM formulation.
Case 2. Missing data location is at the end of task ‘‘TE
1,’’ and tasks ‘‘TE 1’’ and ‘‘TE 3’’ are used for
MTGPM formulation.
Case 3. Missing data location is at the end of task ‘‘TE
1,’’ and tasks ‘‘TE 1,’’ ‘‘TE 2,’’ and ‘‘TE 3’’ are used for
MTGPM formulation.
Case 4. Missing data locations are at the end of task
‘‘TE 1’’ and at the beginning of task ‘‘TE 2,’’ and tasks
‘‘TE 1’’ and ‘‘TE 2’’ are used for MTGPM
formulation;
Case 5. Missing data locations are at the end of both
tasks ‘‘TE 1’’ and ‘‘TE 2,’’ and tasks ‘‘TE 1’’ and ‘‘TE
2’’ are used for MTGPM formulation.

The first three cases consider missing data at only
one task while having different pools of training data,
aiming to investigate the effect of different task
groups, whereas the rest two cases consider missing
data at two tasks simultaneously and at different
slots, seeking to examine the effect of missing data at
multiple tasks and different slots. Meanwhile,
STGPM is also formulated to reconstruct missing
data for comparison purpose. Notice that STGPM
just needs to consider a total of three cases since the
first three cases above with the same single task suf-
fering from data missing reduce in essence to an iden-
tical case for STGPM. Figures 5 to 9 illustrate the
reconstructed temperature data by MTGPM for the
five cases, and Figures 10 to 12 display the recon-
struction results obtained by STGPM.

Figure 3. Location details of the temperature sensors concerned.

Figure 4. Monitored daily maximum temperatures in 2014.
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We first observe the reconstruction performance of
MTGPM. It is found from Figure 5 that all constructed
MTGPMs exhibit a good forecasting performance over
the missing data segment except the one with the PE
covariance function. This is because the PE covariance
function can only feature PE variations in time series
data. Given that the SHM data are likely to contain
both PE and non-PE ingredients, the composite covar-
iance functions that combine PE and other covariance
functions would be more appropriate for formulating
GPM. Figure 5 demonstrates that the ‘‘SE + PE’’ cov-
ariance function performs better than the SE covariance

function, and the ‘‘MA + PE’’ covariance function is
superior to the MA covariance function. It is also
observed that the reconstruction capability of the MA
covariance function–based MTGPM is higher than the
SE covariance function–based one, and so are their
hybrid covariance functions in combination with the
PE covariance function. The reason explaining the
greater reconstruction potentiality of MA and its
related hybrid covariance functions is that the MA cov-
ariance function is better suited to the forecast of highly
rough variations compared to the SE one. By compar-
ing Figures 5 to 7, it is observed that the task similarity

(a) (b) (c)

(d) (e)

(g)

(f)

Figure 5. Temperature data reconstruction by MTGPM with different covariance functions (Case 1): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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plays an important role in the reconstruction by
MTGPM, and to be specific, higher task similarity gives
rise to better reconstruction performance. Pearson’s
correlation coefficient (PCC), r, which is a measure of
the degree of correlation between two variables, is used
to quantify the task similarity, and the resulting PCCs
are rTE1, TE2 = 0:997 and rTE1, TE3 = 0:863. Hence,
MTGPM constructed using tasks ‘‘TE 1’’ and ‘‘TE 2’’ is
better than that using tasks ‘‘TE 1’’ and ‘‘TE 3’’ for
recovering the missing data in task ‘‘TE 1,’’ as shown in
Figures 5 and 6. By comparing Figures 5 and 7, it is
interesting to note that the reconstruction performance

of MTGPM using all three tasks ‘‘TE 1,’’ ‘‘TE 2,’’ and
‘‘TE 3’’ simultaneously is not better than that with
using only the two most related tasks ‘‘TE 1’’ and ‘‘TE
2.’’ This finding tells us that it is not necessary to use all
available tasks to build MTGPM for missing data
reconstruction, but rather modelers should use highly
correlated tasks for MTGPM formulation, which
enables considerable reduction in the computational
cost. It can be seen from Figures 8 and 9 that when the
missing data occur at the same time period for different
tasks, MTGPM fails to favorably restore the missing
data. This is very understandable, since no information

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6. Temperature data reconstruction by MTGPM with different covariance functions (Case 2): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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is available at the target slot for all sensors and thus the
task relatedness does not take effect for data recovery.
However, we do not have to worry about this situation
much, because an SHM system usually embraces mas-
sive sensors and it is almost impossible that all sensors
suffer from fault simultaneously.

Subsequently, we turn to the observation of the
reconstruction preformation of STGPM. As shown in
Figures 10 to 12, the STGPM is unable to recover a
large block of missing data. To be more specific, the

STGPM preserves enough accuracy only for limited-
step (one- or two-step) ahead reconstruction, and its
reconstruction error becomes larger and larger with the
increase in the time step of data reconstruction. Overall,
the STGPM is not reliable for reconstructing a large
amount of missing data. In light of the above observa-
tions, it can be concluded that the MTGPM presents
an overwhelming superiority over the STGPM for
reconstruction of SHM data, especially in the case with
a large block of missing data.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 7. Temperature data reconstruction by MTGPM with different covariance functions (Case 3): (a) SE, (b) MA, (c) PE, (d)
SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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Since the visual inspection of reconstruction perfor-
mance of MTGPMs with different settings of covar-
iance functions is subjective, two performance measures
are adopted here to quantitatively assess the reconstruc-
tion capability. They are root mean square error
(RMSE) and mean likelihood (ML). The expressions
for these two metrics are given by

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i = 1

ðyi � myi
Þ2

s
ð26Þ

ML=
1

n

Xn

i = 1

N yijmyi
,s2

yi

� �
ð27Þ

where myi
and s2

yi
are the predictive mean and variance

of the ith missing data point yi, respectively. The
RMSE metric is to measure the total accuracy of the
reconstruction, while the ML metric is to quantify
how likely the missing measurements are reproduced
by the forecasts, which accounts for the effect of
forecasting uncertainty (variance). According to the
definition of RMSE and ML, the smaller RMSE and
the larger ML indicate higher reconstruction
capability.

The reconstruction performance of MTGPMs using
different covariance functions is compared in terms of
RMSE and ML as shown in Figure 13. Note that Case
5 is not included here because, as mentioned before,

(a) (b) (c)

(d) (e) (f)

(g)

Figure 8. Temperature data reconstruction by MTGPM with different covariance functions (Case 4): (a) SE, (b) MA, (c) PE, (d)
SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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MTGPM fails to favorably recover missing data when
the missing data occur at the same time period for all
tasks simultaneously. From Figure 13, several observa-
tions can be obtained:

� Among the seven covariance functions, the PE one
presents worst reconstruction performance. This is
due to the fact that the time series data are not
purely PE although they contain PE component.

� The MA covariance function performs better than
the SE covariance function. The higher reconstruc-
tion capability generated by the MA covariance

function is attributable to its own feature that is
unlike the SE one; the MA one does not impose
strong assumption on the smoothness of time series
data, allowing for a good description of highly
rough variations in the SHM data.

� The hybrid covariance functions created by sum
operation, that is, ‘‘SE + PE’’ and ‘‘MA + PE,’’
provide greater reconstruction accuracy than the
unblended SE and MA covariance functions,
respectively. In contrast, the product operation-
generated hybrid covariance functions (i.e.
‘‘SE 3 PE’’ and ‘‘MA 3 PE’’) do not offer similar

(a) (b) (c)

(d) (e)

(g)

(f)

Figure 9. Temperature data reconstruction by MTGPM with different covariance functions (Case 5): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.

1294 Structural Health Monitoring 18(4)



reconstruction capability to the sum operation-
generated ones. The higher reconstruction capabil-
ity of the sum operation-generated composite cov-
ariance functions than the product operation-
generated ones might be explained by the fact that
the SHM data are in general a sum of generic com-
ponents such as seasonal and regression compo-
nents, rather than a product of them.

� Overall, the hybrid covariance function ‘‘MA + PE’’
leads to the best reconstruction capability among the
seven covariance functions studied.

Reconstruction of acceleration measurements

The acceleration data are used to further examine the
reconstruction performance of the proposed Bayesian
MTL methodology. Likewise, acceleration measure-
ments collected from three accelerometers are consid-
ered here. In particular, the three target accelerometers
associated with channel labels 07, 08, and 09 at the ele-
vation of 228.50 m (Figure 2) are selected, which are
denoted as ‘‘AC 1,’’ ‘‘AC 2,’’ and ‘‘AC 3,’’ respectively,

for demonstration convenience. Figure 14 shows accel-
eration data collected from the three target acceler-
ometers over 60 s. The PCCs between ‘‘AC 1’’ and
‘‘AC 2’’ and between ‘‘AC 1’’ and ‘‘AC 3’’ are
rAC1, AC2 = 0:928 and rAC1, AC3 = 0:038, respectively,
indicating high similarity between tasks 1 and 2 and
low similarity between tasks 1 and 3.

Like the temperature data case, one-sixth of the
total acceleration data from one accelerometer serves
as the missing data, that is, 10 s acceleration measure-
ments in total is to be recovered. Then, MTGPM and
STGPM are utilized to recover the missing data for
each case mentioned in the above section, respectively.
The data reconstruction results of MTGPM are shown
in Figures 15 to 19, and those of STGPM are shown in
Figures 20 to 22. The reconstruction performance of
MTGPMs using different covariance functions for
Cases 1–4 is quantitatively expressed in terms of
RMSE and ML as shown in Figure 23. From Figures
15 to 23, the following observations are obtained
through comparison with the temperature measure-
ment cases:

(a) (b) (c)

(d) (e)

(g)

(f)

Figure 10. Temperature data reconstruction by STGPM with different covariance functions (Cases 1–3): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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� It is confirmed again that the MTGPM exhibits bet-
ter reconstruction performance than the STGPM.
The higher the task relatedness, the higher recon-
struction capability the MTGPMmaintains.

� Similarly, the MTGPM with the PE covariance
function alone shows worst reconstruction perfor-
mance. This can be illustrated by the incompatibil-
ity between the PE covariance function–based
MTGPM prediction cures and the acceleration time
series data. The former presents a strictly PE pat-
tern, whereas the latter does not.

� Likewise, the acceleration measurement cases also
corroborate that the MTGPM using all three tasks
together does not maintain a better reconstruction
performance than that using only the two most
related tasks. MTGPMs, no matter what covar-
iance function is used, fail to favorably restore the
missing data when all the tasks suffer from missing
measurements over the same time.

� Unlike the temperature measurements, the hybrid
covariance functions do not show an advantage
over the unblended ones in reconstructing missing

(a) (b) (c)

(d) (e) (f)

(g)

Figure 11. Temperature data reconstruction by STGPM with different covariance functions (Case 4): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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acceleration data for all five cases. Specifically, the
hybrid and uncombined covariance functions
except the PE one show almost the same perfor-
mance for Cases 1, 3, and 4, but for Case 2, the
hybrid covariance function ‘‘MA + PE’’ still owns
the best reconstruction capability among the seven
covariance functions under investigation.
Therefore, the hybrid covariance function
‘‘MA + PE’’ can be considered as an optimal
choice in the proposed Bayesian MTL–based meth-
odology for reconstruction of missing SHM data.

Conclusion

A new methodology for recovery of missing SHM data
using Bayesian MTL has been proposed in this article.
It is a model-free approach, which does not rely on the
FE model and thus is preferable for restoring site-
specific monitoring data. Specifically, the Bayesian
MTL–based methodology is formulated to model mul-
tiple tasks collectively via a multivariate GP prior,
which results in an MTGPM enabling the characteri-
zation of correlation among tasks, and the constructed
MTGPM is executed to recover the missing data by

(a) (b) (c)

(d) (e) (f)

(g)

Figure 12. Temperature data reconstruction by STGPM with different covariance functions (Case 5): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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invoking the shared information across tasks. The use
of task relatedness encoded by MTGPM gives rise to
better data reconstruction performance than learning
each single task individually. The potentiality of the
Bayesian MTL approach for missing data recovery
becomes more pronounced when the training data are
too limited to learn each underlying model separately
or when there is a large block of missing data.

The reconstruction capability of the Bayesian MTL
approach has been examined by using the real-time
temperature and acceleration monitoring data acquired
from a high-rise structure. Its reconstruction perfor-
mance is also compared with the conventional
Bayesian STL approach. In recognizing that the covar-
iance function might largely influence the modeling
flexibility and expressive power of GPM, the perfor-
mance of different kinds of covariance functions
including unblended and composite ones in data recon-
struction is investigated thoroughly. A total of seven
covariance functions (SE, MA, PE, ‘‘SE 3 PE,’’

(a) (b)

(c) (d)

Figure 13. Performance assessment of MTGPM for temperature data reconstruction: (a) Case 1, (b) Case 2, (c) Case 3, and
(d) Case 4.

Figure 14. Acceleration monitoring data.
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(a) (b)

(c) (d)

(e)

(g)

(f)

Figure 15. Acceleration data reconstruction by MTGPM with different covariance functions (Case 1): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 16. Acceleration data reconstruction by MTGPM with different covariance functions (Case 2): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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(a) (b)

(c) (d)

(e)

(g)

(f)

Figure 17. Acceleration data reconstruction by MTGPM with different covariance functions (Case 3): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 18. Acceleration data reconstruction by MTGPM with different covariance functions (Case 4): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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(a) (b)

(c) (d)

(e)

(g)

(f)

Figure 19. Acceleration data reconstruction by MTGPM with different covariance functions (Case 5): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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‘‘MA 3 PE,’’ ‘‘SE + PE,’’ and ‘‘MA + PE’’) are uti-
lized to assess the reconstruction performance of both
Bayesian MTL and STL approaches under various
missing data scenarios with different task combina-
tions. The results indicate that the proposed Bayesian
MTL–based methodology provides an excellent per-
formance for data reconstruction, whereas the con-
ventional Bayesian STL approach is not reliable to
restore the missing data in some cases. It is also
revealed that the covariance function plays an impor-
tant role in missing data reconstruction by the

Bayesian MTL–based methodology, and among the

seven covariance functions, the hybrid covariance

function ‘‘MA + PE’’ gives the highest reconstruc-

tion capacity, especially for the temperature measure-

ments. In summary, this study presents a novel

approach for reconstructing SHM data based on

Bayesian MTL with a multivariate GP prior and

meanwhile offers useful guidance on the selection of

an appropriate covariance function for missing data

reconstruction.

(a) (b)

(b) (c)

(d)

(g)

(e)

Figure 20. Acceleration data reconstruction by STGPM with different covariance functions (Cases 1–3): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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(a) (b)

(c) (d)

(e)

(g)

(f)

Figure 21. Acceleration data reconstruction by STGPM with different covariance functions (Case 4): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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(a) (b)

(c) (d)

(e)

(g)

(f)

Figure 22. Acceleration data reconstruction by STGPM with different covariance functions (Case 5): (a) SE, (b) MA, (c) PE,
(d) SE 3 PE, (e) MA 3 PE, (f) SE + PE, and (g) MA + PE.
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