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ABSTRACT This paper proposes a multi-power reaching law-based sliding-mode control (SMC) for
uncertain discrete-time systems. The proposed controller mainly consists of the multi-power function along
with the perturbation estimation. Different from the existing similar works, the control gains of the controller
are adaptively adjusted by the multi-power function, i.e., three power terms, according to different stages of
the convergence process. Hence, the system trajectory of the controlled system can be forced toward the
sliding surface with a faster convergence rate. The corresponding sliding-mode dynamics and the reaching
steps to the sliding surface are theoretically analyzed. A practical example is given to examining the validity
of the proposed method. The simulation results show that the proposed method reduces the reaching steps
while guaranteeing better control accuracy than the single power method.

INDEX TERMS Multi-power function, discrete-time sliding-mode control (DSMC), reaching law.

I. INTRODUCTION
During the past few decades, sliding-mode control (SMC)
has been widely employed to stabilize varieties of linear
and nonlinear systems [1]–[3]. It has many attractive mer-
its like easy realization, quick response and especially the
invariability to parameter uncertainties and external distur-
bances [4]. Nowadays, more and more control methods
are performed in the sampled-data system, the study on
discrete-time SMC (DSMC) has attracted the attention of
many researchers [5]. It is notable that, the properties valid
for continuous-time SMC are incapable of extending directly
to its discrete-time counterpart because of the finite sampling
rate in the sampled-data system. Therefore, the redesign of
DSMC becomes imperative and preferable. Among these
design methods, the reaching law method, first presented
in [6] and [7], has been certified to be a simple and effective
one. It owns many advantages, like streamlining the design
process of DSMC, and describing sliding-mode dynamics
of DSMC systems [8]. Some improved reaching law meth-
ods have been proposed by other researchers, such as the
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non-switching reaching law [9]–[15], the observed based
reaching law [16]–[20], the power reaching law [7], [9], [21],
the generalized reaching law [22]–[24], and so on.

It is notable that the reaching law method for discrete-time
systems is not flawless; indeed, in practical applications,
the adoption of the discrete-time reaching law will result in
chattering phenomenon in the vicinity of the sliding surface.
This is unacceptable in some applications [25]–[27].

An interesting method in literature for chattering allevi-
ation is the single power reaching law, which replaces the
discontinuous gain k of the sign function by a power term
of the switching function k · |s(k)|β [7], [9], [21]. This
method can mitigate chattering since its convergence rate
varies in accordance with the distance variation. Neverthe-
less, when the state is far away from the sliding surface, the
extremely small convergence rate results in long reaching
time. A bi-power reaching law has been proposed in [28]
for continuous-time systems. However, it cannot be directly
employed to discrete-time systems. To the best of our knowl-
edge, the multi-power reaching law based DSMC has not
been properly investigated.

In this paper, a multi-power reaching law based DSMC
is introduced, which contains the multi-power function and
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the perturbation estimation. In comparison with the single
power method, the proposed control scheme enables a faster
convergence rate and better control accuracy. The gains of
the switching control terms are meaningfully and adaptively
adjusted by the multi-power function according to different
stages of the convergence process. Moreover, the sliding
mode dynamics and the reaching steps of the developed
method are discussed and analyzed theoretically. A practical
example is given to illustrate the validity of the developed
method.

This paper is organized as follows: in Section II, the system
description along with the important property and assump-
tion are given. The novel multi-power based DSMC is pre-
sented in Section III as well as the system dynamics analysis.
Section IV presents simulation results. Conclusion is given
in Section V.

II. SYSTEM DESCRIPTION
The following uncertain discrete-time system is considered:

x(k + 1) = Ax(k)+ Bu(k)+ d(k), (1)

where x(k) ∈ Rn represents the state variable, u(k) ∈ R1

stands for the control input variable. The disturbance
d(k) ∈ Rn owns a property as follows:
Property 1 [29]: d(k) = O(T ), d(k) – d(k–1)=O(T 2), and

d(k) – 2d(k–1) + d(k–2) = O(T 3), where T is the sampling
time interval.

With the state variable, a discrete-time switching function
is constructed as follows:

s(k) = Cx(k), (2)

where C is to be chosen such that CB is invertible.
Assumption 1: δ(k), which represents the change rate of the

disturbance d(k), is expected to be bounded as follows:

|δ(k)| ≤ δ∗, (3)

where δ(k) can be indicated as δ(k) = δ2(k) = C[d(k)−d(k–
1)] [21] or δ(k) = δ3(k) = C[d(k) – 2d(k–1)+ d(k–2)] [14].
Referring to Property 1, the upper bound δ∗ is in the order of
O(T 2) or O(T 3).
The following lemma is required in the demonstration of

Theorems 1 and 2
Lemma 1 [30]: Let f : I ⊂ R→ R be a convex function.

If xi ∈ I (i = 1, 2, . . . , n), and qi ≥ 0(i = 1, 2, . . . , n) with∑n
i=1 qi = 1, then

f

(
n∑
i=1

qixi

)
≤

n∑
i=1

qif (xi). (4)

III. MULTI-POWER REACHING LAW BASED DSMC
The single power reaching law has been presented in previous
works [9], [21]:

s(k + 1) = (1− qT0) s(k)− k0 |s(k)|τ sgn (s(k))+ δ2(k),

(5)

where 0 < 1 – qT0 < 1, k0 > 0, 0 < τ < 1. Although the
chattering can be reduced, the reaching time of this method
is significantly increased when the state is far away from the
sliding surface.

In this paper, a multi-power reaching law is presented to
conquer the drawbacks of single power reaching law. The
proposed reaching law is:

s(k + 1) = (1− qT ) s(k)

− k1 |s(k)|α sgn (s(k))− k2 |s(k)|β sgn (s(k))

− k3 |s(k)|γ sgn (s(k))+ δ(k), (6)

where 0 < 1 – qT < 1, k1, k2, k3 > 0, α > 1, 0 < β < 1,
δ(k) = δ2(k) or δ3(k).

γ =

{
max {α, |s(k)|} , if |s(k)| ≥ 1
min {β, |s(k)|} , if |s(k)| < 1.

(7)

Considering Eq. (7), it is deduced that γ will not equal to 1.

FIGURE 1. Power terms comparison.

Figure 1 depicts the power terms evolution employing the
proposed method and the single power reaching law. The
initial state |s(0)| = 2.
Remark 1: The reaching law (6) has three power terms,

i.e., the multi-power function:
1) When the state variable is far away from the sliding

surface (|s(k)| ≥ 1), k1|s(k)|αsgn(s(k)) + k3|s(k)|γ

sgn (s(k)) plays a leading role and the effect of
k2|s(k)|βsgn(s(k)) can be ignored comparing with other
power terms. Hence, the convergence rate toward the
sliding surface is faster than the single power reaching
law (5).

2) When the state variable approximates the slid-
ing surface (|s(k)| < 1), k2|s(k)|βsgn(s(k)) +
k3|s(k)|γ sgn(s(k)) plays a leading role and the effect
of k1|s(k)|αsgn(s(k)) can be ignored. Hence, the pro-
posed method ensures a slightly shorter convergence
time than the single power reaching law. It is notable
that the multi-power function approaches the single
power function when |s(k)| is quite small, as illustrated
in Fig. 1.

3) k3|s(k)|γ sgn(s(k)) further divides the convergence pro-
cess into four stages: s(0) → s(kl) = α, s(kl) = α →
s(km) = 1, s(km) = 1 → s(kn) = β, s(kn) = β →

s(ko) = 0. γ alters in the four stages, which ensures the
system quickly and smoothly converge to the sliding
surface from the initial state.

Because of the unavailable knowledge of d(k), the distur-
bance term can be estimated by the perturbation estimation
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method [31]. The system states are measurable in most cases.

d(k − 1) = x(k)− Ax(k − 1)− Bu(k − 1). (8)

Inserting the system model (1) into (2) and in view of the
reaching law (6) and (8) gives

u(k)



= − (CB)−1


CAx(k)− (1− qT ) s(k)
+k1 |s(k)|α sgn (s(k))
+k2 |s(k)|β sgn (s(k))
+k3 |s(k)|γ sgn (s(k))
+2Cd(k − 1)− Cd(k − 2)

 ,
if δ(k) = δ3(k)

= − (CB)−1


CAx(k)− (1− qT ) s(k)
+k1 |s(k)|α sgn (s(k))
+k2 |s(k)|β sgn (s(k))
+k3 |s(k)|γ sgn (s(k))
+Cd(k − 1)

 ,
if δ(k) = δ2(k).

(9)

Next, the stability of the designed DSMC system will be
discussed in the following aspects: the first two are the system
dynamics in and out the vicinity of the sliding surface, and the
last one is how many steps that the system trajectory needs to
first cross the sliding surface.
Theorem 1: Noting the uncertain discrete-time system (1),

suppose that the switching function (2) and the DSMC con-
troller (9) are employed, then the system trajectory s(k) can
converge into the region 9 defined as follows:

9 = χ (γ ) ·8

= χ (γ ) ·max

{
81 =

(
δ∗

kf

) 1
k11α+k22β+k33γ

,

82 =

(
kf

1− qT

) 1
1−γ
}
, (10)

with k11 + k22 + k33 = 1, kf · k11 = k1, kf · k22 = k2,
kf · k33 = k3, and

χ (γ ) = 1+ γ
γ

1−γ − γ
1

1−γ . (11)

Proof: To demonstrate that s(k) will be driven to 9, a
Lyapunov function V (k) = s2(k) is selected. Inserting (6)
into the Lyapunov function leads to

1V (k) = V (k + 1)− V (k)

= [s(k + 1)− s(k)] [s(k + 1)+ s(k)] . (12)

Then, the following two cases, i.e., s(k) > 9 and
s(k) < 9, will be considered.
Case 1: If s(k) > 9, considering (6), the difference

between s(k + 1) and s(k) can be computed as follows:

s(k + 1)− s(k) = −qTs(k)− k1 |s(k)|α sgn (s(k))

− k2 |s(k)|β sgn (s(k))

− k3 |s(k)|γ sgn (s(k))+ δ(k). (13)

Additionally, recalling Lemma 1, it can be derived
from (13) that

s(k + 1)− s(k)

≤ −qTs(k)− k1s(k)α − k2s(k)β − k3s(k)γ + δ∗

≤ −k1s(k)α − k2s(k)β − k3s(k)γ + δ∗

≤ −kf s(k)k11α+k22β+k33γ + δ∗. (14)

Taking into account (14), it can be obtained that if
−kf s(k)k11α+k22β+k33γ s(k)k11α+k22β+k33γ + δ∗ < 0, then
s(k + 1) – s(k) < 0 holds. Solving inequality (14) yields

s(k) > 81 =

(
δ∗

kf

) 1
k11α+k22β+k33γ

. (15)

Based on (6), we can get

s(k + 1)+ s(k) ≥ (2− qT ) s(k)− k1s(k)α

− k2s(k)β − k3s(k)γ − δ∗. (16)

Recalling (14), it can be derived that if

(2− qT ) s(k)− k1s(k)α − k2s(k)β − k3s(k)γ − δ∗

≥ qTs(k)+ k1s(k)α + k2s(k)β + k3s(k)γ − δ∗, (17)

then s(k + 1) + s(k) > 0 holds. Inequality (17) is simplified
into

(1− qT ) s(k)− k1s(k)α − k2s(k)β − k3s(k)γ ≥ 0. (18)

1) If s(k) ≥ 1, then inequality (18) can be represented as

(1− qT ) s(k)− kf s(k)γ ≥ 0, (19)

with γ = max{s(k), α}. It is derived that if condition (20) is
met

s(0) ≤
(
1− qT
kf

) 1
γ−1

, (20)

then inequality (19) holds.
2) If s(k) < 1, then inequality (18) can be represented

as (19) with γ = min{s(k), β}. It is deduced from (19) that

s(k) ≥ 82 =

(
kf

1− qT

) 1
1−γ

. (21)

Case 2: If s(k)< –9, the proof is similar to Case 1 and the
relation 1V (k) < 0 still holds.
Considering Assumption 1 and noting [21], δ∗ is in the

order of O(T 2) or O(T 3) and the system trajectory can con-
verge into a small region whose width can approach δ∗.
According to [32], it is deduced that χ (γ ) ∈∈(1, 2). Hence,
if s(k) > 9, then 1V (k) < 0, and system trajectory can be
driven onto the 9 vicinity.

Next, we will demonstrate the fact that once the system
trajectory gets into the 9 region, it cannot escape from this
region, i.e., |s(k + 1)| ∈ 9, ∀|s(k)| ∈ 9. Before moving
forward, some lemmas are given in the following.
Lemma 2: Function χ (x) = 1+ x

x
1−x − x

1
1−x is monoton-

ically decreasing with x ∈ (0, 1) and (1,+∞).
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Proof: We should calculate the first order derivative
of χ (x). For convenience, let y = x

x
1−x and z = x

1
1−x , it yields

Iny =
x

1− x
Inx, Inz =

1
1− x

Inx, (22)

⇒
dy
dx
=

[
Inx

(1− x)2
+

1
1− x

]
x

x
1−x ,

dz
dx
=

[
Inx

(1− x)2
+

1
x (1− x)

]
x

1
1−x . (23)

Combining (22) and (23) gives

dχ (x)
dx
=

Inx
1− x

x
x

1−x . (24)

Moreover, it is deduced that limx→+∞y = 0,
limx→+∞z = 1, limx→1y = 1/e, limx→1z = 1/e. If x > 1,
then dχ (x)/dx < 0, and 0 < χ (x) < 1; If 0 < x < 1,
then dχ (x)/dx < 0, and 1 < χ(x) < 2. Hence, χ (x) is
monotonically decreasing with respect to x ∈ (0,+∞).
Lemma 3: The following condition can be met in the 9

region:

δ∗ ≤ kf8k11α+k22β+k33γ

≤ kf max
{
8α,8β ,8γ

}
≤ (1− qT )8. (25)

Proof: As stated in Theorem 1, the 9 region is quite
small and γ = min{s(k), β} in this region. There are two
situations to be considered:
Case 1: If 8 = 82 = max{81, 82}, i.e.,

81 =

(
δ∗

kf

) 1
k11α+k22β+k33γ

≤ 8 = 82 =

(
kf

1− qT

) 1
1−γ

,

(26)

then it can be derived from (26) that

δ∗ ≤ kf8k11α+k22β+k33γ , (1− qT )8 = kf8γ

= kf max
{
8α,8β ,8γ

}
. (27)

In view of Lemma 1, the following relation is derived

kf max
{
8α,8β ,8γ

}
≥ k18α + k28β + k38γ

≥ kf8k11α+k22β+k33γ . (28)

Case 2: If 8 = 81 = max{81, 82}, i.e.,

8 = 81 =

(
δ∗

kf

) 1
k11α+k22β+k33γ

≥ 82 =

(
kf

1− qT

) 1
1−γ

,

(29)

then it is deduced from (29) that

δ∗ = kf8k11α+k22β+k33γ , (1− qT )8 ≥ kf8γ

= kf max
{
8α,8β ,8γ

}
. (30)

Considering Lemma 1, inequality (28) still holds in this
situation.
Theorem 2: Noting the discrete-time system represented

by (1) and the switching function (2), the DSMC con-
troller (9) and the condition (31), once the system trajectory

gets into the9 region, the following condition |s(k+1)| ≤ 9,
∀|s(k)| ≤ 9 is met.

k11α + k22β + k33γ ≤ 1 or 2(1− qT ) ≤ χ (γ ). (31)

Proof: By defining s(k) = µ · 9 = µχ (γ )8 with –1
≤ µ ≤ 1 and sigx(s(k)) = |s(k)|x sgn (s(k))(x = α, β, γ ),
Eq. (6) is represented as

s(k + 1)

= (1− qT ) µχ (γ )8− k1sigα (µχ (γ ))8α

− k2sigβ (µχ (γ ))8β − k3sigγ (µχ (γ ))8γ + δ(k)

≤ (1− qT ) µχ (γ )8− k1sigα (µχ (γ ))8α

− k2sigβ (µχ (γ ))8β − k3sigγ (µχ (γ ))8γ+δ∗. (32)

Case 1: If µ ≥ 0, recalling Lemma 1, then it is deduced
from (32) that

s(k + 1) ≤ (1− qT ) µχ (γ )8

− kf (µχ (γ ))k11α+k22β+k33γ 8k11α+k22β+k33γ+δ∗.

(33)

If µχ (γ ) ≥ 1, in view of Lemma 3 and (33) yields

s(k + 1) ≤ (1− qT ) µχ (γ )8

− (µχ (γ ))k11α+k22β+k33γ δ∗ + δ∗

≤ (1− qT ) µχ (γ )8

≤ χ (γ )8 = 9. (34)

If 0 ≤ µχ (γ ) < 1, in view of Lemma 3, it can be derived
from (33) that

s(k + 1)

≤ (1− qT ) µχ (γ )8

+

[
1− (µχ (γ ))k11α+k22β+k33γ

]
(1− qT )8

=

[
1+ µχ (γ )− (µχ (γ ))k11α+k22β+k33γ

]
(1− qT )8. (35)

By noting condition (31), it is found that s(k) ≤ 9.
Case 2: If µ < 0, in accordance with Lemma 3 gives

s(k + 1)

≤ − (1− qT ) |µχ (γ )|8+ k1 |µχ (γ )|α 8α

+ k2 |µχ (γ )|β 8β + k3 |µχ (γ )|γ 8γ + δ∗

≤ − (1− qT ) |µχ (γ )|8

+

[ k1
kf
|µχ (γ )|α + k2

kf
|µχ (γ )|β

+
k3
kf
|µχ (γ )|γ

]
kf max


8α,

8β ,

8γ

+ δ∗
≤ − (1− qT ) |µχ (γ )|8

+

[ k1
kf
|µχ (γ )|α + k2

kf
|µχ (γ )|β

+
k3
kf
|µχ (γ )|γ

]
(1− qT )8+ δ∗.

(36)

If µχ (γ ) ≤ −1, the following deduction is obtained
from (36) considering Lemma 3

s(k + 1)

≤ − (1− qT ) |µχ (γ )|8
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+
k1 + k2 + k3

kf
|µχ (γ )|α (1− qT )8+ (1− qT )8

= −
[
|µχ (γ )| − |µχ (γ )|α − 1

]
(1− qT )8. (37)

Next, we will prove [|µχ (γ )| – |µχ (γ )|α – 1](1 – qT) ≥
–χ (γ ). Construct the following function with 0 ≤ x ≤ 1

g(x) =
[
xχ (γ )− xαχ (γ )α − 1

]
(1− qT )+ χ (γ ). (38)

In view of the expression of f (x) leads to

g(0) = χ (γ )− (1− qT ) > 0, (39)
dg(x)
dx
=

[
χ (γ )− αxα−1χ (γ )α

]
(1− qT ) = 0, (40)

⇒ x =
α

1
1−α

χ (γ )
. (41)

Substituting (41) into (38) gives

g(x) =
(
1+ γ

γ
1−γ − γ

1
1−γ
)

− (1− qT )
(
1+ α

α
1−α − α

1
1−α

)
≥

(
1+ γ

γ
1−γ − γ

1
1−γ
)
−

(
1+ α

α
1−α − α

1
1−α

)
. (42)

According to Lemma 2, g(x) > 0 holds. Hence, s(k) ≤ 9.
If –1 < µχ (γ ) ≤ 0, the expression of s(k + 1) can be

represented as

s(k + 1)

≤ − (1− qT ) |µχ (γ )|8+ |µχ (γ )|γ (1− qT )8

+ (1− qT )8

= −
[
|µχ (γ )| − |µχ (γ )|γ − 1

]
(1− qT )8. (43)

Considering [21, Lemma A.2], Eq. (43) is devised as fol-
lows

s(k + 1) ≤ (1− qT ) χ (γ )8 ≤ 9. (44)

Similarly, noting (6), the following deduction is generated

s(k + 1)

≥ (1− qT ) µχ (γ )8− k1sigα (µχ (γ ))8α

− k2sigβ (µχ (γ ))8β − k3sigγ (µχ (γ ))8γ − δ∗. (45)

Case 1: If µ ≥ 0 and µχ (γ ) ≥ 1, combining Lemma 1
and (45) yields

s(k + 1) ≥ (1− qT ) µχ (γ )8− (µχ (γ ))α (1− qT )8

− (1− qT )8

=
[
µχ (γ )− (µχ (γ ))α − 1

]
(1− qT )8

≥ −9. (46)

If 0 ≤ µχ (γ ) < 1, similar to (43), it is derived that

s(k + 1) ≥
[
µχ (γ )− (µχ (γ ))γ − 1

]
(1− qT )8

≥ −9. (47)

Case 2: If µ < 0 and µχ (γ ) ≤ −1, we can obtain that

s(k + 1) ≥ − (1− qT ) |µχ (γ )|8

+

[
|µχ (γ )|k11α+k22β+k33γ − 1

]
δ∗

≥ − (1− qT ) |µχ (γ )|8 ≥ −9. (48)

If 0 ≤ µχ (γ ) < 1, similar to (35)

s(k + 1)

≥

[
|µχ (γ )|k11α+k22β+k33γ − 1− |µχ (γ )|

]
(1− qT )8

≥ −9. (49)

Therefore, in the 9 region, the following condition
|s(k + 1)| ≤ 9, ∀|s(k)| ≤ 9 is satisfied.
It is noted that the parameters in condition (31) are

adjustable control gains. Hence, condition (31) can hold by
selecting appropriate gains.
Theorem 3: For the system (1) with the DSMC con-

troller (9), the system trajectory will take at most K∗ steps
(finite steps) to first cross the sliding surface, where

K∗ =
⌊
m∗
⌋
+ 1 with

m∗ =
s2(0)− α2

µ2
1

+
α2 − 1

µ2
2

+
1− β2

µ2
3

+
β2

µ2
4

,

µ1 = qTα + (k1 + k3) αα − δ∗,

µ2 = qT + (k1 + k3)− δ∗,

µ3 = qTβ + (k2 + k3) ββ − δ∗, µ4 = −δ
∗. (50)

Proof: Assume the initial state |s(0)| > α, the con-
vergence process can be divided into four stages: |s(0)| →
|s(kl)| = α, |s(kl)| = α → |s(km)| = 1, |s(km)| = 1 →
|s(kn)| = β, |s(kn)| = β → |s(ko)| = 0.
Case 1 (s(0) > α):
Stage 1: s(0) → s(kl) = α. Owing to s(k) > 1, the effect

of k2|s(k)|β sgn (s(k)) can be ignored comparing with other
power terms [39]. Equation (6) can be written as

s(k + 1) ≈ (1− qT ) s(k)− k1 |s(k)|α sgn (s(k))

− k3 |s(k)|γ sgn (s(k))+ δ(k). (51)

Then, recalling Theorem 1, the following deduction is
obtained, i.e.,

− [s(k + 1)− s(k)] ≥ qTs(k)+ k1s(k)α + k3s(k)γ − δ∗

(52)

≥ qTα + (k1 + k3) αα − δ∗ := µ1,

s(k + 1)+ s(k) ≥ − [s(k + 1)− s(k)] ≥ µ1. (53)

It follows from (52) and (53) that

s2(1) ≤ s2(0)− µ2
1, s

2(2) ≤ s2(0)− 2µ2
1, . . . , α

2

= s2(0)− m1µ
2
1. (54)

Solving (54) generates

m1 =
s2(0)− α2

µ2
1

. (55)

Stage 2: s(kl) = α → s(km) = 1. The effect of k2|s(k)|β

sgn (s(k)) is still ignored, and

s(k + 1)

≈ (1− qT ) s(k)− (k1 + k3) |s(k)|α sgn (s(k))+δ(k) (56)
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⇒ − [s(k + 1)− s(k)] ≥ qT + (k1 + k3)−δ∗ := µ2, (57)

⇒ m2=
α2 − 1

µ2
2

. (58)

Stage 3: s(km) = 1 → s(kn) = β. The effect of k1|s(k)|α

sgn (s(k)) is still ignored, and we have

s(k + 1)

≈ (1− qT ) s(k)− (k2 + k3) |s(k)|β sgn (s(k))+ δ(k).

(59)

⇒ − [s(k + 1)− s(k)] ≥ qTβ + (k2 + k3) ββ − δ∗ := µ3,

(60)

⇒ m3 =
1− β2

µ2
3

. (61)

Stage 4: s(kn) = β → s(ko) = 0. The effect of k1|s(k)|α

sgn (s(k)) is still ignored, and we have

s(k + 1) ≈ (1− qT ) s(k)− k2 |s(k)|β sgn (s(k))

− k3 |s(k)|γ sgn (s(k))+ δ(k). (62)

⇒ − [s(k + 1)− s(k)] ≥ −δ∗ := µ4, (63)

⇒ m4 =
β2

µ2
4

. (64)

Case 1 (s(0) < −α):
A similar proof can be obtained, and will not be detailed

here.
The above two cases reveal that the system trajectory

is able to first cross the sliding surface within at most
K∗ = bm∗c + 1 = bm1 + m2 + m3 + m4c + 1 steps.
Remark 2: With same or smaller control gains, the devel-

oped method guarantees a faster convergence rate than the
single power reaching law like [9] and [21].

For convenience, the convergence process of the single
power reaching law is also divided into four stages: |s (0)
| → |s(kl)| = α, |s(kl)| = α → |s(km)| = 1, |s(km)| =
1 → |s(kn)| = β, |s(kn)| = β → |s(ko)| = 0. Similarly,
considering (5), the reaching steps can be obtained

K∗s =
⌊
m∗s
⌋
+ 1 with m∗s

=
s2(0)− α2

µ2
1s

+
α2 − 1

µ2
2s

+
1− β2

µ2
3s

+
β2

µ2
4s

,

µ1s = qT0α + k0ατ − δ∗, µ2s = qT0 + k0 − δ∗,

µ3s = qT0β + k0βτ − δ∗, µ4s = −δ
∗. (65)

If same control gains are selected, i.e., qT = qT0, β = τ ,
comparing (50) with (65), it can be deduced that K∗ <

K∗s K
∗< K∗s and the convergence rate of the proposed method

is improved. Moreover, if smaller control gains are adopted
for proposed method, K∗< K∗sK

∗ < K∗s still holds by
proper selection of α, k1, k2, k3.

IV. EXAMPLES AND SIMULATIONS
In this section, the following piezomotor-driven linear
stage [33] is employed to demonstrate the proposed DSMC

method:

ẋ1(t) = x2(t)

ẋ2 =−
ks
m
x1(t)−

kv
m
x2(t)+

kf
m
u(t)−

1
m
d(x, t), y =x1(t) (66)

where x1(t) and x2(t) represent the linear displacement and
the velocity, respectively. u(t) stands for the voltage input.
m(= 1 kg), ks(= 0), kv(= 144 N), and kf (= 6 kg) represent
the nominal mass, spring, damping, and force constants. d(x,
t) is the disturbance term.
The sampling time interval is selected as T = 1ms. Then,

the discretized system (1) with the following parameters is
obtained: A = [1, 0.0009; 0, 0.8659],B = [0; 0.0056], C =
[5, 1], d(k) = [0; 0.0123sin(0.5kπ ) + 0.0056]. The single
power DSMC (5) [21] is employed here for comparison.

Two cases are considered in the following simulation.
In Case 1, same gains are selected for both methods. The
change rate of the disturbance δ(k) is represented as δ(k) =
δ2(k) = C[d(k) − d(k–1)] in the developed method (6).
In order to further narrow down the width of the 9 region,
δ(k) is selected as δ3(k) = C[d(k) – 2d(k–1)+ d(k–2)] in the
proposed method (6) in Case 2. For a fair comparison, same
control gains, i.e., qT = qT0, β = τ , k2 = k0, are chosen
for both methods. The control gains β, τ are selected as 0.5
to obtain small width of the 9 region ([21, Remark 3.2]).
Other control gains are elaborately adjusted via simulations to
realize satisfactory reaching steps and relatively small width
of the 9 region. The gains are picked as: qT = qT0 = 0.6,
k2 = k0 = 1 × 10−3, k1 = 9.27 × 10−2, k3 = 4.5 × 10−6,
α = 1.9.

FIGURE 2. Switching function of the proposed method: Case 1.

FIGURE 3. Switching function of the single power DSMC: Case 1.

Case 1: The switching functions of both methods are
illustrated in Figs. 2 and 3. In comparison with the single
power DSMC (K∗s = 13), the proposed method improves the
convergence rate (K∗ = 6), which implies that the system
trajectory converges faster to the sliding surface than that
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of the single power DSMC. Moreover, the proposed method
generates a smaller width of the 9 region (1.8 × 10−5)
than that of the single power DSMC (2.5 × 10−5). Hence,
the proposedmethod produces a better control accuracywhile
shortening the convergence time. The state variables of both
methods are depicted in Figs. 4 and 5.

FIGURE 4. State variable of the proposed method: Case 1.

FIGURE 5. State variable of the single power DSMC: Case 1.

FIGURE 6. Switching function of the proposed method: Case 2.

FIGURE 7. State variable of the proposed method: Case 2.

Case 2: For the purpose of further improving the control
accuracy of the developed method, δ(k) in (6) is selected as
δ3(k) = C[d(k) – 2d(k–1) + d(k–2)] in this case. Hence,
the impact of the disturbance is reduced. The control gains
remain the same with that in Case 1. The switching function
and the state variable of the proposed method are depicted
in Figs. 6 and 7, respectively. It can be found that the proposed
method produces a much smaller width of the 9 region
(5 × 10−6) than that in Case 1. Moreover, as depicted

in Fig. 6, the developed method still decreases the reaching
steps with K∗ = 9, as compared with that of [21] in Case 1,
and system trajectory of developed method remains to cross
the sliding surface in all subsequent steps.

V. CONCLUSION
This paper has given the design and verification of a
multi-power reaching law based discrete-time sliding-mode
control (DSMC). With the integration of the multi-power
function and the perturbation estimation, the proposed
method exhibits a superior performance over the single
power DSMC. The proposed method has the ability to
improve the convergence rate and guarantee better control
accuracy in the same time. Theoretical analyses of the reach-
ing steps and the convergence property under the impact of
the disturbance have been conducted. Simulation results on a
practical example verify that the proposed method is effective
and feasible.

REFERENCES
[1] H. Thanh and S. Hong, ‘‘Quadcopter robust adaptive second order slid-

ing mode control based on PID sliding surface,’’ IEEE Access, vol. 6,
pp. 66850–66860, 2018.

[2] L. Ma, Y. Zhang, X. Yang, S. Ding, and L. Dong, ‘‘Quasi-continuous
second-order sliding mode control of buck converter,’’ IEEE Access, vol. 6,
pp. 17859–17867, 2018.

[3] Y.Wang, F. Yan, J. Chen, andB. Chen, ‘‘Continuous nonsingular fast termi-
nal sliding mode control of cable-driven manipulators with super-twisting
algorithm,’’ IEEE Access, vol. 6, pp. 49626–49636, 2018.

[4] Q. Zhang, J. Zhang, and Y. Wang, ‘‘Robust sliding-mode control for fuzzy
stochastic singular systems with different local input matrices,’’ IEEE
Access, vol. 6, pp. 29391–29406, 2018.

[5] A. Bartoszewicz and P. Latosiński, ‘‘Reaching law based discrete time
sliding mode inventory management strategy,’’ IEEE Access, vol. 4,
pp. 10051–10058, 2016.

[6] W. Gao and J. C. Hung, ‘‘Variable structure control of nonlinear systems:
A new approach,’’ IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 45–55,
Feb. 1993.

[7] W. Gao, Y. Wang, and A. Homaifa, ‘‘Discrete-time variable struc-
ture control systems,’’ IEEE Trans. Ind. Electron., vol. 42, no. 2,
pp. 117–122, Apr. 1995.

[8] C. Xiu and P. Guo, ‘‘Global terminal sliding mode control with the quick
reaching law and its application,’’ IEEE Access, vol. 6, pp. 49793–49800,
2018.

[9] P. Latosiński, ‘‘Sliding mode control based on the reaching law
approach—A brief survey,’’ in Proc. Int. Conf. Methods Models Autom.
Robot.(MMAR), Miedzyzdroje, Poland, 2017, pp. 519–524.

[10] A. Bartoszewicz, ‘‘Remarks on discrete-time variable structure control sys-
tems,’’ IEEE Trans. Ind. Electron., vol. 43, no. 1, pp. 235–238, Jan. 1996.

[11] A. Bartoszewicz, ‘‘Discrete-time quasi-sliding-mode control strategies,’’
IEEE Trans. Ind. Electron., vol. 45, no. 4, pp. 633–637, Apr. 1998.

[12] A. Bartoszewicz and P. Latosiński, ‘‘New switching and nonswitching type
reaching laws for SMC of discrete time system,’’ IEEE Trans. Control Syst.
Technol., vol. 24, no. 3, pp. 670–677, Mar. 2016.

[13] A. Bartoszewicz and P. Latosiński, ‘‘Discrete time sliding mode control
with reduced switching—A new reaching law approach,’’ Int. J. Robust
Nonlinear Control, vol. 26, no. 1, pp. 47–68, Jan. 2016.

[14] H. Ma, J. Wu, and Z. Xiong, ‘‘Discrete-time sliding-mode control
with improved quasi-sliding-mode domain,’’ IEEE Trans. Ind. Electron.,
vol. 63, no. 10, pp. 6292–6304, Oct. 2016.

[15] Y. Niu, D. W. C. Ho, and Z. Wang, ‘‘Improved sliding mode control for
discrete-time systems via reaching law,’’ IET Control Theory Appl., vol. 4,
no. 11, pp. 2245–2251, Nov. 2010.

[16] Y. Eun, J.-H. Kim,K.Kim, andD.-I. Cho, ‘‘Discrete-time variable structure
controller with a decoupled disturbance compensator and its application to
a CNC servomechanism,’’ IEEE Trans. Control Syst. Technol., vol. 7, no. 4,
pp. 414–423, Jul. 1999.

49828 VOLUME 7, 2019



H. Ma, Y. Li: Multi-Power Reaching Law-Based Discrete-Time SMC

[17] Y. Eun and D.-I. Cho, ‘‘Robustness of multivariable discrete-time vari-
able structure control,’’ Int. J. Control, vol. 72, no. 12, pp. 1106–1115,
Aug. 1999.

[18] S. Qu, X. Xia, and J. Zhang, ‘‘Dynamics of discrete-time sliding-mode-
control uncertain systems with a disturbance compensator,’’ IEEE Trans.
Ind. Electron., vol. 61, no. 7, pp. 3502–3510, Jul. 2014.

[19] J. Zhang, P. Shi, Y. Xia, and H. Yang, ‘‘Discrete-time sliding mode control
with disturbance rejection,’’ IEEE Trans. Ind. Electron., to be published.
doi: 10.1109/TIE.2018.2879309.

[20] H. Ma, J. Wu, and Z. Xiong, ‘‘A novel exponential reaching law of
discrete-time sliding-mode control,’’ IEEE Trans. Ind. Electron., vol. 64,
no. 5, pp. 3840–3850, May 2017.

[21] H. Du, X. Yu, M. Z. Q. Chen, and S. Li, ‘‘Chattering-free discrete-time
sliding mode control,’’ Automatica, vol. 68, no. 3, pp. 87–91, Jun. 2016.

[22] S. Chakrabarty and B. Bandyopadhyay, ‘‘Minimum ultimate band design
of discrete sliding mode control,’’ Asian J. Control, vol. 17, no. 5,
pp. 1889–1897, Sep. 2015.

[23] S. Chakrabarty and B. Bandyopadhyay, ‘‘A generalized reaching law for
discrete time sliding mode control,’’ Automatica, vol. 52, pp. 83–86,
Feb. 2015.

[24] S. Chakrabarty and B. Bandyopadhyay, ‘‘A generalized reaching law with
different convergence rates,’’ Automatica, vol. 63, pp. 34–37, Jan. 2016.

[25] X. Yu, B. Wang, and X. Li, ‘‘Computer-controlled variable structure
systems: The state-of-the-art,’’ IEEE Trans. Ind. Informat., vol. 8, no. 2,
pp. 197–205, May 2012.

[26] S. Janardhanan and B. Bandyopadhyay, ‘‘Multirate output feedback based
robust quasi-sliding mode control of discrete-time systems,’’ IEEE Trans.
Autom. Control, vol. 52, no. 3, pp. 499–503, Mar. 2007.

[27] S. Janardhanan and B. Bandyopadhyay, ‘‘Output feedback sliding-mode
control for uncertain systems using fast output sampling technique,’’ IEEE
Trans. Ind. Electron., vol. 53, no. 5, pp. 1677–1682, Oct. 2006.

[28] L. Zheng, F. Jiang, J. Song, Y. Gao, andM. Tian, ‘‘A discrete-time repetitive
sliding mode control for voltage source inverters,’’ IEEE J. Emerg. Sel.
Topics Power Electron., vol. 6, no. 3, pp. 1553–1566, Sep. 2018.

[29] K. Abidi, J.-X. Xu, and Y. Xinghuo, ‘‘On the discrete-time integral
sliding-mode control,’’ IEEE Trans. Autom. Control, vol. 52, no. 4,
pp. 709–715, Apr. 2007.

[30] J. Liu, X. Zhang, and B. Jiang, ‘‘Some generalizations and improvements
of discrete hardy’s inequality,’’ Comput. Math. Appl., vol. 63, no. 3,
pp. 601–607, Feb. 2012.

[31] W.-C. Su, S. V. Drakunov, and U. Ozguner, ‘‘An O(T2) boundary layer
in sliding mode for sampled-data systems,’’ IEEE Trans. Autom. Control,
vol. 45, no. 3, pp. 482–485, Mar. 2000.

[32] S. Li, H. Du, and X. Yu, ‘‘Discrete-time terminal sliding mode control
systems based on Euler’s discretization,’’ IEEE Trans. Autom. Control,
vol. 59, no. 2, pp. 546–552, Feb. 2014.

[33] K. Abidi, J. X. Xu, and J. H. She, ‘‘A discrete-time terminal sliding-mode
control approach applied to a motion control problem,’’ IEEE Trans. Ind.
Electron., vol. 56, no. 9, pp. 3619–3627, Sep. 2009.

HAIFENG MA received the B.E. and M.E.
degrees in mechanical engineering from South-
west Jiaotong University, Chengdu, China,
in 2010 and 2013, respectively, and the Ph.D.
degree in mechatronics from Shanghai Jiao Tong
University, Shanghai, China, in 2017.

He is currently a Hong Kong Scholar and a
Postdoctoral Fellow with The Hong Kong Poly-
technic University, Hong Kong. He is also a Post-
doctoral Fellow with the State Key Laboratory of

Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai,
China. His research interests include sliding-mode control (SMC) theory and
applications, vibration control, and intelligent manufacturing.

YANGMIN LI (M’98–SM’04) received the
B.S. and M.S. degrees from Jilin University,
Changchun, China, in 1985 and 1988, respec-
tively, and the Ph.D. degree from Tianjin Univer-
sity, Tianjin, China, in 1994, all in mechanical
engineering.

He is currently a Full Professor with the Depart-
ment of Industrial and Systems Engineering,
The Hong Kong Polytechnic University. He has
authored or co-authored 408 scientific papers

in journals and conferences. His research interests include micro/
nanomanipulation, compliant mechanism, precision engineering, robotics,
multibody dynamics, and control. He is a member of the ASME. He is also
an Associate Editor of the IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND

ENGINEERING, Mechatronics, the International Journal of Control, Automa-
tion, and Systems, and the IEEE ACCESS.

VOLUME 7, 2019 49829

http://dx.doi.org/10.1109/TIE.2018.2879309

	INTRODUCTION
	SYSTEM DESCRIPTION
	MULTI-POWER REACHING LAW BASED DSMC
	EXAMPLES AND SIMULATIONS
	CONCLUSION
	REFERENCES
	Biographies
	HAIFENG MA
	YANGMIN LI


