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1. Introduction 

Spray combustion is widely used in many engineering applications such as aircraft 

engines, automotive engines and oil-fired furnaces [1, 2]. The combustion and emission 

performance strongly depend on the spray characteristics, which is in turn affected by 

microscopic processes of liquid droplet atomization. After the fuel spray emanates into 

the combustion chamber, liquid masses (sheets, filaments and droplets) of relatively 

large sizes are first formed by primary breakup, followed by their secondary 

atomization to produce droplets of smaller sizes [3-5].  

Secondary atomization of liquid droplets results from their interaction with the 

surrounding gas flow. It is found that different atomization mechanisms occur for 

different relative velocity between droplets and the gas flow [6-9]. In modern aircraft 

and automotive engines, the gas flow speed in the combustion chamber is usually rather 

high, and therefore acts a large acceleration on the droplets. In such a scenario, the 

Rayleigh-Taylor (R-T for short hereinafter) unstable waves form on the windward 

surface of the liquid drops, develop their amplitudes, and eventually breakup the 

droplets [10]. Such a mechanism for droplet secondary atomization in high-speed gas 

flow is also referred to as the “catastrophic atomization” [8, 11].  

R-T instability, which is excited on a liquid-gas interface where an acceleration is 

applied from the light fluid to the heavy, has been extensively observed and applied in 

many scientific and industrial fields [12-14]. It was first discovered by Rayleigh [15] 

for a heavy fluid lying on a lighter one under gravity and then extended to accelerated 
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fluids by Taylor [16], who derived a dispersion relation through a linear analysis for an 

ideal flow without considering capillary force. The destabilizing effects of fluid 

viscosity and surface tension force on R-T instability were further studied by Bellman 

and Pennington [17]. Since then, extensive investigations have been conducted to study 

the detailed dynamics of R-T instability [14, 18, 19]. 

In spite of these worthy works offering good insights into the R-T instability, most 

of the previous studies focus on the planar configuration. The R-T instability on a 

curved interface is believed to reveal different features. There are only a few studies 

devoted to the R-T instability at spherical interfaces in the fields of nuclear fusion and 

gas bubble stability [20, 21], in which the acceleration is usually assumed to be along 

the radial direction (spherically symmetric) [22]. As a result, most of the models 

accounting for the atomization of liquid droplets caused by R-T instability, which have 

been widely applied in the spray combustion simulation, are based on the flat surface 

assumption [10, 11] and obviously deviates from the realistic condition.  

With a simplified theory based on viscous potential flow, Joseph et al. [10] studied 

the breakup of a viscous droplet at high Bond number (Bo) and predicted the maximum 

diameter for an unconditionally stable droplet by considering the windward of droplet 

as a flat surface. Harper et al. [23] have theoretically studied the R-T instability of an 

inviscid spherical droplet under a uniform acceleration by using a linear analysis, in 

which the variation of acceleration along the polar angle couples different spatial modes, 

and a recursion relation was proposed to compute the growth rate. They obtained the 
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minimum Bo to excite the zonal instability and showed that the droplet is unstable to 

the disturbances whose wavelengths are larger than a critical value being proportional 

to Bo1/2. This result was experimentally validated by Simpkins and Bales [24]. 

Regardless of the valuable conclusions for the breakup of spherical drops caused 

by R-T instability, some important aspects remain unclear due to the assumptions made 

in these studies. In the work of Harper et al. [23], the initial disturbance imposed on a 

spherical droplet surface is assumed to be axisymmetric and thus the discussions are 

restricted to the zonal harmonics. However, the general arbitrary disturbance in the 

realistic condition is a sum of the spherical harmonics with different coefficients. The 

dynamic response to the disturbance of meridional modes may also affect the 

atomization process significantly. In addition, Harper et al. [23] also neglected the 

liquid viscosity, which has been shown to affect the linear growth rate for the planar R-

T instability. Joseph et al. [10] did a linear analysis to the viscous R-T instability for 

explaining their experiments for a spherical liquid droplet, but the analysis was based 

on the approximation of flat windward droplet surface. To understand the breakup 

process of a liquid droplet in a gas stream under more realistic situations, we studied 

the dynamic response of a spherical viscous liquid droplet under a uniform acceleration 

to arbitrary (non-axisymmetric) disturbances. Such a problem, to our knowledge, has 

not been addressed in the literature.  

The rest of this paper is organized as follows. In Section 2, a spherical R-T 

instability for a viscous liquid droplet with arbitrary initial disturbances is first 
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mathematically formulated. In Section 3, the general solution to the formulation is 

derived, yielding a set of difference equations with the coefficient matrix being a 

function of both zonal and meridional modes. In Sections 4 and 5, the solutions in the 

inviscid and large-mode number limits are discussed. Finally, the results of this study 

are summarized in Section 6. 

2. Mathematical model 

The present problem of interfacial dynamics occurring on the spherical liquid 

droplet placed in a gaseous flow of high speed can be simplified as an initially stationary 

viscous and incompressible spherical liquid droplet (of density 1 and radius r0) 

suddenly accelerated in an initially quiescent medium of inviscid and incompressible 

gas (of density 2 < 1), as shown in Fig. 1. This approximation requires that the 

characteristic time for developing the R-T unstable waves is too short to accelerate the 

droplet to a significant velocity. The Kelvin-Helmholtz (K-H for short hereinafter) 

instability [25] triggered by the tangential velocity difference between two phases on 

the interface is apparently present in the realistic situation. To avoid unnecessary 

complexity added to the present formation, the K-H instability is not considered here 

but certainly merits future study for its coupling with the R-T instability. Different from 

most of the previous studies on the spherical R-T instability, the direction of 

acceleration A on the liquid droplet is uniform instead of an unrealistic radial one. The 

surface tension coefficient  is assumed to be constant all over the interface, implying 
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that the effects of temperature and surfactant are not considered here. The gravitational 

acceleration, g, is neglected because of the assumption of A g  being in accordance 

with the typical situation in aircraft or automotive engines. 

 
Fig. 1 Schematic of the non-radial spherical R-T instability. 

In the reference frame attached to the liquid droplet, the linearized governing 

equations are 

 0i =u  (1) 

 
21i

i i i

i

p
t





= −  +  −



u
u A ,  (2) 

where the subscripts i=1, 2 represent the physical quantities for the liquid and gas phase, 

respectively; ui is the perturbed velocity vector, pi the pressure, =i i i     the 

kinematic viscosity ( 2 =0 ), and ( )cos sin cos
r

A A gr  = − + = −A e e . As shown in 

Fig. 1, r
e   and e   are the unit vector along the radial and polar direction in the 

spherical coordinate system (r, , ).  

The interfacial deformation displacement is denoted by ( , , )t     and the 

linearized kinematic condition on the droplet surface is given by 

 
0 0

1 2+ +
=

r rr r r r
u u

t  


= =


=


, (3) 
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where iru (i=1,2) is the radial component of the velocity vector ui.  

The balance of normal stress across the interface gives [26] 

 
2

1

1 1

a b
R R

 
 

  =  = +  
 

r r r
e e e , (4) 

where  
2

2 11
x x x= −  , r

e   is the unit vector normal to interface directing outwardly 

from the droplet,   the stress tensor defined by 

 ( )
T

i i i
p   = +  + 

 i i
- I u u , (5) 

and Ra and Rb the principle radii of curvature which can be expressed as 

 ( )2

2

0 0

1 1 2 1
2 H

a bR R r r
 + = − +  , (6) 

up to the first order in  [26] where 

 

2
2

2 2

1 1
sin

sin sin
H 

    

   
  + 

   
 (7) 

is the horizontal spherical Laplacian operator. With Eqs (5) to (7), the balance equation 

of the normal stress reduces to 

 ( )
0 0

0

2 1
1 2 12+ +

+0 0

2
2 2 r

Hr r r r
r r

u
p p

r r r 


 
  

= =
=


− = − +  +


, (8) 

The tangential stress on the two sides of the interface must satisfies 

 
2

1
0

j
n e  =

 
 , (9) 

where j
e = e , e  represent the unit vectors tangential to the droplet surface towards 

polar and azimuthal directions, respectively. Since the gas phase is assumed to be 

inviscid, the balance of the tangential stress across the interface gives 

 1 11
1

1
0r

r

u uu

r r r

 
 



 
= − + = 

  
 (10) 
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and 

 1 11
1

1
0

sin

r
r

u uu

r r r

 

 
 

 
= − + = 

  
. (11) 

Instead of the Legendre function expansion adopted by Harper et al. [23] under 

the axisymmetric assumption ( 0  = ), we expanded ( , , )t    as  

 ( ) ( )
2 0

=
l

t m m

l l

l m

t e Y     
+

−

= =

, , ,  (12) 

with the spherical harmonics ( ) ( ), = cosm m im

l lY P e    , where 
m

l
  (

0 0 1

0 1 1
0  = = = ) 

is the corresponding coefficient and    the growth rate. The surface displacement 

grows to diverge if ( )Re 0   . Eqs. (1)~(12) constitute an eigenvalue problem, the 

solution to which gives the dispersion relation between the growth rate   and the 

mode number (l, m) and flow parameters. 

3. General solution 

For the liquid phase, the momentum equation (2) reduces to 

 
21

1 1 1

1

1
p

t





= −  −   −



u
u A .  (13) 

by using the equation ( ) 2

1 1 1
=u u u   −    and the continuity equation (1). 

The velocity vector 1
u  can be considered as the sum of the irrotational component 

1
   and the rotational component 1

  , i.e., 1 1 1
u =  +  , and thus Eq. (13) is 

decomposed into 

 
2

1 0 =  (14) 

 1
1 1 1 1cosp Ar C

t


  


= − + +


  (15) 
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 1 0 =   (16) 

 21
1 1 0

t



+   =




 , (17) 

where C1 is an integral constant. 

Considering that 1 does not diverge at r =0, the general solution to Eq. (14) in the 

spherical coordinate is 

 ( )1

2 0

, , ,
l

t m l m

l l

l m

r t e B r Y  
+

−

= =

=  , (18) 

where the coefficient 
m

lB  is to be determined by the boundary conditions. Using the 

method of Chandrasekhar [27] to solve Eqs. (16) and (17), we obtained the three 

components of 1
  as 

 

( ) ( )

( )
( )

( )
( )

1 12
2 0

1

1

2 0

1

1

2 0

( 1)
, , ,

1
, , ,

1
, , ,

sin

l
t m m

r l l

l m

m ml
lt l

l m

m ml
lt l

l m

l l
r t e Ψ r Y

r

dΨ r Y
r t e

r dr

dΨ r Y
r t e

r dr











  

  


  
 

+
−

= =

+
−

= =

+
−

= =

+
= 


 

= 
 


=

 







 (19) 

with ( ) ( )1 2

1 1 2=m m

l l lΨ r D r J qr+ , where 
m

lD  is a coefficient to be determined below, 

and 1 2lJ +  is the spherical Bessel function of order l+1/2 and 1=q   . 

Inserting Eqs. (18) and (19) into boundary conditions (3), (10) and (11), we 

obtained the expressions for the coefficients 
m

lB  and 
m

lD : 

 

( )
( )

( )

( ) ( )

2

1 2

0 1 2

3 2

0

2

3 2 1 2

2 1
1

2

2 1

2

m
m l
l l

l

m

lm

l

l l

l
B

lr xQ x x

l r
D

l xJ x x J x

 

 

−

+

+ +

 −
 = − +

−   


− 
= 

 −   

, (20) 

where ( ) ( ) ( )1 2 3 2 1 2=l l lQ x J x J x+ + +  and 0=x qr . 
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The pressure on the liquid side of the interface can be attained by substituting Eqs. 

(18) and (20) into Eq. (15): 

( )
( )0

22

1 0
1 2+

2 0 1 2

2 1
1

2

l
t m m

l lr r
l m l

lr
p e Y

l xQ x x





 


+
−

=
= = +

 −
 = − +

−  
  

 1 0 1

2 0

cos
l

t m m

l l

l m

A r e Y C  
+

−

= =

 
+ + + 

 
 . (21) 

Considering that the presence of cos in the second term on the right-hand side of Eq. 

(21) makes the equation inhomogeneous in space and couples the different modes of 

spherical harmonics, we have 

( ) ( )
2 0 2 0

cos , cos cos
l l

m m m im m

l l l l

l m l m

Y e P      
+ +

= = = =

=   

( ) ( )1 1

2 0

1
cos cos

2 1 2 1

l
m im m m

l l l

l m

l m l m
e P P

l l

  
+

+ −

= =

− + + 
= + + + 

  

1 1

2 0 2 0

1

2 1 2 1

l l
m m m m

l l l l

l m l m

l m l m
Y Y

l l
 

+ +

+ −

= = = =

− + +
= +

+ +
   

     1 1

2 0 2 0

1

2 1 2 3

l l
m m m m

l l l l

l m l m

l m l m
Y Y

l l
 

+ +

− +

= = = =

− + +
= +

− +
  , (22) 

with which Eq. (21) reduces to 

( ) ( )
( )

( )
0

22
1 11 0

1 1 12+
2 0 1 2

2 1 1
1 +

2 1 2 2 3

l
t m m m m

l l l lr r
l m l

lA l m A l mr
p e Y

l l xQ x x l





  
  

+
−

− +=
= = +

  −− + + 
 = − + 

− − +    

  

 1 0 1cosAr C + + . (23) 

For the inviscid gas phase which is initially stagnant, a velocity potential 2
  

satisfying 2 2
= u  is introduced to the continuity equation (1), yielding 

 
2

2
0 = . (24) 

Considering that the velocity does not diverge at r = ∞ and the condition (3), we 
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obtained the solution to Eq. (24) as 

 

( )1

0
2

2 0 01

l
l

t m m

l l

l m

r r
e Y

l r

 
 

− +
+

−

= =

 
=  

+  
 . (25) 

Using Eq. (25) and integrating Eq. (2) over r, we have the pressure on the gas side of 

the interface: 

( ) ( )
0

2
2 22 0

2 1 1+
2 0

1
+

2 1 1 2 3

l
t m m m m

l l l lr r
l m

A l m A l mr
p e Y

l l l





  
  

+
−

− +=
= =

− + + 
= + 

− + + 
  

 2 0 2cosAr C + + , (26) 

where C2 is an integral constant. 

Substitution of (23) and (26) into Eq. (8) with the identity ( )2 1m m

H l lY l l Y = − +  

gives 

( ) ( )

( ) ( ) ( )

( )

( )( )

1 2

1

2 0

1 221 2
0 1 2

0 1 2 0

2 1

2 1 2 2 1 21
2

1 2

l
t m

l

l m

l m

l

l

A l m
e

l

l x l l Q x l ll
r

l l lr Q x x r

  


 
   

+
−

−

= =

+

+

− −


−

  + − + − +− 
− + + +     + −    


 

 
( ) ( )

( )1 2

1 1 2 0 1 2

0

1 2
cos 0

2 3

m m

l l

A l m
Y Ar C C

l r

  
   +

− + + 
+ + − + − − =

+ 

,(27) 

in which the coefficients of 
m

lY  satisfy 

( ) ( ) ( ) ( ) ( )

( )
1 21 2 21 2

1 0 1

0 1 2

2 1 2 21
2

2 1 1 2

lm

l

l

l x l l Q xA l m l
r

l l l lr Q x x

   
   

+

−

+

  + − +− − − 
− + +     − + −   

 

 
( )( ) ( ) ( )1 2

12

0

1 2 1
0, 2,3,...

2 3

m m

l l

l l A l m
l

r l

  
  +

− + − + +
+ + = =

+

,(28) 

since the functions ( ),m

lY     are linearly independent. Solving the difference 

equation (28) would give the dispersion relation. Note that the growth rate  to be 

derived is a function of both l and m, which will be discussed in detail in the following 
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sections. This is more general than the axisymmetric spherical R-T instability in which 

 depends only on l [23]. 

4. Inviscid limit 

Eq. (28) is the generalized recursion relation for the spherical R-T instability, 

which includes the effects of density ratio, liquid viscosity and surface tension. Our 

focus in this paper is on the atomization of a spherical liquid droplet under uniform 

accelerations, in which the density of the surrounding gas is usually far smaller than 

that of the liquid droplet ( 2 1   ). Furthermore, to facilitate the following 

comparison with the previous studies, we first considered the inviscid case 

( 1 2 0 = =  ). Consequently, with the definition of Bond number 
2

1 0Bo Ar =  , 

which measures the relative importance of the inertial force compared with the capillary 

force, and dimensionless growth rate 0
ˆ A r = , Eq. (28) is reduced to 

 
( ) ( )( ) ( )2

1 1

1 2 1ˆ 0, 2,3,...
2 1 2 3

m m m

l l l

l l m l l l l l m
l

l Bo l
   − +

− − + + +
− + + = = 

− + 
, (29) 

which degenerates to that obtained by Harper et al. [23] for m=0.  

In particular, we are interested in two solutions to Eq. (29). The first is to determine 

the critical Bond number (Bocr)i to excite the instability (i is the number of excited zonal 

modes) for a given m-value. Each critical Bond number results in the growth rate ˆ 0 = , 

which represents a neutral stability state. The second is to determine the dimensionless 

growth rate ̂  for positive real values of Bo and discrete mode numbers (l, m), with 

which we can obtain the most-unstable mode for a given Bond number in a specified 
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realistic experimental condition. The procedure to solve these problems for the 

spherical droplet under uniform acceleration is substantially more complicated than that 

for the liquid layer [16] or the spherical droplet under radial acceleration [22] because 

of the coupled spherical modes, as indicated in Eq. (29).  

We first studied the infinite set of critical Bond numbers (Bocr)i, which are usually 

obtained by interpolating Bo between positive and negative values of ̂  [23]. This 

approach is rather laborious and not sufficiently accurate. In this study, we alternatively 

adopted the procedure conventionally used to determine the marginal stability boundary 

for Faraday instability [28, 29], which can directly give the values of critical Bond 

numbers (Bocr)i without invoking any interpolation.  

Setting ˆ 0 =  in Eq. (29), we obtain 

 
( )( )( ) ( )( )( )

1 1

1 1
, 2,3,...

2 1 1 2 2 3 1 2

m m m

l l l

l m l m
l

l l l l l l Bo
  − +

− + +
+ = =

− − + + − +
. (30) 

Physically, each critical Bond number (Bocr)i can be considered as the reciprocal of the 

i-th real and positive eigenvalue of a banded coefficient matrix, M, with all the elements 

being null except ( ), 1 2,3,...k kM k− =  and ( ), 1 1,2,...k kM k+ = . The eigenvalue problem 

of Eq. (30) is solved numerically by truncating the coefficient matrix above MN, N. The 

eigenvalues of lower orders are converged as the truncation number N increases [23]. 

As a result, we can always obtain the critical Bond numbers of interest by setting 

sufficiently large value of N.  

With the increase of the meridional mode number m (≥3), the lower bound of l in 

the coefficient matrix is increased accordingly due to the constraint m l  . Table 1 
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gives the first ten critical Bond numbers (Bocr)i for m = 0, 1, 2, 3 and 4. It can be seen 

that the number of unstable modes increases with the increase of Bo for a given value 

of m. Furthermore, compared with the axisymmetric solution (m = 0) of Harper et al. 

[23], the present results show that more unstable modes (besides the modes of m = 0) 

would be excited during the increasing path of Bo. For each Bo that exceeds one critical 

value (Bocr)i in Table 1 (and its extension in i- and m-values), an extra unstable spherical 

mode emerges.  

One of our interests in the present linear stability analysis is the lowest critical Bo 

for different m-values, below which the droplet is unconditionally stable to the 

corresponding meridional disturbance of m-mode. From Table 1 it is seen that the 

lowest critical Bo increases as m increases, indicating that the instability of higher 

meridional mode is more difficult to be excited. The global minimum critical Bo is 

(Bocr)min=11.22, below which no instability occurs on the spherical surface. Note that 

the viscosity of liquid droplet has no influence on (Bocr)i because the neutral stability 

condition, ˆ 0 = , gives rise to the same difference equation (30) for both inviscid and 

viscous cases. 

Table 1 The first ten critical Bond numbers (Bocr)i for m=0, 1, 2, 3 and 4. 

 m = 0 m = 1 m = 2 m = 3 m = 4 

i = 1 11.22 11.84 14.53 31.45 53.42 

i = 2 38.34 39.13 42.05 66.12 95.36 

i = 3 79.43 80.29 83.30 114.37 150.73 

i = 4 134.33 135.24 138.31 176.31 219.69 

i = 5 203.01 203.96 207.06 251.98 302.33 
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i = 6 285.47 286.43 289.56 341.38 398.67 

i = 7 381.69 382.67 385.82 444.52 508.73 

i = 8 491.66 492.66 495.82 561.41 632.52 

i = 9 615.39 616.40 619.57 692.04 770.06 

i = 10 752.95 753.96 757.15 836.43 921.34 

 

The critical Bond numbers merely give the number of excited spherical modes but 

do not provide any information on which modes (l) are excited. This information is the 

key to construct the secondary atomization model because the leading size of the 

atomized droplets has been found to be proportional to the surface wavelength 

corresponding to the most-unstable modes [30, 31]. To solve this problem, we need to 

find the value of the growth rate for a given Bond number and spherical mode number, 

which requires solving another eigenvalue problem as follows. 

Equation (29) can be rewritten as  

 
( ) ( )( ) ( ) 2

1 1

1 2 1 ˆ , 2,3,...
2 1 2 3

m m m m

l l l l

l l m l l l l l m
l

l Bo l
    − +

− − + + +
− + = =

− +
, (31) 

in which 
2̂  can be considered as the eigenvalue of a tri-diagonal coefficient matrix S. 

Similar to that for M, the eigenvalue problem for S was also solved numerically by 

truncating the coefficient matrix above SN, N with a sufficiently large value of N. For a 

given Bo, the negative value of ( )2ˆ , ,l m Bo  results in a virtual growth rate, indicating 

the disturbance of corresponding spherical modes (l, m) is in a stable oscillatory state. 

In this study, we are only interested in the positive value of 
2̂  and its corresponding 

modes. The negative real root ˆ ˆ = −  indicates the exponential growth of the initial 
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disturbance. The most-unstable mode is the one with the largest positive value of 
2̂ . 

The methodology to calculate the value of 
2̂  and determine the most-unstable 

mode is illustrated in the following example of Bo = 50. As discussed above, the 

disturbance of meridional mode number m larger than 3 is not excited because Bo = 50 

considered here is smaller than the lowest (Bocr)i = 53.42 for m = 4. From Table 1 we 

can see that there are seven possibly excited modes (two for each case of m = 0, 1, 2 

and one for the case of m = 3) for Bo < 50, among which the excitable modes and the 

mode possessing the largest growth rate are still unknow. Table 2 gives the first ten 

eigenvalues 
2̂  for m = 0, 1, 2, 3 and 4 at Bo = 50. It can be seen that the seven possibly 

excited spherical modes as indicated in Table 1 are (2, 0), (4, 0), (2, 1), (4, 1), (2, 2), (4, 

2) and (4, 3), respectively. Table 2 shows that for the case of Bo = 50, the growth rate 

of the zonal mode l = 4 overwhelms that of l = 2, and the most-unstable mode is (4, 0) 

with the largest growth rate ˆ 1.88 1.37 = = . Following the same procedures, we can 

calculate the growth rate and determine the most-unstable modes for other Bond 

numbers (see Table 3 and Table 4 as another two examples). 

Table 2 The first ten eigenvalues 
2

̂  for m = 0, 1, 2, 3 and 4 at Bo = 50. The italic 

bold values represent the unstable modes possibly excited. 

 m = 0 m = 1 m = 2 m = 3 m = 4 

l = 2 0.47 0.42 0.26 N N 

l = 3 -1.02 -1.01 -0.96 -0.62 N 

l = 4 1.88 1.78 1.47 0.84 -0.17 

l = 5 -2.64 -2.61 -2.50 -2.31 -2.03 

l = 6 -4.71 -4.69 -4.61 -4.48 -4.31 
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l = 7 -7.50 -7.48 -7.43 -7.35 -7.23 

l = 8 -11.16 -11.15 -11.11 -11.05 -10.96 

l = 9 -15.81 -15.80 -15.77 -15.73 -15.67 

l = 10 -21.58 -21.57 -21.55 -21.52 -21.47 

l = 11 -28.58 -28.57 -28.56 -28.53 -28.50 

Table 3 The first ten eigenvalues 
2

̂  for m = 0, 1, 2, 3, 4, 5 and 6 at Bo = 100. The 

italic bold values represent the unstable modes possibly excited. 

 m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 

l = 2 0.51 0.47 0.34 N N N N 

l = 3 -0.76 -0.75 -0.71 -0.34 N N N 

l = 4 1.73 1.66 1.42 0.92 0.14 N N 

l = 5 -2.07 -2.04 -1.92 -1.69 -1.37 0.70 N 

l = 6 2.98 2.90 2.66 2.23 1.59 -0.96 -0.49 

l = 7 -3.58 -3.55 -3.45 -3.29 -3.06 -2.78 -2.44 

l = 8 -5.46 -5.44 -5.37 -5.25 -5.09 -4.88 -4.63 

l = 9 -7.82 -7.80 -7.75 -7.67 -7.55 -7.39 -7.21 

l = 10 -10.73 -10.71 -10.68 -10.61 -10.52 -10.40 -10.26 

l = 11 -14.24 -14.23 -14.20 -14.15 -14.08 -13.99 -13.88 

Table 4 The first ten eigenvalues 
2

̂  for m = 0, 1, 2, 3, 4, 5, 6, 7 and 8 at Bo = 200. 

The italic bold values represent the unstable modes possibly excited. 

 m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 

l = 2 -0.04 -0.06 -0.09 N N N N N N 

l = 3 1.05 1.01 0.85 0.37 N N N N N 

l = 4 -1.16 -1.14 -1.05 -0.74 -0.34 N N N N 

l = 5 2.13 2.07 1.87 1.49 0.92 0.15 N N N 

l = 6 -2.31 -2.27 -2.16 -1.94 -1.65 -1.27 0.71 N N 

l = 7 3.27 3.21 3.02 2.69 2.20 1.55 -0.84 -0.35 N 

l = 8 -3.60 -3.57 -3.47 -3.31 -3.09 -2.81 2.25 1.32 0.19 
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l = 9 4.53 4.47 4.30 4.00 3.56 2.99 -2.47 -2.08 -1.65 

l = 10 -5.13 -5.11 -5.03 -4.91 -4.74 -4.52 -4.25 -3.95 -3.60 

l = 11 -6.95 -6.93 -6.87 -6.77 -6.64 -6.47 -6.26 -6.01 -5.74 

One interesting result we obtained after repeating the above-mentioned procedure 

for other Bond numbers is that the most-unstable mode with the largest growth rate 

always corresponds to m = 0, although the corresponding zonal mode l increases with 

Bo accordingly. For example, the most-unstable modes for the cases of Bo = 100 and 

Bo = 200 are (6, 0) and (9, 0), respectively. In fact, similar to the procedure to determine 

the critical Bond numbers for neutral growth, we can obtain the minimum Bond 

numbers required to reach specified growth rates for different meridional modes from 

Eq. (29), which are depicted in Fig. 2. It shows that for a given Bond number, the 

meridional mode m = 0 always possesses the largest growth rate. This is consistent with 

the observation in experiments at initial stage when the linear theory is valid [32-34]. 

As the Bond number increases, the difference in growth rate between different 

meridional modes decreases and, as will be discussed in §5, m has no effects on the 

growth rate in the large-mode number limit. 

 

Fig. 2 The minimum Bond numbers required to reach different growth rates for meridional modes 

m = 0, 1, 2, 3 and 4. 
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5. Large-mode number limit 

The Bond number of the droplet in aircraft and automotive engine conditions can 

reach as large as O(105), rendering the neutral and dominant mode numbers are very 

large [23]. It is of great interest to study the spherical R-T instability for the limit case 

of 1l , in which the spherical harmonic ( ),m

lY    oscillates much “faster” than the 

spatial variation (i.e., cos) of external acceleration along the polar direction. In other 

words,  can be recognized as a quickly varying variable for the interfacial 

displacement change and a slowly varying variable for the acceleration. As a result, 

each spherical harmonic in this limiting case can be treated separately instead of solving 

the eigenvalue problem for the coefficient matrix of difference equations like (28), (29) 

and (30), which can give an explicit dispersion relation of  as a function of l. 

In the limiting case 1l , the asymptotic expansion of the Bessel function [35] 

gives ( ) ( ) ( )1= 2l l lQ x J x J x x l+   . Because the different modes of spherical 

harmonics are decoupled in space in this limiting case, the recursion relation (28) can 

reduce to 

 ( )2 2 32 cos 0Ohl l lBo  − + − =  (32) 

for the case of 2 1  , where 3

1 0r   =  is the dimensionless growth rate and 

1 1 0Oh r  =  is the Ohnesorge number which measures the ratio of viscous force 

to capillary force. Solving the quadratic equation (32) gives the explicit dispersion 

relation: 

 
2 2 4 3cosOhl Oh l lBo l = − + − . (33) 
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We have neglected the positive solution of  , which leads to absolute stable states of 

the external disturbance. It is of interest to find that the growth rate no longer depends 

on the meridional mode number m for 1l .  

Figure 3 shows the effect of polar angle  on   for a given condition of Bo = 104 

and Oh = 0.01 as an example. The magnitude of growth rate is increased with the 

decrease of , indicating that the unstable wave grows fastest at the stagnation point in 

the windward of the liquid droplet for the same mode. Furthermore, the range of the 

unstable modes shrinks and the most-unstable mode number decreases as  increases. 

This suggests that, for each mode number l, there exists a critical polar angle c(l), and 

that no instability occurs on the surface beyond the critical angle. c(l) can be evaluated 

as ( ) ( )2arccosc l l Bo =   from Eq. (33). The leeward of the liquid droplet is 

unconditionally stable because  larger than /2 always leads to ( )Re 0  . 

For any Oh number, the neutral stability condition 0 =  in Eq. (33) always leads 

to 3cos 0lBo l − =  , solving which gives cosl Bo =  , with maximum value of 

cl Bo=   at  = 0. Any disturbance of mode cl l   shall be stabilized, which is in 

accordance with the result obtained by Harper et al. [23].  



 

21 

 

 

Fig. 3 Dimensionless growth rate 
3

1 0
r   =  as a function of mode number l for Bo = 104 and 

Oh = 0.01 with the polar angle  = 0, 15°, 30°, 45°, 60° and 75°. 

Figure 4 shows the effect of Ohnesorge number Oh on   for a given condition 

of Bo = 104 and  = 0. Although the viscosity has no influence on the cut-off mode 

number cl , as indicated above, the magnitude of growth rate decreases as Oh increases 

due to the viscous dissipation. In addition, the decrease of the most-unstable mode 

number with the increase of Oh implies that the higher liquid viscosity would give rise 

to larger sizes of droplets after atomization. 

 

Fig. 4 Dimensionless growth rate 
3

1 0
r   =  as a function of mode number l for Bo = 104 and 

 = 0 with Oh = 0, 0.01, 0.05, 0.1 and 0.5. 

The cut-off mode number cl  suggests that there exists a critical diameter dc, 
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smaller than which the liquid droplet is unconditionally stable to the initial disturbance 

of any kind. Assuming the windward of the droplet as a flat surface, Joseph et al. [10] 

suggested a criterion 12c cd A   = = , where c is the cut-off wavelength for the 

planar R-T instability. Considering the spherical shape of the liquid droplet, we shall 

first determine the wavelength corresponding to lc on the windward surface. Since the 

dispersion relation does not relate to m for 1l , without loss of generality, we 

consider the case of m = 0, in which ( ) ( )0 , cosl lY P  = . Then the wavelength around 

 = 0, where lc maximizes its value, can be defined as 02c mr = , where m  is the 

polar angle corresponding to the first minimum (trough) of ( )coslP  . Using the 

approximation expression of ( )coslP   at 1l  [35], 

 ( ) ( ) ( )  ( )1
cos 2 sin sin 1 2 4 1

l
P l l O l    

−
= + + +   , (34) 

we can obtain  

 ( )5 4m cl   (35) 

and  

 ( )0 0 12 5 2 2.5c c md r r Bo A     = =  = . (36) 

This result is similar as that for the flat surface but with a coefficient of larger value, 

which reflects the influence of the spherical shape of the liquid droplet. 

The most-unstable mode occurring at  = 0 can be derived from Eq. (33) as 

 
3 2 3 4 1 42 3

1
3 9

m

Bo Bo
l Oh

 
= − 

 
, (37) 

with which the growth rate reaches its maximum magnitude of 
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3 4 1 4
2

2 1
3 2 3

m

Bo Bo
Oh

    
= − −    

     
. (38) 

The surface waves corresponding to the most-unstable mode would dominate over 

others and increase their amplitudes until atomization occurs. Although the most-

unstable mode derived here by linear analysis is only strictly valid for small 

deformation, the mode is believed to continue to lead in growth when the surface 

deformation becomes large [36]. Given the most-unstable mode and its corresponding 

growth rate, we can roughly predict the dominant size of droplets and breakup time for 

a given Bo and Oh, which are useful information to construct practical atomization 

models for the simulation of spray combustion.  

6. Concluding Remarks 

As one of the primary mechanisms for droplet secondary atomization in spray 

combustion, the R-T instability for a viscous spherical droplet in high-speed gas stream 

with arbitrary disturbances was theoretically investigated by a linear analysis. Being 

more general than that obtained in the previous studies, a recursion dispersion relation 

coupling different spherical modes was derived to compute the growth rate of the R-T 

waves. In addition to the zonal mode number l, the coefficients of the recursion relation 

are also the function of the meridional mode number m.  

In the limiting case of negligible droplet viscosity, a set of critical Bond numbers 

(Bocr)i corresponding to the neutral stability state were obtained by solving an 

eigenvalue problem derived from the recursion relation. The results show that (Bocr)i 
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increases as the meridional mode number m increases, and the global minimum value 

is (Bocr)min=11.22, below which no instability occurs on the spherical surface. The 

growth rates for a given Bond number can be computed by solving another eigenvalue 

problem derived from the recursion relation, from which the most-unstable mode can 

be determined.  

In the limiting case of large droplet acceleration rendering the large-mode number 

approximation, different modes are asymptotically decoupled and each spherical 

harmonic can be treated separately, which gives an explicit dispersion relation. The 

predicted critical diameter of droplets being stable to any disturbance is 25% larger than 

that reported in the previous studies by approximating the droplet surface to be flat, 

indicating that the influence of the spherical shape on the R-T instability is significant. 

The most-unstable mode and corresponding growth rate as explicit functions of Bo and 

Oh were deduced. The results gained in the present study are useful to construct the 

atomization model for spray combustion simulation. An important future work that 

would complement the present one is to study the influence of simultaneous K-H 

instability on the R-T instability. 
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