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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Discovering useful knowledge from massive building operational data is considered as a promising way to improve building 
operational performance. Conventional data analytics can only handle data stored in a single two-dimensional data table, while 
lacking the ability to represent and analyze data in complex formats (e.g., multi-relational databases). Graphs are capable of 
integrating and representing various types of information, such as spatial information and affiliations. The knowledge discovery 
based on graph data can therefore be very helpful for revealing complex relationships in building operations. This study proposes 
a novel methodology for analyzing massive building operational data using graph-mining techniques. Two problems are 
specifically addressed, i.e., graph generation based on building operational data and knowledge discovery from graph data. The 
methodology has been applied to analyze the building operational data retrieved from a real building in Hong Kong. The research 
results show that the knowledge obtained is valuable to characterize complex building operation patterns and identify atypical 
operations. 
Copyright © 2018 Elsevier Ltd. All rights reserved. 
Selection and peer-review under responsibility of the scientific committee of the 10th International Conference on Applied 
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Introduction 

Employing the Building Automation System (BAS) for the automated control and management of building 
energy systems has become a top trend in the building sector. Besides fulfilling the online monitoring and control 
functions, BAS also records a large number of measurements and control signals at short time intervals (e.g., 
seconds to minutes). The knowledge hidden in such massive BAS data can be very valuable for building energy 
management and optimization.  
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Data mining (DM) is a promising solution to the knowledge discovery from massive data. It has been 
successfully applied in various industries for knowledge discovery, such as retails, financial services and marketing 
[1]. In the building field, DM techniques have been applied for predicting the building energy consumption, system 
performance indices and indoor environment, extracting frequent operating patterns and detecting anomalies in 
building operation [2,3]. Commonly used DM techniques in the building field include statistical learning and 
machine learning (e.g., support vector machines, decision trees, and artificial neural networks), association rule 
mining, clustering analysis and outlier detection methods [4].  

One essential premise of applying the abovementioned DM techniques is that the data need to reside in a single 
two-dimensional data table. If the data format becomes more complex (e.g., multiple data tables are used to store 
different types of information), data pre-processing is required to unify these tables into one before applying 
conventional DM techniques. Such type of data pre-processing could be time-consuming and sometimes not even 
possible without a significant information loss. It can be foreseen that the BAS data will become more diverse and 
complex due to the enrichment in the types of information that can be collected, e.g., temporal and spatial 
information. Therefore, advanced analytics are urgently needed to ensure the mining efficiency and effectiveness. 
The research gap emerges as little research has been done in this area. 

To tackle this problem, this study proposes a novel methodology to discover complex knowledge from BAS data 
using graph mining. The paper is organized as follows: Section 2 serves as an overview on graph mining; Section 3 
introduces the research methodology; A case study is shown in Section 4 and conclusions are drawn in Section 5.  

1. An overview of graph mining 

1.1. Basics on graphs 

Graph is one of the most generic, natural, and interpretable formats for data representation. Great flexibility is 
provided in the knowledge discovery process as users can readily manipulate the graph layout to integrate and 
represent various types of information. The main elements of a graph are introduced as follows. A graph G consists 
of a set of vertices (or nodes), denoted as V(G) and a set of edges (or links), denoted as E(G). A graph S is said to be 
a subgraph of graph G if V(S) V(G) and E(S) E(G).  

A simple example is given to illustrate the usefulness of graph data. Table-1 presents the power consumption of a 
chiller and a cooling tower at time T1 and T2. Table-2 records the spatial location of these two components, i.e., one 
in basement and one on rooftop. The information is three-dimensional (i.e., time, power, location) and therefore, it is 
non-trivial to integrate these two tables into one without information loss. By contrast, a graph can be readily 
constructed for information integration as shown in Fig. 1. The top 2 vertices represent the temporal information and 
are labelled as “T1” and “T2” respectively. The edge connecting these two vertices are labelled as “dT=1” which 
indicates that the time step difference. Each of the top 2 vertices is connected with two vertices labelled as “Chiller” 
and “CT”. The power consumption is encoded as edge labels. The bottom two vertices stand for the spatial 
information.  

Table 1. An example data set containing the power data at two time steps 
Time/Power Chiller Cooling tower 
T1 Low Low 
T2 High High 

 
Table 2. An example data set containing the location of two components 

Component Location 
Chiller Basement 
Cooling tower Rooftop 
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Fig. 1. An example graph for representing information in two data tables 

1.2. Frequent subgraph mining 

Graph mining is the most widely used techniques in analysing complex and multi-relational data [5]. It has been 
successfully used to discover complicated knowledge in bioinformatics, financial services, counter-terrorism, social 
network analysis and etc. [5, 6]. Frequent subgraph mining (FSM) is one of the most essential graph mining 
techniques. It mainly works on undirected graphs with labelled vertices and edges. Popular applications of FSM 
include finding the common substructures of chemicals and identifying the frequent patterns of terrorist attacks [6].  

FSM algorithms can be classified based on two criteria, i.e., whether the search is exact or inexact, and whether 
the search strategy is breadth-first or depth-first [7]. Inexact search FSM algorithms, such as SUBDUE and CREW, 
use approximated measures to compare two graphs. The mining efficiency is higher, but it is not guaranteed to 
discover all frequent subgraphs. Exact FSM algorithms are more commonly used due to their ability of discovering 
all frequent subgraphs. The algorithms can be further classified based on the search strategies, i.e., either breadth-
first or depth-first search. The depth-first search strategy is typically more computationally efficient. Some 
representative algorithms are MoFa, gSpan, FFSM and GASTON. A recent study compared the performance of 
these four exact DFS-based FSM algorithms, showing that the gSpan algorithm generally has better performance in 
terms of the running time and memory usage [7].  

One essential challenge of FSM is that the number of frequent subgraphs discovered can be very large and the 
majority of them are redundant. A subgraph becomes redundant if there is a super-graph that has the same support 
count. To enhance the mining efficiency, Yan and Han proposed an algorithm called CloseGraph to mine closed 
frequent graphs based on their work of gSpan [8]. A subgraph is called closed if there exists no super-graph having 
the same support count. In this study, the CloseGraph is adopted to mine frequent subgraphs. 

2. Research methodology 

2.1. Research outline  

The methodology consists of four steps, i.e., data exploration, graph generation, frequent subgraph mining and 
post-mining. Data exploration adopts the decision tree method to characterize the building operation patterns, based 
on which the whole BAS data are divided for in-depth knowledge discovery. The second step transforms the raw 
BAS data into graph data. The CloseGraph algorithm is applied in the third step to identify frequent subgraphs. A 
post-mining method is proposed for the ease of knowledge interpretation, selection and application. 

2.2. Graph generation 

This study proposes a variable-based transformation method to generate graph data from BAS data. The method 
is developed with two considerations, i.e., the computation efficiency and the compatibility with FSM algorithms. 
The former requires the number of vertices and edges used to describe a certain amount of information is the 
minimum. The latter requires the graph to be labelled, connected (i.e., there is always a path from one vertex to 
another), but not weighted. The variable-based transformation method is inspired by the graph representation used in 
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social network analysis, where each individual is represented as a vertex and their associated relationships are 
shown as edges. The general idea is that each BAS variable is in analogy to an individual person and denoted as a 
vertex. The interactions between BAS variables during a certain time period are encoded as edge labels.  

The main challenge is to come up with a to describe the interaction between two variables. An intuitive way to 
describe the interaction between two variables during a certain time period is to calculate their correlation. However, 
the information conveyed in the resulting graph can be too abstract to provide insightful knowledge for practical 
applications. For instance, a high correlation between two numeric variables does not provide any indication on the 
actual operating conditions, e.g., whether the power consumption is at a low or high level. 

This study developed a novel edge labelling method to represent the interaction between two variables in the 
BAS data. The method only works with categorical variables and therefore, discretization should be performed for 
numeric variables. Assuming that the BAS data has N observations, the first step is to determine a window size 
(denoted as w), which is used to divide the BAS data into  non-overlapping temporal segments. The dominant, or 
the most frequent interaction modes between two variables in these temporal segments are identified and used as 
edge labels. An interaction mode is defined as a vector containing the categorical values of both variables. A 
notation is created based on the dominant interaction mode between two variables during each temporal segment. 
Table 3 presents an example of such notation assuming both variables have two levels (denoted as “Low” and 
“High”). If there is a tie in the dominant interaction mode, a longer notation is created with each end surrounded by 
zeros, e.g., denoted as “0120” when {Low, Low} and {Low, High} are tied as the dominant interaction mode. The 
edge label between two variables can be obtained by combining the notations in different temporal segments.  

Table 3. Notations for different dominant interaction modes 
Variable A Variable B Interaction mode Notation 
Low Low {Low, Low} 1 
Low High {Low, High} 2 
High Low {High, Low} 3 
High High {High, High} 4 

2.3. Post-mining methods 

To facilitate the knowledge post-mining, a method is proposed to automatically output anomalies based on the 
frequent subgraphs discovered. Assuming that Y frequent subgraphs are discovered based on X graphs, the method 
outputs an anomaly score for each of the X graphs. The general idea is that a graph is abnormal if it has no 
subgraphs that perfectly match any of the frequent subgraphs discovered. For a given graph Gi, the anomaly score is 
defined as , where Di,j is the minimal number of differences in vertices and edges between any 

subgraphs of Gi and the jth frequent subgraph, Ns,j is the number of vertices and edges of the jth frequent subgraph. If 
there exists a perfect match between any subgraphs of Gi and a frequent subgraph discovered, Ai is assigned as 
infinity. A larger Ai indicates that Gi is less close to any of the frequent subgraphs discovered. The closer the Ai 
approaches to zero, the more interesting or potentially useful the anomaly could be, since it indicates a well-
disguised anomaly. Therefore, it is recommended to manually inspect graphs with small anomaly scores. 

3. Research results 

3.1. BAS data description 

The BAS data used in this study were retrieved from the zero-carbon building in Hong Kong, known as the ZCB. 
ZCB has a total site area of 14,700m2. Most of the site is a landscaped area for public use. The main building is a 3-
storey building with a footprint of 1,400m2. More detailed information can be found in [9].  

Around one-year BAS data (from April 2013 to March 2014) are adopted for analysis. In total, the data contains 
8304 hourly recorded observations and 38 variables, including the year, month, day, hour, day type, the power 
consumption of 3 water-cooled chillers (WCC), 4 chilled water pumps (CHWP), 3 condenser water pumps (CDWP), 
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3 cooling towers (CT), 5 air-handling units (AHU) and 1 primary air-handling unit (PAU); the power consumption of 
outdoor landscape lighting (LandLight), normal power and lighting of the eco-office, basement area (Base), G/F 
common area (GF), multi-purpose room (MPR), mezzanine area (Mezz); the power generation the biodiesel tri-
generator (BDG). 

3.2. Identification of frequent operation patterns   

The variable-based graphs are used as high-level abstractions of the BAS data. The BAS data during the office 
hours (i.e., 9 a.m. to 6 p.m.) in the working days of hot seasons are transformed into variable-based graphs with 
structural, temporal and level information embedded. An example graph is shown in Fig. 2. Each numeric variable is 
discretized into 3 levels, denoted as Idle, Low and High. The Load Demand is designed as the central vertex and 
connected with seven vertices representing the HVAC subsystems, i.e., WCC, AHU, CT, CDWP, CHWP, PAU and 
BDG. Some subsystems contain multiple components and such affiliation information is showed using edges. The 
normal power and lighting consumptions at different locations in ZCB are also recorded in the graph. The edge 
labels are created to summarize the interactions between two variables in three temporal segments, i.e., 9 a.m. to 11 
a.m., 12 p.m. to 3 p.m. and 4 p.m. to 6 p.m. For instance, the edge label between CT and CT3 is “699”. It means that 
the dominant modes are “CT=Low, CT3=High”, “CT=High, CT3=High” and “CT=High, CT3=High” in each 
temporal segment respectively. The minimum support threshold for FSM is set as 10%, which meets the common 
definition of anomalies [10]. In total, 1082 frequent subgraphs are discovered and used as a knowledge database. 
The post-mining method proposed in Section 3.3 is used to find atypical operations. Examples are shown as follows. 

 

Fig. 2. An example graph generated using the variable-based approach 
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3.3. Discovering atypical operations 

An anomaly graph is identified with a score of 0.51, indicating that on average, it is different from all the 
frequent subgraphs discovered with a mean proportion of 51%. Fig. 3 shows the anomaly graph with reference to its 
closest frequent subgraph. It is created in such a manner that the matched and unmatched portions are shown in blue 
and pink respectively, and the rest is shown in grey. It is apparent that the main difference is the Load Demand in 
the third temporal segment (i.e., 4 p.m. to 6 p.m.), which is “High” in the frequent subgraph and “Low” in the 
atypical operation. Further inspection reveals that the atypical graph represents the building operation during office 
hours on September 20, 2013 (Friday), which is a public holiday in Hong Kong. It is found out that on normal 
working days, ZCB are open for indoor tours during three time slots, i.e., 10 a.m. to 11:30 a.m., 2 p.m. to 3:30 p.m. 
and 4 p.m. to 5:30 p.m. The last tour is cancelled on Wednesdays and public holidays. The resulting load demand 
during that time period will be smaller than usual. The atypical operation identified is therefore an infrequent but 
normal operation. 

  

Fig. 3. (a) An atypical graph on September 20, 2013 (Friday); (b) A reference frequent subgraph for anomaly detection. 

  

Fig. 4. (a) An atypical graph on September 2, 2013 (Monday); (b) An reference frequent subgraph for anomaly detection. 
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Fig. 4 presents another atypical operation on September 2, 2013 (Monday). It is observed that the power 
consumption of Landscape Lighting was Low and High at 5 p.m. and 6 p.m. while “Idle” in the frequent subgraph 
considered. Further inspection shows that the landscape lighting during hot seasons generally operates between 7 
p.m. to 7 a.m. Such atypical operation can be caused by faults in manual control or poor outdoor visibility.  

4. Conclusions 

This study proposes a graph-based methodology to discover complex knowledge from massive BAS data. A 
variable-based transformation method is proposed to generate graphs describing complex interactions among BAS 
variables. The frequent subgraph mining is adopted as the primary mining technique for knowledge discovery. A 
graph-based anomaly detection method is developed for knowledge post-mining. The methodology has been applied 
to mine the BAS data retrieved from a building in Hong Kong. Atypical operations due to either accidents or faults 
have been successfully identified. The method proposed enables the extraction of multi-relational relationships in 
building operations while providing an effective visualization tool for the ease of building energy management. The 
open-source software R and Gephi were used to perform the mining and visualization tasks. Further study will focus 
on exploring the potential of graph data mining in extracting spatial and temporal knowledge in building operations. 
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