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ABSTRACT
Dynamic viscosity considerably affects the heat transfer and flow of fluids. Due to improved thermo-
physical properties of fluids containing nanostructures, these types of fluids are widely employed
in thermal mediums. The nanofluid’s dynamic viscosity relies on different variables including size of
solid phase, concentration and temperature. In the present study, three algorithms including mul-
tivariable polynomial regression (MPR), artificial neural network–multilayer perceptron (ANN-MLP)
and multivariate adaptive regression splines (MARS) are applied to model the dynamic viscosity of
silver (Ag)/water nanofluid. Recently published experimental investigations are employed for data
extraction. The input variables considered in the modeling process to be the most important ones
are the size of particles, fluid temperature and the concentrationof Agnanoparticles in thebase fluid.
The R2 values for the studiedmodels are 0.9998, 0.9997 and 0.9996 for the ANN-MLP, MARS andMPR
algorithms, respectively. In addition, based on importance analysis, the temperature is highly effec-
tive and the dominant parameter for the dynamic viscosity of the nanofluid in comparison with size
and concentration.

ARTICLE HISTORY
Received 2 December 2018
Accepted 15 January 2019

KEYWORDS
nanofluid; dynamic viscosity;
artificial neural network;
concentration; multivariate
adaptive regression splines
(MARS); multivariable
polynomial regression (MPR)

Nomenclature

φ Concentration
T Temperature (°C)
d Size (nm)

μ Dynamic viscosity
ai Coefficients in MPR method
bi Coefficients in MARS method
BF Basic function (MARS method)
GCV Generalized cross-validation
AAPRE Average absolute percent relative error
RMSE Root mean square error
R2 Coefficient of determination
MARS Multivariate adaptive regression splines
MPR Multivariable polynomial regression
ANN Artificial neural network
MLP Multilayer perceptron
C(M) Complexity penalty

1. Introduction

Nano-sized materials such as nanosheets or nanopar-
ticles can be dispersed in a base fluid to prepare

CONTACT Mohammad Hossein Ahmadi mohammadhosein.ahmadi@gmail.com, mhosein.ahmadi@shahroodut.ac.ir

nanofluids (Ahmadi, Mirlohi, Nazari, & Ghasempour,
2018;Nazari, Ghasempour, Ahmadi,Heydarian, & Shafii,
2018). According to the literature, nanofluids, due to
adjustable properties and high stable dispersion, may
be used in various applications, including cooling in
engines, lubrication, solar water heating, etc. Moreover,
one of the major points of nanofluids is their applica-
tion in thermal systems to enhance the heat transfer
rate (Ramezanizadeh, Alhuyi Nazari, Ahmadi, & Chau,
2019; Saidur, Leong, & Mohammad, 2011; Vasanthaku-
mari & Pondy, 2018; Wang & Jiao, 2015). The higher and
improved heat transfer rate obtained from utilizing these
materials owe to thermophyscial properties such as their
thermal conductivity. Adding nanostructures into the
base fluid influences the dynamic viscosity, specific heat,
etc. The dependency of thermophysical properties on
various parameters such as temperature, synthesis pro-
cedure, pH and concentration is investigated in several
pieces of research (Baghban, Jalali, Shafiee, Ahmadi, &
Chau, 2019; Hosseini, Kasaeian, Pourfayaz, Sheikhpour,
& Wen, 2018; Zeinali Heris, Kazemi-Beydokhti, Noie, &
Rezvan, 2012).
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The dynamic viscosity of nanofluids significantly
affects their fluid flow and heat transfer (Ahmadi et al.,
2018; Ebrahimi-Moghadam, Mohseni-Gharyehsafa, &
Farzaneh-Gord, 2018; Mohseni-Gharyehsafa et al., 2018;
Nazari, Ahmadi, Ghasempour, & Shafii, 2018). Given this
fact, it is critical to get better awareness of the parameters
affecting this property. According to the literature review,
an increase in temperature results in lower dynamic vis-
cosity, which facilitates fluid motion due to the reduction
in friction. Another effective factor in dynamic viscosity
is the concentration of nanostructures dispersed in the
base fluid (Chiam, Azmi, Usri, Mamat, & Adam, 2017;
Soltani & Akbari, 2016). On the basis of the results of
experimental studies, an increase in concentration leads
to an improvement of dynamic viscosity (Asadi & Asadi,
2016). The size of nanostructures plays a key role in
thermophysical properties of nanofluids.

Artificial neural networks are widely employed for
modeling the system and pattern recognition. Artificial
neural networks are applicable in modeling the thermo-
physical properties of nanofluids (Ahmadi, Tatar, Nazari,
Mahian, & Ghasempour, 2018; Chau, 2017; Kazemi
et al., 2018; Rezaei, Sadeghzadeh,AlhuyiNazari, Ahmadi,
& Astaraei, 2018). Ahmadi et al. (2018) employed
the least square support vector machine (LSSVM) and
group method of data handling (GMDH) approaches
to model the thermal conductivity value of CuO/EG
(Copper-Oxide/Ethylene-Glycol) nanofluid. It was mon-
itored from the outcomes that the R2 values for GMDH
and LSSVM were equal to 0.994 and 0.991, respectively.
These values indicated the high accuracy of the mod-
els in estimating the nanofluid’s thermal conductivity. In
another piece of research (Ahmadi et al., 2018), LSSVM
was employed to predict the thermal conductivity of alu-
mina/EG. The R2 value for the proposed model was
0.9902. In another investigation, Baghban et al. (2018)
used seven intelligent models to seek the relationship
between coefficients of the connective heat transfer of
silica nanoparticles as a function of three independent
parameters including mass fraction, Prandtl number and
Reynolds number. Statistical criteria show that the com-
mitteemachine intelligent system (CMIS) has the highest
accuracy with an R2 of 0.997.

To propose a estimation tool, it is essential to consider
the factors influencing the output data (Ahmadi et al.,
2018).Most studies consider temperature and concentra-
tion when modeling thermophyscial properties; adding
size as another input variable results in more accurate
results. In the current study, the Ag/water nanofluid’s
dynamic viscosity is modeled by applying MPR, ANN-
MLP and MARS algorithms. The input variables in the
modeling process are temperature, size and volumetric
concentration.

2. Intelligent modes

2.1. Multilayer perceptron neural network

Artificial neural networks are conventionally applied for
prediction purposes. MLP is a feed-forward neural net-
work algorithm. This network is composed of an input
layer, hidden layer and output layer (Gardner & Dor-
ling, 1998; Hornik, Stinchcombe, & White, 1989). The
number of input and output layers depends on the data.
In the hidden layer, one or more layers can exist that
have various neurons (Orhan, Hekim, & Ozer, 2011). In
these types of neural networks, the initial neuron of the
layer is fed into the neuron of layer in the next stage,
which is the same for all layers except the first layer.
Each neuron has an activation function and a sum func-
tion. The inputs are initially multiplied by the weight-
ing factor and added to each other. Afterwards, a bias
factor is added to the calculated number. In the next
step, the number obtained from the summing function
is used in the activation function as input data. Activa-
tion functions are categorized in three forms as repre-
sented below, where ϕ is the activation function (Ruck,
Rogers, Kabrisky, Oxley, & Suter, 1990; Vanzella et al.,
2004).

φ(r) = exp(− r2

2σ 2 ) (1)

In the above equation, σ > 0 is the width, which shows
the interpolating function smoothness. The distance
between x and the center is defined by r.

Trial and error steps or intelligent approaches may
be employed in order to calculate the number of layers.
The optimum condition is obtained based on the Mean
Square Error (MSE) parameter; therefore, these steps are
performed to achieve the ideal status of bias and weight.
In order to prevent either undertraining or overtraining
results, an accurate number of steps must be considered
(Goda, Shokir, Eissa, Fattah, & Sayyouh, 2003).

2.2. Multivariate adaptive regression splines

MARS is applied in regression and data classification
(Friedman&Roosen, 1995). This approach is mainly uti-
lized to predict the dependent data, Y (n×1), which are
continuous, based on the group of input data (n×p). This
model is represented as follows:

y = f (x) + e (2)

In the above equation, f indicates the weighted sum
of basic functions. These functions are dependent on X.
In addition, e stands for the error, which is an (n×1)
matrix. In this method, no priori assumption is required
for estimating the relationship between dependent and
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independent data. The relationship between these data is
found on the basis of a group of coefficients and piecewise
polynomials. Themodel is generated using this algorithm
based on fitting basic functions to independent vari-
ables’ distinct intervals. Typically, the polynomials that
are called “splines” consist of pieces connecting to each
other. The connecting points of the splines are known
as “nodes,” “knots” or “breakdown points.” The points
are shown by t. In a q-degree spline, each section is a
polynomial function. The function utilized by theMARS
algorithm is described as:

[−(x − t)]q+ =
{

(t − x)q if x < t
0 otherwise

(3)

[+(x − t)]q+ =
{

(t − x)q if x ≥ t
0 otherwise

(4)

In the above equation, q (≥ 0) is the power at which
the splines are boosted up. The smoothness of the
obtained function depends on the value of q. In the case
of q = 1, as in the present study, just simple linear splines
are applied. In Figure 1, a pair of splines for the node
t = 3.5 is shown.

By considering y which has M bias functions, the
model proposed by MARS can be written (Chou, Lee,
Shao, & Chen, 2004; De Cos Juez, Lasheras, Gar-
cía Nieto, & Suárez, 2009; Friedman & Roosen, 1995;
Nieto & Antón, 2014; Nieto, Fernández, Lasheras, de
Cos Juez, & Muñiz, 2012; Nieto, Lasheras, de Cos
Juez, & Fernández, 2011; Orhan et al., 2011; Xu et al.,
2004) as:

ŷ = f̂M(x) = c0 +
M∑

m=1
cmBm(x) (5)
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Figure 1. Spline at t = 3.5 (Nieto, García-Gonzalo, Bernardo
Sanchez, & Menendez Fernandez, 2016).

ŷ indicates the parameter predicted by MARS, c0 is a
fixed value, the mth bias function is referred to as Bm(x)
and cm refers to the mth basic function’s coefficient. It is
crucial to optimize the variables (c0 and cm) announced
into the knot positions and the model. For a dataset of
X which has n objects and p input variables, N = n×p
pairs of spline basic functions exist which can be calcu-
lated using Equations (3) and (4). In order to generate
the final model, a two-step process must be followed. In
the first stage, a two-at-a-time forward stepwise process
is performed to choose the basic functions (Chou et al.,
2004; De Cos Juez et al., 2009; Friedman & Roosen, 1995;
Nieto & Antón, 2014; Nieto et al., 2012; Nieto et al., 2011;
Orhan et al., 2011; Xu et al., 2004). Using this procedure
for selection leads to amodel with inappropriate ability to
predict new data due to the complexity and overfitting of
the model. In order to enhance this ability, the redundant
basic functions may be removed by applying a backward
stepwise procedure. In order to select the usable func-
tions, GCV is utilized (Chou et al., 2004; De Cos Juez
et al., 2009; Friedman & Roosen, 1995; Nieto & Antón,
2014; Nieto et al., 2012, 2011; Orhan et al., 2011; Xu et al.,
2004). In this approach, the GCV is defined as the aver-
age squared residual error divided by a penalty based on
the complexity of the model. The GCV is calculated as
follows:

GCV(M) =
1
n
∑n

i=1 (yi − f̂M(xi))
2

(1 − C(M)/n)2
(6)

C(M) refers to complexity penalty, which depends on
the number of basic functions and can be obtained (Chou
et al., 2004; De Cos Juez et al., 2009; Friedman & Roosen,
1995; Nieto & Antón, 2014; Nieto et al., 2012, 2011;
Orhan et al., 2011; Xu et al., 2004) as:

C(M) = (M + 1) + dM (7)

M refers to the number of functions used as basic in
Equation (5); d indicates a penalty for the basic func-
tions utilized in the proposedmodel. Increase in the value
of d causes fewer required basic functions and smoother
estimation.

When the MARS model is generated, the importance
of the utilized variables for modeling can be assessed.
Taking into account the literatures several criteria can be
applied which in this study, the GCV parameter is used
for this purpose to achieve reliable results (Chou et al.,
2004; De Cos Juez et al., 2009; Friedman & Roosen, 1995;
Nieto&Antón, 2014;Nieto et al., 2012, 2011;Orhan et al.,
2011; Xu et al., 2004).
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3. Results and discussion

3.1. Multivariable polynomial regression

In this study, experimental results from previous publi-
cations are used to model the range of the input vari-
ables and represented in Table 1. The data used for the
modeling step are taken from experiments that were
published recently (Alade, Oyehan, Popoola, Olatunji,
& Bagudu, 2018; Esfe, Saedodin, Biglari, & Rostamian,
2016; Nikkam & Toprak, 2018). The temperature of
the fluid and the concentration ratio of the Ag/water
nanofluid are those major elements which consider-
ably affect the value of dynamic viscosity as illustrated
in Figure 2.

By using 2D multivariate polynomial regression and
applying the least square method (Royston & Sauerbrei,
2008; Sinha, 2013), a simple equation is obtained for
the experimental data that is represented in Alade et al.
(2018), Esfe et al. (2016) and Nikkam and Toprak (2018).
The proposedmodel has three inputs including tempera-
ture, size of nanoparticles and volumetric concentration.
Thismodel is very simple, lacking any exponential or log-
arithmic term. The complex models obtained by neural
networks have some disadvantages such as high compu-
tational cost. The coefficients of the model are shown in

Table 1. Ranges of input variables (Alade et al., 2018; Esfe et al.,
2016; Nikkam & Toprak, 2018)

Variable Minimum Maximum

Concentration (V/V %) 0 0.012
Temperature (°C) 20 90
Size (nm) 40 63

Equation (8):

μ = a1 + a2 × T + a3 × φ + a4 × d + a5 × T × φ

+ a6 × d × T + a7 × d × φ + a8 × φ2 + a9 × T2

(8)

3.2. Multivariate adaptive regression splines

As mentioned earlier, in the MARS algorithm, the cores
of procedure are basic functions; therefore, it is necessary
to choose appropriate ones. Unlimited increase in the
basic functions causes overfitting. In this study, the sensi-
tivity of the MARS model based on the input basic func-
tions is investigated. According to Jerome H. Friedman
(1991), the GCV method is used to obtain the optimal
number of functions in which using 10 basic functions
leads to the best results (Figure 3). The coefficients of the
proposed model in Equation (8) are reported in Table 2.

The model obtained using 10 basic functions is repre-
sented in Equation (9). The coefficients of the proposed
model in Equation (9) are reported in Table 2.

μ = b7 + b8 × BF1 + b9 × BF2 + b10 × BF3
+ b11 × BF4 + b12 × BF5 + b13 × BF6 + b14
× BF7 + b15 × BF8 + b16 × BF9 + b17 × BF10

(9)

BF1 = Max(0,T − b1); BF2 = Max(0, b1 − T)

BF3 = Max(0,φ − b2); BF4 = Max(0, b2 − φ)

BF5 = Max(0, b3 − d); BF6 = Max(0, b4 − T)

Figure 2. Dynamic viscosity of Ag/water versus concentration and temperature.
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Figure 3. GCV versus number of basic functions.

Table 2. Coefficients of the proposed models

Method Coefficients of formula

MPR a1 = 2.854458 a5 = −0.01767302
a2 = −0.07067888 a6 = 0.0009623423 a9 = 3.348794e − 5
a3 = 34.8872 a7 = −0.2068149
a4 = −0.03010695 a8 = −458.0973

MARS b1 = 50 b7 = 0.6479446497 b13 = 0.0009503558228
b2 = 0.0075 b8 = −0.00448272716 b14 = −0.5832473061
b3 = 63 b9 = 0.02850777346 b15 = −0.09163218524
b4 = 70 b10 = 12.92515965 b16 = −0.0341905972
b5 = 0.003 b11 = −19.02334604 b17 = 0.2252212224
b6 = 65 b12 = −0.01560314429

BF7 = BF5 × Max(0, b2 − φ);

BF8 = BF1 × Max(0,φ − b5)

BF9 = BF1 × Max(0, b5 − φ);

BF10 = BF4 × Max(0, b6 − T)

In most of the studies in which the MARS method is
used for regression modeling, the importance of data is
calculated for gaining better insight into the influential
parameters. Data whose importance is equal to 0 will be
removed.

In order for gaining the relative importance of one
parameter, the root square of the GCV of the all
basis function without involving the propsed parame-
ter should be obtain and then the value must be scaled
to 100. Based on importance data analysis, temperature
has the most significant effect compared with temper-
ature and concentration (Figure 4). The concentration
of nanofluid has the second rank in the calculation of
dynamic viscosity.

3.3. MLP-LMA: feed-forward back propagationwith
Levenberg–Marquardt training Algorithm

In MLP neural networks, hidden layers and their neu-
rons play the key role in regression. Inappropriate model

Figure 4. Importance of input variables.

selection and an inadequate number of layers and neu-
rons lead to unfavorable outputs. Therefore, it is neces-
sary analyze the sensitivity of the network to the number
of neurons and hidden layers. Since there are three input
variables, a hidden layer is appropriate to obtain accept-
able training; however, the sensitivity of the network
must be considered based on the number of neurons.
In the present study, MSE is used as criterion to select

Figure 5. MSE value for various number of neurons.
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Figure 6. Dynamic viscosity of Ag/water nanofluid in different temperatures and concentrations.

the optimum number of neurons. As shown in Figure 5,
using neurons leads to the best model.

Neural Network identifier: 75% of data were used for
training the network, 15% for validation and 10% for test-
ing the trained network. The activation function for the
hidden layer was tanh and an identity function was uti-
lized for the output layer. The best model of the ANNwas
obtained in epoch 197 on the basis of MSE. In Figures 6
and 7 are represented the calculated dynamic viscosities
of the nanofluid based on the concentration and tem-
perature. Figure 6 represents the dynamic viscosity of
Ag/water nanofluid in seven concentrations including 0,
0.003, 0.004, 0.006, 0.008, 0.009 and 0.012 in the temper-
ature range of 50–90°C. The average size of nanoparticles
in these cases equals 63 nm. As has been shown, an
increase in temperature leads to higher dynamic viscos-
ity for each temperature. In addition, it can be concluded
that higher temperature causes lower dynamic viscosity
for a constant concentration. For instance, increasing the
temperature from50 to 70°C in 0.003 concentration leads
to approximately 19.5% reduction in dynamic viscosity.

In Figure 7 is represented the dynamic viscosity of
Ag/water nanofluid in 20 and 25°C for particle size equal
to 40 nm. The concentrations of the solid phase in these
conditions are in the range of 0.00096 and 0.01. As
illustrated, an increase in concentration, with constant
temperature and particle size, results in improvement in

Figure 7. Dynamic viscosity of Ag/water nanofluid versus tem-
perature and concentration.

dynamic viscosity; while a temperature increase reduces
the dynamic viscosity.

3.4. Statistical comparison of the proposedmodels

AAPRE%

=
∑n

i=1

(∣∣∣ ti−oi
ti

∣∣∣)
n

× 100 (Average Absolute Percent Relative Error)
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Table 3. Statistical comparison of various models

Machine learning and regression models
Statistical
variable ANN-MLP MARS MPR

R2 0.99988194 0.999782 0.999628
RMSE 0.001932218 0.002624 0.003432
AAPRE(%) 0.235240638 0.387537 0.459142

RMSE=
(
1
n

n∑
i=1

(ti − oi)2
) 1

2

(Root Mean Square Error)

R2 = 1 −
∑n

i=1(ti − oi)∑n
i=1(ti − tm)

,

tm =
∑n

i=1 ti
n

(Coefficient of determination)

Based on the statistical criteria for regression evalu-
ation (Baghban, Kahani, Nazari, Ahmadi, & Yan, 2019;
Hajikhodaverdikhan, Nazari, Mohsenizadeh, Shamshir-
band, & Chau, 2018; Taormina, Chau, & Sivakumar,
2015; Wu & Chau, 2011), the MLP network is the
best among the approaches represented in the present
study for modeling the dynamic viscosity of Ag/water
nanofluid; however, using this algorithm requires more
computational cost than does polynomial regression. A
summary of the results obtained for each algorithm is
presented in Table 3.

4. Conclusion

In the present study, MLP and MARS algorithms were
employed to estimate the dynamic viscosity of Ag/water
nanofluid by considering nanoparticles’ size and concen-
tration and the temperature of the fluid as input vari-
ables. The value of R2 was used as a statistical bench-
mark to evaluate the obtained outcomes. According to
the calculations, the R2 values for ANN-MLP,MARS and
MPR algorithmswere equal to 0.9998, 0.9997 and 0.9996,
respectively in which conforming to the all statistical cri-
terias describe in Table 3, the proposedANN-MLP is bet-
ter than the two other algorithms. It could be concluded
that all the applied algorithms are appropriate for mod-
eling and able to precisely predict the dynamic viscosity
of the nanofluid. In addition, the relative importance of
the input data was determined to get better insight into
the influential factors. Based on the obtained values, the
importance of temperature, concentration and size was
approximately 100%, 80% and 12%, respectively. These
values indicate the high importance of temperature in
modeling the dynamic viscosity.
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