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Abstract: Linear and nonlinear impairments severely limit the transmission performance of 
high-speed visible light communication systems. Neural network-based equalizers have been 
applied to optical communication systems, which enables significantly improved system 
performance, such as transmission data rate and distance. In this paper, a memory-controlled 
deep long short-term memory (LSTM) neural network post-equalizer is proposed to mitigate 
both linear and nonlinear impairments in pulse amplitude modulation (PAM) based visible 
light communication (VLC) systems. Both 1.15-Gbps PAM4 and 0.9Gbps PAM8 VLC 
systems are successfully demonstrated, based on a single red-LED with bit error ratio (BER) 
below the hard decision forward error correction (HD-FEC) limit of 3.8 x 10−3. Compared 
with the traditional finite impulse response (FIR) based equalizer, the Q factor performance is 
improved by 1.2dB and the transmission distance is increased by one-third in the same 
experimental hardware setups. Compared with traditional nonlinear hybrid Volterra 
equalizers, the significant complexity and system performance advantages of using a LSTM-
based equalizer is demonstrated. To the best of our knowledge, this is the first demonstration 
of using deep LSTM in VLC systems. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Visible light communications (VLC) based on light emitting diodes (LEDs) has become an 
attractive and promising technology due to its cost effectiveness, immunity to electromagnetic 
interference, license-free and high security [1]. In recent years, transmission rate of visible 
light systems has been increasing with the use of` high-order modulation, such as orthogonal 
frequency division multiplexing (OFDM) [2], carrier-less amplitude and phase modulation 
(CAP) [3] and pulse amplitude modulation (PAM) [4]. 

Equalizer is one of the most critical parts of the VLC systems. As a typical 
communication system, the transmitted signal of VLC systems is distorted in amplitude and 
delay causing the inevitable inter-symbol interference (ISI). On the other hand, nonlinear 
distortion has gradually become a new bottleneck in high-speed transmission systems due to 
nonlinear V-I response of LED source [5] and other origins that have not been well-modeled 
such as non-linear distortion arising from the transmitter driving circuits and the electrical 
amplifier (EA). Recently, Adaptive finite impulse response (FIR) filter based linear equalizers 
in VLC systems have been widely studied, such as scalar modified constant multi-modulus 
algorithm (S-MCMMA) blind equalization algorithm [6], data-aided recursive least square 
(RLS) [7] and least mean squares (LMS) [8]. In order to compensate for both linear and 
nonlinear effects, hybrid equalization schemes have been shown to be effective approaches to 
improve the performance of VLC systems, such as adaptive FIR linear equalizer with 
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Volterra series scheme [9], look-up table (LUT) scheme [10] and machine learning (ML) 
scheme [11,12]. 

With the increase in system transmission rate, ISI is enhanced and more taps are needed 
when designing the equalizer. Due to the high computational complexity, the order of hybrid 
Volterra filters is generally limited to 2 to 3 orders with limited high-order taps [9] and LUT 
scheme generally uses extreme limited symbols [10,13]. An ideal nonlinear equalizer can 
effectively compensate for nonlinearities. However, the computational complexity increases 
as the number of taps increases. It is well known that the level of complexity that should 
normally be avoided is non-deterministic polynomial-time hardness (NP) and above. An 
LSTM neural cell-based equalization network is designed to solve this problem. Long-term 
memory parameters are used to store relatively slow-changing channels. Parameters in short-
term memory are used to quickly process finite taps that affect a symbol. Benefit from the 
characteristics of neural networks, the complexity of the equalizer can be significantly 
reduced to meet the complexity requirements. 

Compared to traditional adaptive equalization, ML techniques are effective at using 
limited training samples to create a probability-based model. More specifically, ML 
emphasizes generalization ability and concept learning (CL) [14], and quantifies learning 
ability through generalization errors and under/over-fitting [15]. In recent years, many 
powerful traditional ML models [16] and simple multilayer neural network (NN) models [17] 
have been successfully applied in the field of communication systems, but studies have 
pointed out that some wrong experimental methods in communication systems may make the 
performance of machine learning seriously overestimated [18]. With the rise of deep neural 
networks in other fields and breakthroughs in nonlinear problems [19,20], we explore the use 
of deep neural networks as a way to solve nonlinear compensation in VLC systems. 

In this paper, we propose and experimentally demonstrate a post-equalizer employing a 
memory controlled deep 32 layers LSTM neural network and a softmax-function based 
probabilistic classification model for PAM4 and PAM8 VLC systems. The memory 
controlled LSTM NN can simultaneously compensate for linear and nonlinear distortions. 
Applying the LSTM-based equalization scheme can improve system performance compared 
with the original FIR-based and Volterra-based equalization schemes. A data rate of 1.15-
Gb/s is successfully achieved over 1-m indoor free space transmission based on a single red-
LED with bit error rate (BER) under the 7% hard decision forward error correction (HD-FEC) 
limit of 3.8x10−3. Further, our experiments demonstrate that the LSTM neural network is 
suitable for truly random sequences. To the best of our knowledge, this is the first time that 
the LSTM of machine learning is successfully applied in VLC systems. 

2. Principle 

In VLC systems, it is easy to illustrate the nonlinear distortion by mapping the Tx and Rx 
signal amplitudes. Figure 1 shows the back-to-back PAM-8 data through the VLC channel. 
Impaired by nonlinearity, the data deviates from the linear straight line. As a trade-off in VLC 
systems, reducing the modulation depth will reduce nonlinearity while increasing the 
modulation depth improves the signal-to-noise ratio due to increased extinction ratio. 
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For traditional equalizer weights fitting is reset after each retraining, so there is no 
memory effect in it. Differently, the parameters in the neural network have long-term memory 
in multiple trainings to help the model compensate for nonlinearity more accurately. 
Specifically, the LSTM assigns the highest priority training data to the latest training 
sequence during training, but also retains some weights in the original channel model. As 
shown in Fig. 2, a certain length of x’(n) and y’(n) are used as the training sequence to 
converge parameters of the neural network. As can be seen from Eq. (2), y(n) is related to the 
N taps vector Xn. For convenience, we express Xn as Eq. (4): 

 [ ( ), ( 1),..., (0)]T T
nX X x n x n x= = −  (4) 

where x(n) is the n-th input symbol of N taps and T denotes transpose or the vector. 
Therefore, each of our training samples and equalization set of input and output can be 
expressed as Eq. (5): 

 ( ) { , ( )}nS n X y n=  (5) 

2.1 Deep LSTM neural network structure 

 

Fig. 3. Structure of LSTM based equalizer. 

LSTM is a probability-based model which cannot be used directly for equalization. Figure 3 
shows the structure of the equalizer based on LSTM. The equalizer includes an input layer, a 
hidden layer, a classification layer, and an output layer. The standard LSTM cells is defined 
in [20]. We propose to transform the neural network output into a time-domain equalizer via a 
merge node according to the softmax function of Eq. (6) and Eq. (7): 
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Where NoL is the number of the amplitude levels (e.g. NoL of PAM-8 is 8, L1 = 
−7*Normalization Factor (NF), L2 = −5*NF, L7 = 7*NF). For the long/short-term memory 
links in Fig. 3, we use the standard LSTM cell structure in [20]. 

2.2 Training and transmission 

 

Fig. 4. Flow chart of training and equalization. 

Figure 4 shows the flow chart of training process and equalization. In order to train more 
precisely than using direct accuracy based error, such as Mean Square Error(MSE) between 
actual and predicted during training, a softmax based cross-entropy equation is carried out in 
the algorithm as Eq. (8): 
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where Yi is the i-th probability of the amplitude levels, Xtrain and Ytrain is the Rx and Tx 
training set. 

However, inside the NN optimizer, the sample is cut by the whole block called batch to 
calculate the training error, as Eq. (9): 
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where i j≠ . This situation is very common in the communication field and cause the serial 

numbers to be remembered, which is known to be the memory of the neural network and will 
give a wrong estimation of system performance [18]. We used a simple but effective way to 
control this memory effect: randomly pick single sample of all sample sets to compose each 
batch as Eq. (11): 

 1' ( ) { , ,..., }k k n n n mbatch r batch random S S S+ += =  (11) 

where 'kbatch  is the new input to the optimizer. It is theoretically not possible to have the 

situation as in Eq. (9) after this method is used. In order to verify the feasibility of this 
method, we experimentally compared pseudo-random sequences with random sequences to 
verify that the LSTM equalizer avoids the memory trap described above. 

Most neural networks have memory effects, whether it is deep neural networks (DNN), 
convolutional neural networks (CNN) or LSTM. It should be noted that when the neural 
network model is applied to the communication system, on the one hand, a part of the 
memory is beneficial, for example, remembering the previous parameters before the new 
training greatly reduces the amount of training required. On the other hand, part of the 
memory is harmful, such as remembering the sequence of training, because obviously the 
sequence to be transmitted should be unpredictable in communication system. 

2.3 Complexity analysis 

We estimated theoretical the complexity of LSTM network and the results show that it has an 
acceptable algorithm complexity. The level of training complexity is the same as that of the 
second-order Volterra equalizer, and it is much lower than the 3rd-order Volterra equalizer. In 
addition, high-order Volterra without simplification is not a practical algorithm with current 
computing power since its complexity is NP- hard. 

Table 1. Complexity Comparison of Equalizersa 

 LM
S 
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of 
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) 

aN is the number of equalizer taps, L is the length of the training sequence, I is the number of iterations, H is the 
number of hidden layers. 

As shown in Table 1, the complexity of training and equalizing determines the complexity 
of algorithm implementation. According to Eq. (2), the high-order multi-tap Volterra 
equalizer is theoretically impossible to be implemented since calculation of the parameters by 
solving higher-order Volterra series exceeds the NP hard level. In existing practice, the 
second-order Volterra algorithm with limited taps based on minimum MSE convergence is 
generally used. 
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3. Experimental setup and results 

Figure 5 shows the experimental setup of the VLC system with PAM modulation employing 
LSTM based equalization. 

 

Fig. 5. Experimental setup. 

At the transmitter, the original binary bits are converted to PAM symbols, and an up-
conversion is performed after up-sampling. Then, the signal is generated by an AWG and 
passes through the basic hardware equalizer [21]. In order to reach the LED’s switching 
current threshold, the signal amplified by an electronic amplifier (EA) is added with a direct 
current (DC) by a bias-T. The red illuminating chip in an ordinary commercial RGB LED 
(Engine LZ4-20MA00) was selected for transmitting signals to free space. 

At the receiving end, the detected optical signal is converted into an electrical signal by a 
PIN photodiode (Hamamatsu 10784). The weak original signal is amplified by an EA and 
sampled by an oscilloscope (Agilent 54855A) with sampling rate of 2-GSample/s. Finally, the 
signal is stored in a laptop with a graphics processing unit (GPU Nvidia GTX1060) for 
offline digital signal processing through a network cable/GBIP interface. 

In offline digital signal processing of PAM4 and PAM8 signals, after synchronization, the 
down-conversion and down-sampling corresponding to the transmitter are used first. After 
passing through the equalizer, the symbol is decoded into the original binary signal. 

 

Fig. 6. Training convergence curve of LSTM. 

As shown in Fig. 6, the cross-entropy continues to converge after the mean square error 
(MSE) almost close to 0 in the training process. If MSE is chosen as the error function in 
LSTM, as shown by the blue line in the figure, the MSE is 0 with 4 × 102 iterations, so the 
parameter convergence will end regardless of the convergence threshold. In particular, we 
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artificially set 0 points on the log coordinates of MSE to make the curve conform to the 
display rule. So, it will cause under-fitting problems and cannot accurately fit the parameters 
in the network. Actually, in general deep neural network experiments, cross entropy error is 
widely used in the training process of other applications, such as image identification and 
natural language processing. 

 

Fig. 7. a) Q factor (dB) comparison of LSTM and LMS + DDLMS. b) Constellation of the best 
working conditions of the LMS + DDLMS equalizer. b) Constellation of the best working 
conditions of the LMS + Volterra equalizer. d) Probability distribution of every symbols for 
the best working conditions of the LSTM equalizer and e) Constellations without equalizer. 

For a clear comparison, better performing but more complex FIR equalizers, data-aid 
LMS equalizer with decision-directed least mean square (DD-LMS) adaptive equalizer and 
data-aid LMS with Volterra equalizer were used. The results of applying LMS equalizer, 
hybrid Volterra and LSTM equalizer to PAM8 with different taps are shown in Fig. 7. It can 
be found that the system performance of using LSTM-based equalization scheme is superior 
to the original LMS and DD-LMS based equalization scheme by approximately 1.2 dB in the 
case of optimal number of taps. PAM8 systems using only the LSTM equalizer reduces the 
error by about half comparing with systems using the LMS + Volterra equalizer, resulting in a 
Q increase of approximately 0.8. The BER performance of VLC PAM8 systems using only 
Volterra equalizer are unacceptable due to severe over-fitting. The Volterra equalizers pre-
converged by LMS has approximately 0.5 better Q value than LMS equalizer in PAM8 
systems. It is worth noting that Volterra equalizer in this comparison uses more tap to trade 
off complexity for optimal performance. When the number of taps is lower than 11, the 
parameter fitting of the equalizer obviously cannot follow the non-ideal response of the 
system. On the other hand, when the number of taps is too high, the performance of the 
system is reduced, because the additive white Gaussian noise (AWGN) accumulated in the 
system affects the accuracy of the optimizer in the equalizer. 

 

Fig. 8. BER comparison of LSTM and LMS + DDLMS of a) PAM4 and b) PAM8 VLC 
systems under different baud rate, respectively. 
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The performance of the LSTM equalizer in the PAM4 and PAM8 systems were studied 
separately. With the increase in baud rate, ISI also increases. Obviously, the number of taps 
need to be increased to cope with nonlinearity of the system, the complexity of the high-order 
Volterra equalizer makes its use no longer theoretically suitable. However, LSTM nonlinear 
equalizer can still be used since its complexity increases linearly with the number of taps. 
LSTM equalization scheme can make the BER performance of the system lower than the HD-
FEC threshold when the transmission rate reaches 1.15-Gb/s in PAM4 and 0.975-Gb/s in 
PAM8 VLC systems. As shown in Fig. 8. It can be found that the system performance of 
using LSTM-based equalization scheme is significantly better than LMS + DDLMS and LMS 
+ Volterra based equalization schemes. Due to the bandwidth limitation and filtering effect, 
system performance is seriously degraded by noise and cannot be compensated by DSP 
beyond certain baud rate. When the PAM8 system is operating at 325MBd, applying LSTM 
equalizer can achieve error-free transmission. However, at 275MBd, LMS + DDLMS scheme 
already failed to meet the BER requirements while the BER remains below the HD-FEC with 
the LSTM scheme. 

 

Fig. 9. Transmission distance comparison with LSTM and LMS + DDLMS in PAM8 VLC 
systems versus different bitrates: a) 750Mbit/s; b) 900Mbit/s. 

At the optimal working conditions, the LSTM scheme improves the transmission distance 
performance of the PAM8 VLC systems compared with the traditional schemes. As shown in 
Fig. 9, BER performance improvements are more significant when the noise impact 
introduced by bandwidth is smaller. When the transmission bit rate is 750Mbit/s, the LSTM 
equalizer can make the system's transmission distance reach 1.2M and keep the bit error rate 
below the HD-FEC threshold. The solution using the LMS + DDLMS and LMS + Volterra 
equalizer can only achieve a transmission distance of 0.8 meters and 0.9 meters. When the 
transmission bit rate is 900 Mbit/s, the LSTM equalizer can extend the transmission distance 
of the system from 0.7 meters to 0.9 meters. 

 

Fig. 10. Measured BER versus bias currents and input signal Vpp. 
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In addition, we studied the optimal operation of the LSTM equalizer at different bias 
direct current (DC) and input signal peak-to-peak voltage (VPP) conditions. As shown in Fig. 
10, there are different working conditions with a transmission distance of 0.8m and a 
transmission baud rate of 750 Mbit/s, the LSTM equalizer extends the operating range under 
the FEC threshold limit. The PAM8 system has the best BER performance when the bias 
current is 60mA and VPP is 0.4 volts. 

 

Fig. 11. Q factor performance curve of pseudo-random and random sequence. 

In particular, the problem of over-estimation of the performance of LSTM when using 
pseudo-random sequence has been experimentally analyzed as described in section 2.2 of this 
paper. As shown in Fig. 11. Pseudo-random sequences give overestimation of system 
performance over random sequences from two aspects: Memory effects and unrealistic 
coverage of patterns. 

Specifically, the memory effect is due to the incorrect use of the same training sequence 
and test sequence in the experiment, which causes the neural network to remember the serial 
number of the transmission sequence. Therefore, if pseudo-random sequence is used in the 
experiment, there will be overestimation of system performance. The reason for the 
unrealistic pattern coverage which is impossible to cover the taps with too long training 
sequences in practical applications. For example, the PAM4's 40 taps completely cover 
training sequence length to 440 patterns. However, using some training methods in deep 
learning can make the performance closer to the theoretical limit—pseudo-random sequence 
performance in Fig. 11. One possible direction is to introduce some forgetting factors to 
ignore the unnecessary redundant training parts. 

 

Fig. 12. Q factor performance curve of training sequence length. 

Finally, the effect of the length of the training sequence on different nonlinear algorithms 
is experimentally measured. The Q factor after only one training is shown in the Fig. 12, in 
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general, LSTM and Volterra based equalizers are similar in the length of the training 
sequence. Specifically, when the length of the training sequence is less than 1/16, the 
parameters of the two equalizers do not converge well. In all of the above experiments, we 
only used one training sequence of the same length that is sufficiently convergent to compare 
the LSTM and Volterra equalizer algorithms. It is worth mentioning that in the case of well 
convergence, the traditional equalizer's multiple training cycles will not have a significant 
performance improvement, because each complete training cycle will update the parameters 
without memory. But differently, under the influence of long-term memory, systems with 
LSTM-based equalizer will get higher performance which has been trained more than one 
times. 

4. Conclusions 

We theoretically and experimentally investigate the time-domain memory controlled LSTM 
neural network based equalization scheme for a band-limited PAM-8 VLC system. A data 
rate of 1.15-Gb/s is successfully demonstrated over 0.8-m indoor free space transmission 
based on a single red-LED with BER lower than 3.8x10−3. Besides, it is shown 
experimentally that LSTM-based equalizer can outperform original FIR based equalizer and 
Volterra based equalizer. Furthermore, we theoretically and experimentally verified that the 
scheme is applicable to random sequences and pointed out the causes of the performance 
overestimation problem of neural network found in previous studies. 
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