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ABSTRACT
An overview on converging technologies that are the primary
drivers of the 4th Industrial Revolution is presented, followed by
new developments in advanced manufacturing, nano-,informa-
tion-technologies and smart civil infrastructure technologies.
Convergence of these transformative technologies is discussed.
Emphases are on advanced manufacturing, nano mechanics/mate-
rials, sensors, structural control, smart structures/materials, energy
harvesting, multi-scale problems and simulation methods.
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1. Introduction

Nanotechnology is a very efficient way in the creation of new materials, sensors, devices and
systems starting at themolecular level [1–5]. Smartmaterials on the other hand have seen new
advances in terms of sensing, robustness, miniaturization, actuating, control, disaster mitiga-
tion, structural health monitoring, energy harvesting, advanced manufacturing, and other
areas [6–14]. Mechanics is the common thread among these interdisciplinary areas [15,16].

The first 3 industrial revolutions occurred about 100 years apart and they changed the
world. The 4th industrial revolution happened only a couple of decades from the 3rd one
and it has already made profound impacts on the quality of life in terms of productivity,
connectivity, education, and all aspects of life. Some of the examples of the latest progress
are cloud computing, big data, Internet of Things (IoT), etc. According to ECN magazine 17
January 2017 issue, IoT enabled sensors will generate USD 10 B revenue globally in 2020.
The following lists the attributes of the different industrial revolutions [5,17,18]:

● 1st 1784: mobilized the mechanization of production using steam power.
● 2nd 1870: mass production with the help of electric power.
● 3rd 1969: Arpanet, internet, digital revolution and the use of electronics and IT to
further automate production.

● 4th present: a convergence of new technologies: AI, nanotechnology, cloud com-
puting, robotics, 3-D/4-D printing, biotechnology, big data. . .
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According to the National Science Foundation (NSF; www.nsf.gov), some of the recent
initiatives on smart systems involved:

● Robotics: Electronic, mechanical, computing, sensing devices and systems, controls,
and intelligent systems that enable ubiquitous, advanced robotics

● Cyber-Physical Systems: Integration of intelligent decision-making algorithms and
hardware into physical systems

2. Simulation

The widespread use of digital computers and simulation have had a profound
effect in engineering and science [19–29]. A realistic and successful solution of an
engineering problem usually begins with an accurate physical model of the pro-
blem and a proper understanding of the assumptions employed. With advances in
big data, cloud computing, simulation-based engineering and sciences, computer
hardware and appropriate software, we can model and analyze complex physical
systems and problems. However, efficient and accurate use of numerical results
obtained from computer programs requires considerable background and
advanced working knowledge to avoid blunders and the blind acceptance of
computer results.

With the senior author Chong’s assistance, the National Science Foundation Blue
Ribbon Panel on Simulation-based Engineering Science (chaired by Prof. J. Tinsley
Oden) was formed in 2005 and came up with bold recommendations in computa-
tional mechanics, simulation and other related areas. This effort is continuing among
Federal agencies with huge investment in R&D and great impact on engineering and
sciences. Simulation-based Engineering Science [25] plays a key role in the current
4th Industrial Revolution. An example is the Material Genome Initiative (MGI) the US
President announced in 2011 using vast databases and advanced computer model-
ing/simulation to design new material systems in half the time required (see: https://
www.whitehouse.gov/mgi). MGI made reference to the NSF Blue Ribbon Panel report.
Since the launch of MGI in 2011, the Federal government has invested over USD 250
million in new R&D in just 2 years. Industry investment is much more. The core issues
of Simulation-based Engineering Science [25] are:

● Tyranny of Scales
● Verification, Validation, and Uncertainty Quantification
● Dynamic Data Driven Simulation Systems
● Sensors, Measurements, and Heterogeneous Systems
● New Vistas in Simulation Software
● Big Data and Visualization
● Next Generation Algorithms

According to the Moore’s Law, the computer speed double every 18 months over the
last 30 plus years. However the software usually lags behind the hardware. The following
figure (Figure 1) is a rare example where the software is leading [26].
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3. Multi-scale problems

Nanotechnology is a very efficient way in the creation of new materials, devices and
systems at the molecular level – phenomena associated with atomic and molecular
interactions strongly influence macroscopic material properties with significantly
improved mechanical, optical, chemical, electrical and other properties [1,3,25,27]. NSF
former Director Rita Colwell in 2002 declared, ‘nanoscale technology will have an impact
equal to the Industrial Revolution’. However, nanotechnology has to scale up to make
useful systems and devices, hence we need to study the multi-scale problems [20,28–32].
In 2000 Boresi and Chong in an earlier edition of an Elasticity text [15] listed the following
Table 1, detailing the different scales and their related topics.

Basically, there are two major methods of multi-scale modeling: sequential and
concurrent. The following are the pros and cons of both methods [33],

● Sequential Multiscale Modelling

(pro) the idea is straightforward; the theories/principles at each level are mature (e.g.
continuum mechanics, molecular dynamics, quantum mechanics, etc.), and therefore we
just adopt different theories/principles at different scales and passed information in a
bottom-up way or top-down way.

Table 1. Scales in materials/structures.
Materials Structures Infrastructures

Nanolevel~ microlevel~ mesolevel~ macro-level~ systems integration
Molecular Scale Microns Meters Up to km Scale
nanomechanics self-
assembly
nanofabrication

micromechanics
microstructures
smart materials

mesomechanics
interfacial structures
composites

beams columns
plates

bridge systems
lifelines airplanes

Figure 1. Software speed leading hardware.
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(con) the connection between different length scales is weak, since not all informa-
tion at one scale can be totally passed to its higher or lower scale.

● Concurrent Multiscale Modeling

(pro) can solve the problem efficiently while still maintain high resolution at critical region
(con) some problems cannot be solved well. The typical un-solved challenge is how

crack/dislocation/heat can propagate from the critical area to non-critical area.

4. Advanced manufacturing

According to the National Science Foundation, advanced manufacturing enables inno-
vation capacity for manufacturing by emphasizing research on:

● cyber-enabled, adaptive, agile, and distributed manufacturing for the ‘Factory of
the Future’. Cyber manufacturing uses advances in sensors, networks, software,
modeling, simulation, and computation transforming the ‘Factory of the Future’
and create new manufacturing eco-systems, which are distributed, flexible, adap-
table, accessible, efficient, economic, personalized.

● nanosystems design and scalable nanomanufacturing
● advanced biomanufacturing

Advanced manufacturing is a family of activities that

(1) depend on the use and coordination of information, automation, computation,
software, sensing, and networking, and/or

(2) make use of cutting-edge materials and emerging capabilities enabled by the
physical and biological sciences, for example nanotechnology, chemistry, and
biology.

It involves both new ways to manufacture existing products, and the manufacture of
new products emerging from new advanced technologies [34,35]. Cloud manufacturing
is also an enabling tool [36].

According to Jay Lee [18], future factories involve attributes based on ‘self’ sensing,
controlling, networking – see Table 2.

Scalable nano-manufacturing (NSF 15–107; www.nsf.gov) is a NSF research initia-
tive to overcome the key scientific and technological barriers that prevent the produc-
tion of useful nanomaterials, nanostructures, devices and systems at an industrially
relevant scale, reliably, and at low cost and within environmental, health and safety
guidelines.

One of the shortcomings of 3-D printing [37] is the weak interfacial strength
between layers of materials printed. The properties along the layers are different
than those across the layers, behaving like a transversely isotropic material [15]. To
overcome this weakness, vertical reinforcements can be pre-positioned like reinforce-
ment in a concrete column shown below (Figure 2).
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Table 2. Comparison of manufacturing technologies.

Figure 2. Vertical reinforcement in a column.
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As for the 4-D printing [38], instead of building static 3-D items from layers of plastics,
metals or other materials, 4-D printing employs dynamic materials, such as piezoelectric
materials, that continue to evolve in response to their environment after fabrication.

5. Smart infrastructure

Smart structures refer to next-generation structures with self-diagnosis and prognosis,
self-healing and repair, self-powered, and self-adaption abilities by integrating the
technological advances in smart materials, smart sensors, structural health monitoring,
structural control, and artificial intelligence. Smart structure technology may consider-
ably enhance the functionality, reliability, safety and longevity of civil and mechanical
structures. This section reviews the recent advances in the fields of structural health
monitoring, structural control and energy harvesting.

5.1. Structural health monitoring

A sensory system is an important factor in structural health monitoring (SHM). For
example, the Tsing Ma Bridge monitoring system established in Hong Kong in 1997
has around 280 sensors, including anemometers, temperature sensors, strain gauges,
accelerometers, global positioning systems (GPS), displacement transducers, and level
sensors [39]. An improved SHM system installed in the Stonecutters Bridge monitoring
system (Hong Kong) later contains a total of over 1500 sensors [40], as shown in
Figure 3. Various types of sensors produce a wide range of information for the imple-
mentation of an effective SHM and facilitate bridge safety/reliability assessment.

WIMWIM

WIMWIM

Anemometers Anemometers (24)(24)
Fixed Fixed SeroSero--Type Accelerometers Type Accelerometers (58)(58)
Temperature Sensors Temperature Sensors (388)(388)
Dynamic Strain Gauges (678)Dynamic Strain Gauges (678)
Static Strain Gauges (158)Static Strain Gauges (158)
Global Positioning Systems (20)Global Positioning Systems (20)
Displacement TransducersDisplacement Transducers (34)(34)
Buffer Sensors (18)Buffer Sensors (18)
Bearing Sensors (12)Bearing Sensors (12)
ElectroElectro--Magnetic Sensors (32)Magnetic Sensors (32)
Barometers, Rainfall Gauges & Hygrometers (28)Barometers, Rainfall Gauges & Hygrometers (28)
Corrosion Cells (33)Corrosion Cells (33)
Digital Video Cameras (18)Digital Video Cameras (18)
Dynamic WeighDynamic Weigh--inin--Motion Stations (4)Motion Stations (4)WIMWIM

Stonecutters TowerStonecutters Tower

Tsing Yi TowerTsing Yi Tower

Instrumentation Layout in Instrumentation Layout in 
Stonecutters BridgeStonecutters Bridge

Total No. of SensorsTotal No. of Sensors : 1505: 1505

Figure 3. Layout of the sensory systems in Stonecutters Bridge [40].
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With the rapid development of sensing technology, the possibilities for the applica-
tion of improved SHM techniques are becoming increasingly feasible [41,42]. In a
monitoring system for civil structures, sensors are primarily used to monitor three
types of parameters: loading sources such as wind, seismic, and traffic loading; environ-
mental effects including temperature, humidity, rain, and corrosion; and structural
responses such as strain, displacement, inclination, and acceleration.

Since the pioneer work done by [43], fiber Bragg grating (FBG) sensors have been
gain popularity in structural health monitoring because of the small size, light weight,
non-conductivity, fast response, resistance to corrosion, higher temperature capability,
immunity to electromagnetic noise and radio frequency interference, multiplexing and
wavelength-encoded measure and information. An interrogation unit is required to
address the large array of FBG sensors by using a single source. Various interrogation
techniques for FBG sensors were reviewed in [44,45] and introduced four standard
interrogation techniques: time-division multiplexing (TDM), spatial-division multiplexing
(SDM), frequency-division multiplexing (FDM), and wavelength-division multiplexing
(WDM). These interrogation techniques can be used alone or in combination with the
other techniques. Given that FBG sensors are very fragile in nature, sustainable encap-
sulation is required before such sensors are placed into a regular monitoring service.
Another attractive feature of FBG sensors is that they can serve as both the sensing
element and the signal transmission medium. A great number of successful application
examples in civil structures have been conducted (e.g. [44,46],).

Traditional displacement transducers include linear variable differential transformer,
laser transducers, and level sensing stations, which can only be used for relative
displacement measurement. Total stations provide absolute displacement measurement
but are unsuitable for long-term monitoring. An emerging solution is global positioning
systems (GPS). Although GPS was originally designed for navigation, the global coverage
and the continuous operation in all metrological conditions make it an efficient tool for
measuring both the static and dynamic displacement responses of structures. GPS is
currently able to record the displacements at rates of up to 20 Hz with an accuracy of
1 cm horizontally and 2 cm vertically. Its measurement accuracy will be improved in the
future with the further advancement. However, it also possesses disadvantages such as
partial limitation by multipath, cycle slips, high cost, and the requirement for good
satellite coverage [47].

5.2. Structural control

Structural control refers to the technology that protect structures against excessive
vibrations induced by dynamic loads (e.g., construction, traffic, wind, and earthquakes)
and thus prevent the damage to structural and non-structural components. In the last
several decades, considerable attention has been given to a variety of structural control
techniques operating in passive, active, semi-active or hybrid modes [48,49].

Passive structural control commonly adopts energy dissipation strategy through
various damping devices, such as friction dampers, metallic-yield dampers, buckling-
restrained braces, viscous fluid dampers, visco-elastic dampers, tuned-mass dampers,
shape memory alloy dampers, eddy-current dampers, and so on. Another strategy is to
reduce the seismic input energy using base isolation systems. Base isolation or seismic
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isolation works by shifting a short fundamental period that is located in the dynamic
excitation frequency range to a long fundamental period. Base isolation is usually used
in low- to medium-rise buildings and nuclear power plants for seismic resistant design.
However, base isolation systems are ineffective for wind-induced vibration mitigation
[50]. The passive structural control systems do not require any external energy supply.

Active control shows an excellent control performance in comparison with relatively
simple passive systems [48]. An active control system consists of a sensing system, control
actuators, and a centralized controller/computer. Feed-forward or/and feedback control can
be utilized in active structural control; however, feedback control is often preferable con-
sidering the difficulty in excitation measurement. Active control is often implemented by
external-powered hydraulic or electromechanical actuators that apply control forces to host
structures in a prescribed manner. A large power source is thus required for ensuring the
active control system for large-scale structures. The practically available power source and
limited peak control force required by active control systems may constrain its control
performance. The first application of active control to a full-scale building was conducted in
the Kyobashi Center, Tokyo, Japan, which was designed by Kajima Corporation in 1989 [51].
Two hydraulic activemass drivers (4.2 and 1.2 tons; approximately 1%of the structural mass;
one for lateral motion suppression; the other for torsional motion suppression) were
installed on the top floor of the 11-story structure. Although some other application cases
of active control systems have been implemented(mainly in Japan), the cost effectiveness
and reliability of the systems limit its wide spread acceptance in civil structures [52].

Semi-active control systems (Figure 4), which require relatively little external power and
provide high reliability, are proposed to address some limitations of the active control
systems. The semi-active control systems can be categorized into variable damping and
variable stiffness devices. The nature of a semi-active device is adaptively adjusted to be
optimal in real time based on the responses of structures or/and excitation. Variable
damping systems, including variable-orifice fluid dampers, controllable friction devices,
controllable fluid dampers, smart TMDs, and semi-active magneto-rheological (MR) fluid
or elastomer dampers, are popular in recent years for structural vibration mitigation.

Structure ResponseExcitation

SensorsSensors

Controller

Actuators

Feed-forward
Loop

Feedback
Loop

PED

Figure 4. Schematic of the operation of a semi-active control system [49].
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Variable stiffness devices or semi-active stiffness control devices work by tuning the stiffness
of structural elements, thereby avoiding the resonant-type motion under dynamic excita-
tions and reducing the input energy. Semi-active control systems do not add any mechan-
ical energy to the structure, and the bounded-input and bounded-output stability of the
system can be guaranteed [48]. Thus, they have received increasing interest because of their
potential for a robust, reliable, and low-power structural control.

The comparison among the three categories of vibration control technologies reveals
that a better control performance is often associated with higher complexity and low
reliability. It will be appealing in practical applications if the reliability of passive control
and the performance of active control can be achieved simultaneously. In the past
studies on active control, it has been noted that the linear quadratic regulator (LQR)
algorithm, which is a commonly adopted optimal control theory for active dampers, may
produce a damper force-deformation relationship with an apparent negative stiffness
feature that benefits control performance [53]. Thus, passive negative stiffness damper
(NSDs), whose force-deformation relationship is shown in Figure 5(a), may be able to
achieve control performance comparable to those of active dampers. Very recently, a
family of NSDs have been developed, including passive negative stiffness springs based
on the snap-through behavior of a pre-buckled beam, a passive negative stiffness
mechanism composed of pre-compressed springs, a friction pendulum sliding isolator
with a convex friction interface, and a magnetic NSD (MNSD) with several coaxially
arranged magnets [54], as shown in Figure 6. In addition to NSD, inerter dampers are
also recognized as another efficient vibration isolation technology. The force produced
by inerter is proportional to the relative acceleration between the device terminals [55].
Figure 5(b) shows the typical force-deformation relationship of an inerter damper, which
is similar to negative stiffness characteristics but is frequency-dependent. The inerter can
be made mechanically through rack-and-pinion [55] or ball-screw, as shown by Figure 7
Some researchers also developed some tuned inerter dampers by emulating the prin-
ciple of TMD, including tuned viscous mass dampers [57,58], tuned mass-damper-inerter
systems (TMDI) [59] and tuned inerter dampers (TID) [60]. The main advantage of inerter
is that the inerter can be designed to have an apparent mass significantly larger than its

(a) NSD (b) Inerter damper

x

FLow frequency
High frequency

x

F

Figure 5. Force-displacement of NSD and inerter damper. (a) NSD, (b) Inerter damper.
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actual mass. This advantage of inerter offers the potential for much higher mass ratios
than those feasible for TMDs [60].

5.3. Energy harvesting

Energy harvesting is recognized as an emerging and promising technology in the next
few decades [61]. Solar, wind, radio-frequency(RF) waves, and structural vibrations can
provide green, sustainable, reliable and localized energy sources to low-power devices
or systems, such as wireless sensors networks, semi-active controllers, alarm systems, etc.
For example, Spencer et al. [62] proposed solar and wind energy harvesting as the
power supplies for 113 wireless sensors in the smart monitoring system for Jindo Bridge
in South Korea. The energy-harvesting performance is monitored by the wireless sensors
themselves, which enables sensing nodes to manage the sensing scheme automatically

(a) a pre-buckled beam      
with snap-through behavior

(b) a pre-compressed spring

(c) a friction pendulum isolator sliding 
on a convex friction interface    

(d) a magnetic negative stiffness
mechanism

x
x

F

G

x

N

S

N

S

N

S

Static 

magnet

Static 

magnet

Moving 

magnet

x

Figure 6. Representative negative stiffness mechanisms. (a) a pre-buckled beam. (b) a pre-compressed
spring with snap-through behavior. (c) a friction pendulum isolator sliding. (d) a magnetic negative
stiffness on a convex friction interface mechanism.

(a) rack-and-pinion inerter

rack pinions

Damper end Damper end

(b) Ball screw inerter

nut screw

Damper end Damper end

flywheel

Figure 7. Representative inerter mechanisms [56]. (a) rack-and-pinion inerter. (b) Ball screw inerter.
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with respect to battery voltage status. Hassan et al. [63] proposed an energy-harvesting
wireless crack monitoring sensor powered by a solar energy harvester. A comprehensive
taxonomy of different energy harvesting sources for wireless sensor power supply has
been presented in [64].

Meanwhile, vibration-based energy harvesting is one of the most rapidly growing
research area [65–67].A typical configuration is a standard linear or nonlinear oscillator,
in which part of the damping energy is converted into electrical energy by appropriate
transduction mechanisms, including, but not limited to, piezoelectric, electromagnetic and
electrostatic transductions [68], as shown in Figure 8. Piezoelectric transducers transform
mechanical strain into electrical charge, known as direct piezoelectric effect [69].
Electromagnetic transducers generate voltage due to a relative motion between magnets
and coils[70]. Electrostatic transducers are to utilize the variation in capacitance that can
cause voltage increment in a constrained charge system or charge increment in a con-
strained voltage system [71]. The corresponding damping characteristics of these three
transducers are different as well. More detail information about conversion mechanism are
given in [72], and related derivation for output powers and efficiencies are given by [73].

Ambient vibrations, such as vibrations of mechanical and civil structures induced by
various dynamic loads, provide energy sources for vibration-based energy harvesting.
A special assessment of energy harvesting potential from a variety of vibration sources
has been presented in [74]. Among them, civil structural vibration shows a relatively
high feasibility because dynamic loadings, such as wind, earthquake, waves, and
traffics, always result in relatively high structural vibration, especially for large-scale
flexible structures. For example, a case study [75] shows that a power of more than
85kW could be harvested in buildings using an appropriate method. Recently, Tang
and Zuo [76] utilized a regenerative TMD to harvest vibration energy from a three-
storey building prototype, about 60mW energy was harvested when a proper harmo-
nic force was applied to the prototype building. Zhu et al. [77] developed a dual-
function EM device for simultaneous vibration control and energy harvesting. Later on,
a self-powered vibration control and monitoring system (Figure 9) was developed
based on energy-harvesting dampers and wireless sensors [78]. The effectiveness of
energy-harvesting dampers was further illustrated in high-rise buildings during earth-
quake and stay cable vibration mitigation under wind loads [79,80]. In addition,
Peigney and Siegert [81] employed a cantilever piezoelectric harvester to harvest
traffic-induced vibration energy in a bridge. A relatively low mean power of around
0.03mW could be harvested and a controlled voltage ranging from 1.8V-3.6V was
observed. Garuso et al. [82] successfully harvested as high as about 600W power
from wind-induced bridge vibration through an adaptive tuned-mass energy harvester
under a relatively high wind speed.

5.4. National science foundation (NSF) programs and projects

The NSF [www.nsf.gov] sensors program funds fundamental research on sensors and
sensing systems. Such fundamental research includes the discovery and characterization
of new sensing modalities, fundamental theories for aggregation and analysis of sensed
data, new approaches for data transmission, and for addressing uncertain and/or partial
sensor data. Other related programs are: Biosensing, Biophotonics or Biomedical
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Engineering program, and also for areas of biosensing, sensors and actuators in the
Electronics, Photonics, and Magnetic Devices program or the Communications, Circuits,
and Sensing-systems program.

Examples of NSF active projects on sensors and smart materials:

(1) 4D Printing with Photoactive Shape-Changing Polymer; Award Number:
1,538,318; Principal Investigator: Jack Zhou; Co-Principal Investigator: Haifeng
Ji; Drexel University.

(2) Development of Low-Cost and Portable Semiconductor Laser Based Evanescent-
Wave THz Sensors; Award Number:1,437,168; Principal Investigator: Sushil
Kumar; Lehigh University.

(3) Optical Carrier Based Microwave Interferometry for Spatially Continuous
Distributed Monitoring of Structural Health; Award Number:1,359,716; PI: Hai
Xiao; Clemson University.

(4) CAREER: Collaborative Modeling for Distributed Sensing and Real-time Intelligent
Control to Improve Battery Manufacturing Productivity and Efficiency; Award
Number:1,351,160; Principal Investigator: Qing Chang; SUNY at Stony Brook.

(5) GOALI/Collaborative Research: Self-powered Dual-mode Piezoelectric Resonant
Pressure/Temperature Sensors for Oil and Gas Field Explorations; Award
Number:1,529,842; Principal Investigator: Lei Zuo; Virginia Polytechnic Institute
and State University.

(6) Optimal Control of a Swarm of Unmanned Aerial Vehicles for Traffic Flow Monitoring
in Post-disaster Conditions; Award Number:1,636,154; Principal Investigator: Christian
Claudel; Co-Principal Investigator: Stephen Boyles; University of Texas at Austin.

(7) CPS/Synergy/Collaborative Research: Cybernizing Mechanical Structures through
Integrated Sensor-Structure Fabrication, Award Number:1,545,038; Principal
Investigator: Yu Ding; Texas A&M Engineering Experiment Station.

(8) CAREER: Decentralized Monitoring and Control for Large-Scale Smart Structures
with Wireless and Mobile Sensor Networks; Award Number:1,150,700; Principal
Investigator: Yang Wang; Georgia Tech Research Corporation.

(9) Printing Embedded Sensors for Turbine Blades by Electro-spraying Polymer
Derived Ceramics; Award Number:1,301,099; Principal Investigator: Linan An;
University of Central Florida.

Figure 9. Configuration of self-powered vibration control and monitoring system [78].
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(10) Spectral Multiplexing of Fiber Bragg Grating Sensors for Low-Power Optical
Sensor Networks; Award Number:1,536,936; Principal Investigator: Mark
Pankow; North Carolina State University.

(11) EAGER: Interaction of Smart Materials for Transparent, Self-regulating Building Skins
Award Number:1,548,243; Principal Investigator: Zofia Rybkowski; Co-Principal
Investigator: Negar Kalantar, Tahir Cagin, Ergun Akleman, Terry Creasy;Texas A&MU.

6. Conclusions

An overview on converging technologies that are the primary drivers of the 4th
Industrial Revolution is presented, followed by new developments and state of the art
in advanced manufacturing, smart structures, nano-, information-technologies and
sciences. Convergence of these transformative technologies is discussed, including
advanced manufacturing, nano mechanics/materials, sensors, smart structures/materials,
energy harvesting, multi-scale problems and simulation methods. The authors would
like to thank the research communities for their input and feedback.
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