
1

An ACO-Based Tool-Path Optimizer
for 3D Printing Applications

Kai-Yin Fok, Student Member, IEEE, Chi-Tsun Cheng, Member, IEEE, Nuwan Ganganath, Member, IEEE,
Herbert Ho-Ching Iu, Senior Member, IEEE, and Chi K. Tse, Fellow, IEEE

Abstract—Layered additive manufacturing, also known as 3D
printing, has revolutionized transitional manufacturing processes.
Fabrication of 3D models with complex structures is now feasible
with 3D printing technologies. By performing careful tool–path
optimization, the printing process can be speeded up, while the
visual quality of printed objects can be improved simultaneously.
The optimization process can be perceived as an undirected
rural postman problem (URPP) with multiple constraints. In this
paper, a tool–path optimizer is proposed, which further optimizes
solutions generated from a slicer software to alleviate visual
artifacts in 3D printing and shortens print time. The proposed
optimizer is based on a modified ant colony optimization (ACO),
which exploits unique properties in 3D printing. Experiment
results verify that the proposed optimizer can deliver significant
improvements in computational time, print time, and visual
quality of printed objects over optimizers based on conventional
URPP and ACO solvers.

Index Terms—Layered additive manufacturing, arc-routing,
rural postman problem, ant colony optimization, tool–path opti-
mization

I. INTRODUCTION

IN a typical fused deposition modelling (FDM) based 3D
printing process, a computer–aided design (CAD) file of a

3D model is fed into a slicer software for breaking it down
into numerous thin layers. Each layer of the model will then be
decomposed into print segments and further be converted into
control codes for machining motions of the mechanical parts in
a FDM machine. Printing nozzles of most off–the–shelf FDM
machines move on the surface of their print beds, while their
extruders control the flow of filament. Molten filaments, which
are usually made of polylactic acid (PLA) or acrylonitrile
butadiene styrene (ABS), will be deposited via the printing
nozzle onto the print bed to construct the model layer by layer.
To print a segment, the nozzle first moves to the start point
of the segment and then traverses to its end. Meanwhile, the

Manuscript received July 10, 2017. Accepted for publication December 6,
2018. This work is jointly supported by the Department of Electronic and
Information Engineering, Hong Kong Polytechnic University, the School of
Electrical, Electronic and Computer Engineering, the University of Western
Australia, and the Department of Manufacturing, Materials and Mechatronics,
RMIT University.

Copyright c© 2018 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Kai-Yin Fok and Chi K. Tse are with the Department of Electronic and
Information Engineering, the Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong (email: kyfok@ieee.org; michael.tse@polyu.edu.hk).

Chi-Tsun Cheng is with the Department of Manufacturing, Materials and
Mechatronics, RMIT University, 124 La Trobe St, Melbourne VIC 3000,
Australia (email: ben.cheng@rmit.edu.au).

N. Ganganath and H.H.C. Iu are with the School of Electrical, Electronic
and Computer Engineering, the University of Western Australia, Crawley, WA,
Australia (email: nuwan@ganganath.lk; herbert.iu@uwa.edu.au).

extruder injects filament toward the reservoir of the nozzle and
creates the required pressure. Molten filament is then pushed
out of the nozzle and forms the print segment. Before the
nozzle reaches the end of the segment, the extruder reduces
the pressure gradually such that no extra filament is deposited
beyond the end of the current segment. The nozzle then moves
to the start point of the next segment. The process repeats until
all print segments on the current layer have been traversed.
The print bed is then descended and the printing process of
the next layer proceeds.

During a printing process, most of its print time is spent
on moving the printing nozzle along print and non–print
segments, which are also known as transitions. Transitions
are movements of the printing nozzle among disjoint print
segments. While the time spent on traversing print segments
cannot be reduced as the length and velocity for the printing
nozzle to traverse each print segments are predefined, the total
print time can be shortened by having shorter transitions.

Apart from object print time, visual quality is also regarded
as an important criteria in 3D printing. One of the major
causes for a degradation in visual quality is the existence
of strings. Strings are referring to the residual material that
remains on the surface of a printed model. Since a 3D model
is constructed layer by layer, even if the model has a single
continuous structure in the 3D space, disconnected regions can
be found on some of its layers depending on its shape and
orientation while printing. Whenever the nozzle hops across
boundaries of discrete regions, excess filament could leak from
the nozzle unintentionally and form strings on the model.
Typical 3D printers alleviate the strings issue by performing
retraction, which is a relatively time consuming process as
it creates the required suction at the nozzle by using its
extruder to withdraw filament from the reservoir. Nevertheless,
as observed in our experiment results in Fig. 1(c), such method
alone is insufficient in tackling the strings issue.

Results shown in Fig. 1(c) were obtained using an ordinary
domestic 3D printer [1] and a popular slicer software [2]. The
printer is carefully calibrated to yield high structural accuracy
and surface texture resolution (see. Fig. 1(b)). However, as
shown in Fig. 1(c), traces of strings can still be observed even
when retraction is enforced. Excessive strings appear between
two disjoint parts on the same layer suggest there are rooms
for further optimizations.

In this work, an ant colony optimization (ACO) based
tool–path optimizer for 3D printing applications is proposed
to shorten printing processes and improve visual quality of
printed models simultaneously. The proposed optimizer accel-

The following publication Fok, K. Y., Cheng, C. T., Ganganath, N., Iu, H. H. C., & Chi, K. T. (2019). An ACO-Based Tool-Path Optimizer for 3-D Printing
Applications. IEEE Transactions on Industrial Informatics, 15(4), 2277-2287 is available at https://doi.org/10.1109/TII.2018.2889740.

This is the Pre-Published Version.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

2

erates printing processes by eliminating unnecessary move-
ments of the printing nozzle and alleviates the strings issue in
3D printing by only allowing the nozzle to hop across bound-
aries of disjoint parts when necessary. Section II discusses
some existing works which have been done on related topics.
Section III provides the problem formulation. The proposed
tool–path optimizer is introduced in Section IV. The problem
solvers utilized in the proposed optimizer are introduced in
Section V. A modified ACO optimizer is proposed in this
paper, which exploits the unique characteristics in 3D printing.
The modifications are elaborated in the same section. The
proposed optimizer was evaluated using both simulations
and actual 3D printing experiments. Results are presented,
analyzed, and discussed in Section VI. Concluding remarks
are given in Section VIII.

II. LITERATURE REVIEW

Accuracy and surface finishing of printed objects have
always been important criteria in additive manufacturing. In
[4], Armillotta studied the surface quality of textured printed
objects and provided guidelines on selecting suitable object
scale and orientation without compromising the texture qual-
ity. Agarwala et al. [5] further considered the precision of
internal structure in fabricating ceramic and metal printed
components. Their physical properties were also studied. A
similar study was conducted by Lim et al. [6] on concrete
printing in construction applications. In contrast to subtractive
manufacturing, interiors of 3D printed objects are normally
filled with infilling segments. Jin et al. [7] tried to improve
printing quality and accuracy by generating parallel infilling
segments with adaptive separations. Recently, Freens et al.
[8] proposed a method for optimizing the production planning
of a 3D printing factory. They formulated the problem as an
extension of a bin packing problem with lateness and special
requirements from the printed models. Simulation results show
an increase of 10% in printing capacity. Furthermore, deciding
filling patterns is crucial in additive manufacturing as well.
In general, a filling pattern with a higher density usually
delivers higher physical strength but requires more material
and extended model build time. Studies were conducted to
utilize bio-inspired filling patterns for generating tool-paths of
3D models, where bone-like porous and honeycomb structures
were investigated in [9] and [10], respectively.

Throughout the years, heuristic and meta–heuristic algo-
rithms have been developed and widely adopted to solve
combinatorial optimization problems in industrial applications
[11]–[16]. Yahyaoui et al. [13] proposed a heuristic for solving

(a) CAD model (b) Printed model (c) Strings
Fig. 1: (a) CAD of the model “dragon 65 tilted large” [3].
(b) The model printed together with the supporting structure.
(c) Strings found on the printed model.

a job–shop scheduling problem, which can yield a lower num-
ber of iterations and thus a shorter processing time. Watanabe
et al. [14] considered the stack palletizer scheduling problem,
which is NP–hard. In their work, a genetic algorithm (GA)–
based solver was proposed. In [15], Lee et al. proposed an
ACO–based control algorithm to optimize sensing schedules
of individual sensors in wireless sensor networks. A hybrid
algorithm combining ACO and particle swarm optimization
(PSO) was proposed for robot motion control in [16].

Thompson and Yoon [17] developed a path planning algo-
rithm for minimizing the amount of material wasted during
a aerosol printing process. Two motion control methods were
utilized in their work, including linear segments with parabolic
blends and minimum time trajectory. Wah et al. [18] consid-
ered the optimization problem in layered manufacturing and
tried different approaches to reduce time spent on transitions.
In [19], the author demonstrated the possibility to tackle an
rural postman problem (URPP) with ACO by first transforming
it into a traveling salesman problem (TSP). In [20], Tewolde
and Sheng evaluated the performance of ACO and GA in robot
tool–path integration problems and showed that optimizers
with ACO can yield solutions with higher quality. Researches
[20]–[22] have been conducted to analyze the performance
of different algorithms which are frequently used in solving
TSP. The results concurred that, in general, solvers based on
ACO can deliver desirable results. The selection of ACO over
other meta-heuristics is sometimes more related to the problem
formulation and the operations of the algorithm itself. Based
on that, this work focuses on developing an ACO–based solver.

In the current work, a tailor–made ACO–based solver and
a refinement process are proposed to solve the URPP in 3D
printing tool–path optimization processes. The proposed solver
is implemented with parallel processing capabilities to further
improve its performance.

Frederickson’s algorithm is a well–known approach for
solving URPP and has an approximation factor of 1.5 [23].
It is similar to the approximation algorithm proposed by
Christofides [24] that aims for TSP. Helsgaun’s Lin-Kernighan
heuristic is one of the state-of-the-art methods for finding
optimal or sub-optimal solutions of TSP [25]. The method
can successfully find the optimal solutions for many TSP
instances up to medium scale. However, it is not implemented
in this work due to its relatively high computational burden,
which might prolong the whole object fabrication process
rather than contributing any saving. Groves and Vuuren [26]
proposed heuristic–based algorithms for general URPP. Their
simulation results show that their algorithms can provide
decent solutions to RPP with relatively low computational
complexities. Recently, Fok et al. formulated the nozzle mo-
tion planning problem as a TSP and proposed a relaxation
scheme for shortening the processing time without causing
significant impact to the model print time [27]. However, dif-
ferent from ACO, Christofides’ and Frederickson’s algorithms
cannot be benefited from parallel processing. Nonetheless, for
comparison purposes, both algorithms were implemented and
evaluated in the later sections of this paper.

3

III. PROBLEM FORMULATION

In this section, the formulation of the 3D printing tool–path
optimization problem is presented. To print a 3D object, a
massive number of print segments is utilized to assemble its
structure. The printing nozzle traverses all print segments and
deposits molten plastic filament onto them.

The tool–path integration problem is defined as to find a
path for the nozzle to traverse all print segments in a 3D
model. The positions and orientations of the print segments are
predefined as well as the initial position of the printing nozzle.
While finding a fast printing path for the nozzle, a constraint is
imposed in the optimization process to discourage the nozzle
from hopping among shells (i.e. boundaries of disjoint regions)
on the same layer of the model.

The optimization problem is a tool path optimization with
additional constraints. It can indeed be considered as an
alternated version of URPP with constraints. Let G = (V,E)
be a connected and undirected graph where V is a vertex
set and E is an edge set. The objective of an URPP solver
is to find a fast tour traversing a set of required edges Er,
where Er ⊂ E. An edge is formed by two extremities, i.e.
(i, j), where i ∈ V, j ∈ V , and i 6= j. A cost matrix is
associated with all edges in E. The time cost of traversing
the edge (i, j) is expressed as c(i,j), where c(i,j) = c(j,i)
since it is symmetric, which means the costs between any two
extremities are the same from either direction.

The formulation of the URPP and other notations [28] are
elaborated as follow. A URPP can be solved by finding a set
of edges Ep of minimum total cost, such that Er ∪ Ep is
Euler and Ep ⊂

{
(i, j) : i ∈ V, j ∈ V, i 6= j

}
. Therefore,

a tour that traverses all edges in Er can be generated using
the set Er ∪ Ep. Furthermore, let Ey(i) be the set of edges
that intersect at the extremity i. Consider Ey(i) and a set of
vertices S ⊂ V . Let Ωy(S) be the cutset of S with respect to
Ey(i). Therefore, Ωy(S) are the edges in Ey(i) such that one
extremity of each edge is in S and the other is in V \ S. Let
xe be the count of the edge e in Ep. The URPP can then be
formulated as follows.

Minimize ∑
e∈ED

cexe, (1)

subject to: ∑
e∈ΩD(v)

xe ≡ |Er(v)| mod 2, v ∈ V, (2)

∑
e∈ΩD(S)

xe ≥ 2, S ⊂ V, Ωr(S) = φ, (3)

xe ∈ Z : xe ≥ 0, e ∈ Ed. (4)

Here, constraint (2) establishes the Euler property of Er∪Ep
while connectivity is guaranteed by constraint (3).

In this work, tool-path optimization is transformed into a
URPP with additional constraints. The tool–path optimization
problem is defined on an undirected and connected graph G =
(V,E), where V is the vertex set and E is an undirected edge

set which contains a subset Er of the required edges, where
|Er| = n. Here, a segment (vi, vj) is defined as a directed path
which begins with vertex vi and ends with vertex vj , and vice
versa. The required edges are the print segments. An edge is an
undirected connection that connects two vertices. The vertex
set V contains all the vertices associated with edges in Er and
an extra vertex vst which is representing the starting location
of the nozzle. In order to adopt a URPP solution for a nozzle
path planning problem, a virtual segment is created by using
the initial position of the printing nozzle as its two extremities.
This virtual segment is therefore expressed as (vst, vst) and it
is considered as a required edge. After a solution is obtained
by using URPP solvers, the tour can be transformed into a
direct route for the printing nozzle by breaking the virtual
segment (vst, vst), such that the resultant path starts with the
predefined starting location of the printing nozzle and all the
print segments are visited. Note that different vertices can be
collocated as multiple segments can be connected to the same
spot. Therefore

|V | = 2n+ 1.

For typical 3D printers, the time required to traverse a print
segment is independent of its connecting transitions. In all
feasible print plans, filament must be deposited onto all print
segments once, the total time required to traverse all print
segments can be considered as a constant. Because of that,
the duration for traversing print segments can be neglected in
the optimization process.

A time–cost function t is associated with all edges in E.
Here, t(vi, vj) is a time–cost function to calculate the time
cost for traversing a transition (vi, vj). For typical 3D printers,
t(vi, vj) is associated with two components, such that

t(vi, vj) = td(vi, vj) + tr(vi, vj).

The first component td(vi, vj) denotes the time required for
performing a transition, which can be calculated with a given
motion model of the nozzle. The second component tr(vi, vj)
represents the time required by the extruder to perform a
retraction process. Note that the cost function is symmetric,
such that t(vi, vj) = t(vj , vi), ∀vi, vj ∈ V .

In this work, the motion model proposed in [27] is adopted.
While traversing a segment, the velocity of a nozzle is
allowed to be changed following the given acceleration and
deceleration values. It is assumed that the nozzle can stop
precisely at the instructed coordinates and the corresponding
time cost can be calculated with triangular and trapezoidal
velocity profiles, which will be elaborated shortly. Let a1 and
a2 be the maximum acceleration and deceleration values of the
printing nozzle, respectively, and let the maximum velocity
for the nozzle to traverse a transition be vmax. In order to
minimize the time cost, the nozzle tries to accelerate as much
as possible when going through a transition. The minimum
distance required for the nozzle to reach its maximum velocity
and then to stop precisely at the instructed coordinates is
calculated as

dmin =
v2

max

2

(
1

a1
− 1

a2

)
.

4

Let d be the length of a transition segment. The time cost
required by the nozzle to traverse a transition can be denoted
as

td =

{√
2d
(

1
a1
− 1

a2

)
if d ≤ dmin,

vmax

a1
− vmax

a2
+ d−dmin

vmax
otherwise.

Furthermore, the time spent on preforming a retraction
operation is denoted as tr. In general, retraction involves
withdrawing filament and adjusting the level of the print bed.
In this work, tr is assumed to be constant.

A feasible solution to a tool–path optimization problem is a
directed path that leads the printing nozzle through all required
edges at least once starting from a predefined starting vertex.
Meanwhile, the ending vertex is not necessary to be equivalent
to the starting vertex. The nozzle does not return to its starting
location. The nozzle stops or moves to next layer right after
it traverses all required edges on the current layer.

IV. PROPOSED TOOL–PATH OPTIMIZER

In this paper, a 2–layers optimizer is proposed to solve the
tool–path optimization problem in additive manufacturing. The
proposed optimizer further utilized a solver based on ACO, a
nature inspired meta–heuristic to handle TSP and URPP in the
optimization process. The proposed optimizer aims to improve
the visual quality by alleviating the strings phenomenon on
printed models. Meanwhile, the optimizer also improves the
efficiency of the printing process by minimizing the time spent
on traversing transitions.

The proposed optimizer begins with the input of print
segments that generated by a slicer software. As mention
in Section II, in this paper, the process for generating print
segments from CAD model is handled by the slicer software
and it is considered as out of scope. The proposed optimizer
then searches for a desirable route to traverse all given print
segments in the model. Note that during the search, to ensure
the integrity of the printed model, none of the original print
segments is reoriented or skipped. Therefore, apart from alle-
viating the strings issue, accuracy and the physical properties
of the printed model should not be affected by the proposed
optimizer in general.

The proposed optimizer has a 2–layer architecture, which is
illustrated in Fig. 2. It takes a sliced model as its input. Each
sliced layer is then further dissected into disjoint parts based on
their shells which will then be optimized individually. Details
on the designs and the operations of the proposed optimizer
are elaborated as follows.

A. Parts Visiting Sequence

Every time when the print nozzle hops between disjoint
parts, strings could be generated. Therefore, the proposed
optimizer aims to suppress the printing nozzle from conducting
unnecessary hoppings among shells. It searches for a fast path
to traverse all isolated parts on the layer one by one which
does not cross the boundary of a disjoint part until all print
segments in that part are deposited.

To find such a path, the proposed optimizer transforms the
problem into a TSP by conducting the following steps. Each

Read all print segments on a layer

Dissect into separated parts according
 to their contours

If more than
one dissected

part

Refine the printing path to suppress the printing
nozzle from hopping across shells on the layer

Search for a path with the minimum cost to traverse
all print segments within each dissected part

Search for a path with the minimum cost to traverse
all parts and the start vertex of the layer

If all layers
are optimized

The optimized
printing path

A sliced
model

S
av

e
th

e
cu

rr
en

t l
ay

er
 a

nd
 m

ov
e

to
 th

e
ne

xt
 la

ye
r

Fig. 2: The workflow of the proposed optimizer.

disjoint part is considered as a single node. The time–cost
between two nodes is estimated using the shortest distance
from any two print segments from the two parts involved. An
extra node is then added which represents the starting location
of the nozzle for the current layer. Based on that, the problem
becomes finding a fast path that visits all nodes exactly once.
The result can be obtained using a TSP–solver, which will be
introduced in the next section.

After finding a fast parts visiting sequence, all disjoint parts
are connected with a route. An illustrative example is shown in
Fig. 3, which has 18 parts connected with transitions rendered
in red lines. The two vertices in each part that are connecting
to their adjacent parts on the visiting sequence are denoted as
the local start and end points of the part under consideration.
These two vertices are used in the next stage when optimizing
the printing path inside each part.

B. Print Segments Visiting Sequence

The proposed optimizer considers the printing path for each
isolated part separately. The optimizer begins with forming a
virtual segment between the local start and end points that
obtained from the previous stage. Hence, the problem becomes
finding a fast path traversing all required segments, including
the print segments and the virtual segment inside the part,
which is an URPP. The optimizer utilizes an URPP–solver to
search for a tour that accomplishes the above condition. The

5

Fig. 3: An illustration of a layer of the model “3DHackerTest”
[3]. The black lines represents the print segments. Interiors of
each part is shaded in grey color. The red lines represent the
transitions that connect disjoint parts.

proposed ACO–based URPP solver and other solvers under
test will be introduced and explained in the next section. After
obtaining a tour that traverse all the required segments, a
directed path, that begins and finishes at the given local start
and end points correspondingly, is constructed by breaking the
virtual segment.

C. Refinement Process

A refinement process is then executed on the directed path
of each disjoint part obtained above to stop the nozzle from
hopping across its shell, which is common for concave parts
or parts with hollow structures. The refinement process in
the proposed optimizer detects and replaces these unnecessary
shell–crossing transitions with the fastest consecutive transi-
tions that traverse inside the part. Conventional path finding
algorithms [29] can be used to achieve such a goal. With the
results obtained from the process mentioned in Sections IV-A,
IV-B, and IV-C, printing paths of disjoint parts on the current
layer can be integrated into a single route.

V. PROBLEM SOLVERS

A. Christofides’ and Frederickson’s Algorithms

Christofides proposed a polynomial time algorithm for solv-
ing TSP in [24]. This deterministic algorithm is proven to have
an approximation factor of 1.5 in solving TSP [24]. Later,
Frederickson’s algorithm [23] was proposed for solving URPP.
Many similarities can be observed between Christofides’ al-
gorithm and Frederickson’s algorithm. They both share three
major procedures in finding a solution, namely, constructing a
minimum spanning three (MST), performing a minimum per-
fect matching, and shortcuts searching. These two algorithms
are utilized as references in the performance evaluation section
of this work. Due to their similarities, only Frederickson’s
algorithm is explained below. Readers who are interested in
Christofides’ algorithm may refer to [24].

Frederickson’s algorithm begins with a given undirected and
connected graph G = (V,E) and a set of required edges Er ∈
E. A MST is then constructed to connect all the edges in Er.
Those new edges introduced in the MST construction process
form a new set Emst. A minimum perfect matching is then
conducted on the sumset Er + Emst to connect vertices with
odd degrees. Those extra edges added in the matching process
then form another new set Ematching. An Eulerian tour can then
be found in the sumset Er +Emst +Ematching. Consecutive edge
pairs on the tour, whose edges are not in Er, are replaced with
shortcuts to further optimize the tour.

B. Ant Colony Optimization

ACO is a well–known meta–heuristic which is inspired by
the behaviour of ants. It was first proposed to solve TSP
[30]. When solving TSP, each artificial ant searches for a path
composed of consecutive edges, which will then be evaluated.
Pheromone is then deposited on paths discovered by the ants.
The amount of pheromone deposited on a path is proportional
to its evaluation result or inversely proportional to its cost. As a
result, a pheromone table is constructed. The pheromone level
associated with an edge (i, j) is indicated as τi,j , given that i
and j are the two vertices of that edge. In the next iteration,
the whole process repeats. However, ants will then make
their search decisions based on both heuristic and pheromone
information. In general, ants tend to choose an edge with a
higher pheromone level. The probability of choosing a path
(i, j) is expressed as

pki,j(t) =
[τi,j(t)]

α[ηi,j]
β∑

l∈Nk
i

[τi,l(t)]α[ηi,l]β
. (5)

Given that the k-th ant is currently at vertex i while con-
structing its path. The heuristic value between two vertices vi
and vj is denoted as ηi,j . Here, ηi,j is inversely proportional
to the distance between vi and vj . Furthermore, Nk

i denotes
a vertex set that includes all vertices which can form valid
paths with vertex i and have not been visited by the k-th ant
yet. Variables α and β are control parameters used in generic
ACO that can affect the quality of solutions generated. Further
information on α and β can be found in [30]. At the end
of each iteration, the levels of pheromone on all edges are
reduced in an operation called evaporation. The pheromone
level τi,j at the end of the t iteration is updated as

τi,j(t+ 1) = (1− ρ)τi,j(t) +

m∑
k=1

∆τki,j(t).

Here, parameter ρ controls the rate of pheromone evaporation,
where ρ ∈ (0, 1). Here, m is the number of ants. The amount
of pheromone deposits by the k-th ant on edge (i, j) is
∆τki,j(t). The value of ∆τki,j(t) is proportional to the quality
of the path, or inversely proportional to the cost of the path.
As ACO iterates, pheromone concentrations on certain edges,
which are associated with paths with good quality, will remain
high. In this work, (1) is utilized as the fitness function for
ants to evaluate the quality of a path.

C. Modified Ant Colony Optimization

In the proposed modified ACO, a stochastic-based seg-
ment integration process is implemented and integrated into
the generic ACO solver. In such process, segment-transition-
segment (STS) groups that are more preferred by ants will be
integrated to avoid further changes.

During a search process in ACO, frequently visited STS
groups deposited with high concentration of pheromone are
very likely to be included in good solutions. From our studies,
STS groups found in print plans are usually associated with
short transitions. The rationales behind such observation are
that as print segments are normally expressed as straight
lines in typical 3D printing applications, curvy contours are

6

constructed using multiple segments chained up with short
transitions. Therefore, it is common for print plans to comprise
large volumes of tiny transitions and lead to an unnecessary
big search space.

The segment integration process begins at the end of each
iteration of the ACO process. With the best solution obtained
so far, STS groups associated with such solution are analyzed
and selected to be integrated through a stochastic mechanism.
Results are then used to update and shrink the search space.
Ants in the following iterations will then proceed their search
on the trimmed search space.

Details of the process are elaborated as follows. At the end
of an iteration, the best solution discovered so far, namely Sa,
is expressed as

Sa =
〈
vst, va1 , · · · , va2i−1

, va2i , va2(i+1
, va2(i+1)+1

, · · · , va2n
〉
.

Here, Sa contains n transitions to connect all n print seg-
ments to vst. The i-th and (i + 1)-th print segments are
(va2i−1 , va2i) and (va2(i+1)

, va2(i+1)+1
), respectively. Further-

more, (va2i , va2i+) represents the i-th transition, which con-
nects the i-th and (i+ 1)-th print segments.

In iteration t, the pheromone and heuristic values of the i-
th transition in the STS group joining the i-th and (i + 1)-th
segments are τ2i,2i+1(t) and η2i,2i+1, respectively. These two
values together with the control parameters α and β form an
evaluation function of the i-th transition and it is expressed
as [τ2i,2i+1(t)]α[η2i,2i+1]β . STS groups with high evaluation
values will have higher probabilities to be integrated in the
process.

The probability for a STS group, which contains the i-th
transition, to be integrated is expressed as

p(i,i+1)(t) = min

(
θn[τ2i,2i+1(t)]α[η2i,2i+1]β∑n
j=1[τ2j,2j+1(t)]α[η2j,2j+1]β

, 1

)
.

The physical meaning of θ is the expected ratio of STS groups
to be integrated at the end of the current iteration, where θ ∈
[0, 1]. Note that the expected number of STS groups to be
integrated at the end of the t–iteration is calculated as

n∑
i=1

p(i,i+1)(t)

=

n∑
i=1

[
min

(
θn[τ2i,2i+1(t)]α[η2i,2i+1]β∑n
j=1[τ2j,2j+1(t)]α[η2j,2j+1]β

, 1

)]
.

Since θ ∈ [0, 1], we have
n∑
i=1

p(i,i+1)(t)

≤
n∑
i=1

(
θn[τ2i,2i+1(t)]α[η2i,2i+1]β∑n
j=1[τ2j,2j+1(t)]α[η2j,2j+1]β

)
= θn.

Therefore, the expected number of STS groups to be integrated
is upper bounded by θn. With the increase of θ, it is expected
that more STS groups will be integrated. Print plans usually
comprise segments located close to each other. Due to such
property, their corresponding STS groups are often associated
with high pheromone and heuristic values, which are very

likely to be selected by ants as part of the final solution. The
proposed method tries to integrate those segments and shrinks
the problem scale as the optimization process iterates. With
the reduction in the problem size, ants can perform a more
thorough search in the shrunk search space which helps to
find better solutions when comparing to generic ACO using
the same amount of ants. Besides, the value of θ can also
affect the computational time of the proposed optimizer. A
high value of θ leads to more STS group integrations and
thus shrinks the search space more rapidly. If the value of
θ = 0, the behavior of the proposed ACO solver is identical
to the generic ACO solver. On the contrary, if θ → 1, it can
be expected that a high proportion of STS groups will be
integrated. It is possible that some good STS groups could
be eliminated unintentionally during the process which will
result in a degradation of solution quality. According to our
empirical data, the proposed method can yield desirable results
when θ ∈ [0.2, 0.4].

VI. EXPERIMENTS

A. Experiment Settings

Experiments were conducted to evaluate the performance
of the proposed optimizer and the modified ACO. In the
experiments, a slicer software Cura–15.04.6 [2] was utilized
to slice 3D models with its default settings. Furthermore,
retraction was enabled, vertical hop and retraction length are
0.075 mm and 4.5 mm, respectively. The slicer used 10%
filling density in the infilling process. In the experiments, 8
CAD models [3], [31] with different unique characteristics
were selected for testing. It is worth to note that, for some
of the models, the number of segments on a layer are larger
than seven thousand. Different path optimization modules were
utilized for comparison purposes. Cura is integrated with a
greedy–based optimizer [2], which is used as the reference
in the evaluations. In the experiments, three optimizers were
utilized separately to further optimize print plans obtained
from Cura, including

1) Christofides’ and Frederickson’s algorithms (also re-
ferred to CF here onwards),

2) a generic ACO, and
3) the proposed modified ACO.
For 1), Christofides’ algorithm is employed in solving the

TSP in arranging parts visiting sequence and Frederickson’s
algorithm is utilized in solving the URPP in arranging print
segments visiting sequence. For 2) and 3), the same optimizer
was employed in solving both TSP and URPP in the whole
optimization process. In the experiments, the estimated print
times of print plans were analyzed using GCodeAnalysor–1.1
[32]. All programs were executed on a computer with an Intel
Core i7 3.6 GHz processor, 16 GB RAM, and Windows 10
operating system. Search processes in ACO can be speeded
up with the help of parallel processing [16]. All ACO-based
solvers in this work were implemented in a multi-threads
manner to harness the full processing power of the CPU.
In the experiments, due to the stochastic nature of ACO,
ACO–based optimizers tend to yield better solutions with an
increase of ants and iterations. To give a fair comparison with

7

TABLE I: PARAMETERS UTILIZED IN GENERIC ACO,
THE PROPOSED MODIFIED ACO-BASED OPTIMIZERS,
AND CURA.

Number of iterations 8
Number of ants 8

α 1
β 5
ρ 0.5
θ 0.2

Layer height 0.1 mm
Z-hop retracting 0.075 mm
Retraction speed 40 mm/s

Retraction length of filament 4.5 mm
Travel speed 150 mm/s
Print speed 50 mm/s

Filling density 10%
Print temperture 220 ◦C
Bed temperture 70 ◦C

Christofides’ and Frederickson’s algorithms, the number of
ants and iterations for ACO–based optimizers are both set
to 8 such that the processing time required by ACO–based
optimizers are close to that of Christofides’ and Frederickson’s
algorithms. All ACO-related parameters used in this work
were chosen based on [20], which demonstrated promising
results in tackling a similar path search problem. Also, our
preliminary study showed that the ACO optimizer that utilized
the parameter sets in [20] outperforms those utilized other
reasonable parameter sets.

A summary of the parameters used in this work is shown
in Table I.

In the evaluations, two parameters were chosen as perfor-
mance indicators, namely the post processing time and the
estimated print time. Furthermore, to verify the accuracy of
the estimated print time, 4 out of the 8 models were printed
using a 3D printer and their corresponding print times were
recorded. The visual qualities of the 4 printed models were
further examined based on the amount of strings formed on
their surfaces.

B. Experiment Results

1) Accuracies: Experiments were conducted to evaluate
the dimensional accuracy of printed models using print plans
optimized by the modified ACO.

Similar to [33], in this set of experiments, the model
“testcube 25mm” [34] with 20% filling density was utilized,
which is a cube with edge length equals 25mm. The model
was printed using print plans generated directly from Cura and
also other optimized plans generated using the aforementioned
algorithms. The vertices of the cube were labelled as shown
in Fig. 4.

In this work, dimensional accuracy was evaluated by the av-
erage absolute differences between edge lengths of the printed
cubes and the corresponding CAD model. The measurements
are shown in Fig. 4, which were obtained using a “Mitutoyo
Digital Caliper 500-196-20”.

According to Fig. 4, the average absolute differences (%)
of edge lengths for models generated by Cura, CF, ACO, and
the modified method are 0.1225%, 0.1150%, 0.1333%, and
0.1142%, respectively. Results suggested that the proposed

method can yield printed models with similar dimensional
accuracies as those obtained from other methods under test.

2) Post–processing time: All optimizers under test were
executed 50 times to obtain their average run times. Results
are given in TABLE II. According to the results, when the
parameters of the modified ACO optimizer was configured as
shown in TABLE I, it yields comparable post–processing times
as Christofides’ and Frederickson’s algorithms. Furthermore,
when comparing with the generic ACO optimizer under the
same configurations, the proposed one can reduce the overall
post–processing time significantly by 34.93%.

3) Estimated Print Time: Results obtained using the
GCodeAnalysor are presented in TABLE III. It can be ob-
served that print plans from all optimizers under test can yield
shorter estimated print time than those directly from Cura.
Moreover, the proposed optimizer can generate print plans
with the shortest estimated print time among the others. It
obtained a maximum saving of 8.58% in estimated print time
on the model “hold test” versus Cura.

As mentioned in Section V-A, Christofides’ and Freder-
ickson’s algorithms are deterministic algorithms. Therefore,
the optimizer with CF always generates identical results.
According to TABLE III, when comparing the maximum and
the mean values of results obtained using modified ACO and
CF, the modified ACO can yield lower values in all tested
models.

Performances of the modified ACO and the generic ACO
on each 3D model are compared separately. The mean and
standard deviations (SD) of the estimated print times of model
“dragon 65 tilted large” using the modified ACO are denoted
by µ′ACO and σ′ACO, respectively. Similarly, the mean and SD of
the estimated print time using the generic ACO are represented
respectively by µACO and σACO. The difference between the
two means (µ′ACO−µACO) = −41 with the corresponding SD
= 0.6681. The 99% confidence interval for (µ′ACO − µACO) is
therefore (−42.76,−39.24), which suggests that the modified
ACO is likely to yield shorter estimated print times for model
“dragon 65 tilted large”. Similar analyses were conducted on
all other models. Results suggest that the modified ACO tends
to yield shorter estimated print times than the generic ACO
in 7 out of 8 models. In addition, by considering the savings
in post-processing time mentioned in the last experiment, the
results further suggest that the modified ACO can deliver
better performance on accelerating the printing process and
requires significantly shorter post-processing time than the
generic ACO.

4) Actual print time: Among the 8 models under test, 4 of
them were further selected to go through an actual printing
experiment. The printing experiment was conducted on a
WiseMaker 3D Printer W250 [1]. Print plans obtained from
different optimizers were printed, while the whole process was
recorded and timed. Their corresponding actual print time were
presented in TABLE IV. In our measurements, pre–heating
times for both the nozzle and the print bed were excluded.
The timer was started once the nozzle moved away from its
default location and was stopped when the nozzle finished
the last print segment and returned to its default location. All
results reported in TABLE IV concur with those observations

8

AB BD CD AC EF FH GH EG BF DH CG AE

Measurement edge

24.7

24.8

24.9

25

25.1

25.2

25.3

25.4

25.5
M

ea
su

re
m

en
ts

 (
m

m
)

CAD
Cura
CF
ACO
Modified ACO

Fig. 4: An illustration (top left) of the labelled cube [34] used
in the experiment and the edge measurements of the printed
models using print plans from different optimizers. The dotted
line represents the edges’ length of the CAD model.

in the last section, which verify the accuracy of the estimated
print time presented. The proposed optimizer again yields the
best results when comparing with its counterparts.

5) Visual quality: The visual quality were verified accord-
ing to the amount of strings, which are residual materials
left on the surface of a printed model. Pictures of the model
“hold test” [31] fabricated using print plans from different
optimizers are shown in Figs. 5. In this experiment, only
residual materials with any of its dimensions longer than
0.5mm are regarded as strings and they are highlighted with
red boxes.

According to Fig. 5, the number of strings identified on
models printed using print plans from Cura, CF, ACO, and
the proposed method are 23, 4, 6, and 2, respectively. Even
with the retraction function enabled, the model from the print
plan generated by Cura has a considerable amount of strings
on surface. In contrast, by allowing the nozzle to hop across
boundaries only when necessary, the proposed optimizer can
effectively alleviate the strings issue in its printed models. Print
plans optimized together with the proposed refinement process,
regardless of the solvers being used, can always reduce the
number of strings in their printed outcomes and yield shorter
actual print time than those obtained from Cura.

VII. DISCUSSION

According to the post–processing times given in TABLE II,
it can be observed that when optimizing print plans with
different complexities (i.e. number of print segments), the time
required by the generic ACO solver increases faster comparing
to that of the proposed solver. The proposed solver speeds
up its computation by shrinking the search space in each
iteration via its segment integration process. As mentioned in
Section V-C, an immature convergence may lead to incorrect
STS grouping and degrade the solution quality. Based on the
estimated print time given in TABLE III, such modifications
to the ACO solver did not degrade solution quality when
comparing to that of the generic ACO. During a segment

integration process, while a STS group that is more preferred
by ants is being integrated, this action can eliminate many
other non-preferred alternatives. With desirable STS groups
being preserved and having the search space being shrunk over
time, the proposed ACO solver is more efficient in obtaining
high quality solutions.

When comparing the performance of optimizers using the
proposed ACO solvers to those using Christofides’ and Fred-
erickson’s algorithms, insignificant deviations can be observed
in their estimated print time and post-processing time. Apart
from the reasons mentioned above, the native parallel nature
of ACO makes it possible to be executed in parallel with
the help of modern multi-core CPU and greatly shorten its
post–processing time. According to TABLE II, it is observed
that optimizers with the proposed ACO solver scale well with
the problem size (i.e. number of segments in the models).
Nevertheless, it has the potential to further shorten its com-
putational time when more processing units, such as graphics
processing units (GPUs), are available. From another point of
view, with the extra parallel processing power, optimizers with
the proposed ACO solver can utilize more ants to perform
parallel searches and yield better solutions within the same
amount of time. On the contrary, Christofides’ and Frederick-
son’s algorithms cannot be benefited from parallel processing
as these two algorithms consist of sequential procedures as
mentioned in Section V-A.

VIII. CONCLUSION

In this paper, an ant colony optimization based tool–
path optimizer is proposed for finding desirable tool–paths
in 3D printing applications, which can both shorten actual
print time and improve visual quality of printed objects. The
proposed optimizer has a 2–layers structure that formulates
the optimization process as travelling salesman and undirected
rural postman problems, correspondingly. A modified ACO
solver is proposed and utilized in the optimizer to tackle
both problems. By exploiting the unique properties in 3D
printing and taking the advantages of parallel processing, the
proposed ACO solver can provide decent solutions within a
reasonable processing time. Simulation and experiment results
shown that the proposed optimizer together with the proposed
ACO solver can yield shorter model build time than other
optimizers under test. Furthermore, experiment results also
verify the effectiveness of the refinement processes in the
proposed optimizer in alleviating the strings phenomenon
known in 3D printing applications. The proposed optimizer,
which comprises a modified ACO-based URPP solver and
a complete workflow, can speed up the printing process and
improve the visual quality of the output simultaneously.

REFERENCES

[1] “WiseMaker W Series 3D printers | Movehand.com,” (Accessed: 2017-
02-15). [Online]. Available: http://movehand.com/w140-3d-printer

[2] “Cura 3D printing slicing software,” (Accessed: 2017-02-20). [Online].
Available: https://ultimaker.com/en/products/cura-software

[3] “GitHub - Ultimaker/CuraEngine,” (Accessed: 2017-02-22).
[Online]. Available: https://github.com/Ultimaker/CuraEngine/tree/
4c547b9a66433885d4d4128f5f416982878b7e56/tests/allround test

[4] A. Armillotta, “Assessment of surface quality on textured FDM proto-
types,” Rapid Prototyping Journal, vol. 12, no. 1, pp. 35–41, 2006.

http://movehand.com/w140-3d-printer
https://ultimaker.com/en/products/cura-software
https://github.com/Ultimaker/CuraEngine/tree/4c547b9a66433885d4d4128f5f416982878b7e56/tests/allround_test
https://github.com/Ultimaker/CuraEngine/tree/4c547b9a66433885d4d4128f5f416982878b7e56/tests/allround_test

9

TABLE II: POST–PROCESSING TIMES (s).

Models CF ACO Modified ACO
Mean Max Min SD Mean Max Min SD Mean Max Min SD

3DHackerTest 212.17 214.90 211.62 0.55 284.96 348.11 214.18 27.89 215.98 293.04 155.71 34.80
ctrlV 3D test 496.24 498.38 494.23 0.94 615.12 725.47 572.36 39.69 495.97 582.58 427.45 48.16
Debailey x10 170.06 170.26 169.89 0.07 287.12 297.99 280.31 4.36 180.85 190.24 175.61 3.57
dragon 65 tilted large 312.91 314.11 312.56 0.30 457.39 466.07 450.42 3.51 279.69 287.62 274.77 3.24
testModel 17.77 17.91 17.67 0.05 76.72 78.38 74.88 0.84 51.41 53.75 48.57 1.22
TortureTestV2 49.08 49.30 48.75 0.11 120.18 121.34 118.95 0.59 82.62 83.26 82.19 0.27
UltimakerRobot
support 2015 157.95 158.63 157.77 0.15 261.21 263.14 259.33 0.97 153.25 156.34 151.40 0.89

holdtest 983.54 1135.23 954.42 26.58 1111.28 1287.40 1064.40 39.40 507.52 555.35 489.54 14.15

TABLE III: ESTIMATED PRINT TIMES (s).

Models Cura CF ACO Modified ACO
Mean Max Min SD Mean Max Min SD

3DHackerTest 6551 6038 6032 6036 6028 1.96 6025 6030 6017 2.26
ctrlV 3D test 14791 14210 14170 14176 14156 4.15 14169 14181 14153 6.51
Debailey x10 20672 19498 19465 19471 19460 2.70 19434 19441 19426 2.98
dragon 65 tilted large 18833 17693 17669 17676 17663 2.95 17628 17637 17622 3.69
testModel 22578 22197 22133 22144 22122 4.69 22094 22102 22086 4.35
TortureTestV2 23663 23332 23303 23316 23294 5.24 23250 23268 23238 6.41
UltimakerRobot support 2015 19872 19173 19126 19131 19120 2.60 19091 19098 19084 3.37
hold test 3578 3363 3273 3281 3266 3.73 3271 3278 3263 3.42

(a) Cura (b) CF (c) ACO (d) Modified ACO
Fig. 5: Top side (upper row) and bottom side (lower row) of the printed models “hold test” optimized using different algorithms.
Regions populated with strings (>0.5 mm) were highlighted in red boxes. Each string is highlighted and counted on either the
upper or lower row to avoid double counting.

TABLE IV: ACTUAL PRINT TIMES (s).
Models Cura CF ACO Modified ACO
ctrlV 3D test 15311 14657 14469 14463
dragon 65 tilted large 18742 17694 17645 17013
UltimakerRobot
support 2015 19763 19209 19461 19088

hold test 3872 3376 3406 3301

[5] M. K. Agarwala, V. R. Jamalabad, N. A. Langrana, A. Safari, P. J.
Whalen, and S. C. Danforth, “Structural quality of parts processed by
fused deposition,” Rapid Prototyping Journal, vol. 2, no. 4, pp. 4–19,
1996.

[6] S. Lim, R. Buswell, T. Le, S. Austin, A. Gibb, and T. Thorpe,
“Developments in construction-scale additive manufacturing processes,”

Automation in Construction, vol. 21, pp. 262 – 268, 2012.
[7] Y.-a. Jin, Y. He, G.-h. Xue, and J.-z. Fu, “A parallel-based path

generation method for fused deposition modeling,” The International
Journal of Advanced Manufacturing Technology, vol. 77, no. 5, pp. 927–
937, Mar 2015.

[8] J. P. Freens, I. J. Adan, A. Y. Pogromsky, and H. Ploegmakers,
“Automating the production planning of a 3D printing factory,” in Winter
Simulation Conference (WSC), 2015. IEEE, 2015, pp. 2136–2147.

[9] J. Wu, N. Aage, R. Westermann, and O. Sigmund, “Infill optimization for
additive manufacturing–approaching bone-like porous structures,” IEEE
Transactions on Visualization and Computer Graphics, 2017.

[10] A. Kvalsvig, X. Yuan, J. Potgieter, and P. Cao, “3D printing of fibre
reinforced honeycomb structured composite materials,” in Mechatronics
and Machine Vision in Practice (M2VIP), 2016 23rd International
Conference on. IEEE, 2016, pp. 1–6.

10

[11] V. Roberge, M. Tarbouchi, and G. Labonte, “Comparison of parallel
genetic algorithm and particle swarm optimization for real-time UAV
path planning,” IEEE Trans. on Industrial Informatics, vol. 9, no. 1, pp.
132–141, Feb 2013.

[12] J. J. Kim and J. J. Lee, “Trajectory optimization with particle swarm op-
timization for manipulator motion planning,” IEEE Trans. on Industrial
Informatics, vol. 11, no. 3, pp. 620–631, June 2015.

[13] A. Yahyaoui, N. Fnaiech, and F. Fnaiech, “A suitable initialization
procedure for speeding a neural network job-shop scheduling,” IEEE
Trans. on Industrial Electronics, vol. 58, no. 3, pp. 1052–1060, April
2011.

[14] M. Watanabe, M. Furukawa, A. Mizoe, and T. Watanabe, “GA appli-
cations to physical distribution scheduling problem,” IEEE Trans. on
Industrial Electronics, vol. 48, no. 4, pp. 724–730, 2001.

[15] J. W. Lee, B. S. Choi, and J. J. Lee, “Energy-efficient coverage of
wireless sensor networks using ant colony optimization with three types
of pheromones,” IEEE Trans. on Industrial Informatics, vol. 7, no. 3,
pp. 419–427, Aug 2011.

[16] H. C. Huang, “A taguchi-based heterogeneous parallel metaheuristic
ACO-PSO and its FPGA realization to optimal polar-space locomotion
control of four-wheeled redundant mobile robots,” IEEE Trans. on
Industrial Informatics, vol. 11, no. 4, pp. 915–922, Aug 2015.

[17] B. Thompson and H.-S. Yoon, “Efficient path planning algorithm for ad-
ditive manufacturing systems,” IEEE Trans. on Components, Packaging
and Manufacturing Technology, vol. 4, no. 9, pp. 1555–1563, 2014.

[18] P. K. Wah, K. G. Murty, A. Joneja, and L. C. Chiu, “Tool path
optimization in layered manufacturing,” IIE Transactions, vol. 34, no. 4,
pp. 335–347, 2002.

[19] M.-L. Pérez-Delgado, Solving an arc-routing problem using artificial
ants with a graph transformation. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 241–246.

[20] G. S. Tewolde and W. Sheng, “Robot path integration in manufacturing
processes: Genetic algorithm versus ant colony optimization,” IEEE
Trans. on Systems, Man, and Cybernetics - Part A: Systems and Humans,
vol. 38, no. 2, pp. 278–287, March 2008.

[21] S. Alhamdy, A. N. Noudehi, and M. Majdara, “Solving traveling
salesman problem (tsp) using ants colony (aco) algorithm and comparing
with tabu search, simulated annealing and genetic algorithm,” J. Appl.
Sci. Res, vol. 8, no. 1, pp. 434–440, 2012.

[22] H. Afaq and S. Saini, “On the solutions to the travelling salesman
problem using nature inspired computing techniques,” International
Journal of Computer Science Issues, vol. 8, no. 2-4, pp. 326–334, 2011.

[23] G. N. Frederickson, “Approximation algorithms for some postman
problems,” Journal of the ACM, vol. 26, no. 3, pp. 538–554, 1979.

[24] N. Christofides, “Worst-case analysis of a new heuristic for the travelling
salesman problem,” DTIC Document, Tech. Rep., 1976.

[25] K. Helsgaun, “An effective implementation of the lin–kernighan trav-
eling salesman heuristic,” European Journal of Operational Research,
vol. 126, no. 1, pp. 106–130, 2000.

[26] G. Groves and J. Van Vuuren, “Efficient heuristics for the rural postman
problem,” ORiON, vol. 21, no. 1, pp. 33–51, 2005.

[27] K.-Y. Fok, C.-T. Cheng, C. K. Tse, and N. Ganganath, “A relaxation
scheme for TSP-based 3D printing path optimizer,” in International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery, October 2016, pp. 382–385.

[28] E. Fernández, O. Meza, R. Garfinkel, and M. Ortega, “On the undirected
rural postman problem: Tight bounds based on a new formulation,”
Operations Research, vol. 51, no. 2, pp. 281–291, 2003.

[29] N. Ganganath, C.-T. Cheng, and K. T. Chi, “A constraint-aware heuristic
path planner for finding energy-efficient paths on uneven terrains,” IEEE
Trans. on Industrial Informatics, vol. 11, no. 3, pp. 601–611, 2015.

[30] M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-
heuristic,” in Evolutionary Computation, 1999. CEC 99. Proceedings of
the 1999 Congress on, vol. 2. IEEE, 1999, pp. 1470–1477.

[31] R. Flórez, “Hole Test by magramo - Thingiverse,” (Accessed: 2018-01-
11). [Online]. Available: http://www.thingiverse.com/thing:2380801

[32] K.-Y. Fok, “GCodeAnalysor-1.1 by kyfok - Thingiverse,” (Accessed:
2017-07-08). [Online]. Available: http://www.thingiverse.com/thing:
1870254

[33] D. Roberson, D. Espalin, and R. Wicker, “3D printer selection: A
decision-making evaluation and ranking model,” Virtual and Physical
Prototyping, vol. 8, no. 3, pp. 201–212, 2013.

[34] “Calibration Cube Collection by thingster - Thingiverse,” (Accessed:
2018-01-11). [Online]. Available: http://www.thingiverse.com/thing:
56671

Kai-Yin Fok (S’16) received the B.Sc.(Hons.) de-
gree in Internet and multimedia technologies in
2014, and is currently working toward the Ph.D.
degree in the Department of Electronic and Informa-
tion Engineering, Hong Kong Polytechnic Univer-
sity, Hong Kong, where he was a Research Assistant
from 2014 to 2015. His research interests include
sensing technologies, machine learning applications,
and optimization techniques in additive manufactur-
ing.

Chi-Tsun Cheng (S’07–M’09) received the B.Eng.
and M.Sc. degrees from the University of Hong
Kong in 2004 and 2005, respectively, and the Ph.D.
degree from the Hong Kong Polytechnic University
in 2009. From 2010 to 2011, he was a Post-Doctoral
Fellow at the Department of Electrical and Computer
Engineering, the University of Calgary. From 2012
to 2018, he was a Research Assistant Professor
at the Department of Electronic and Information
Engineering, the Hong Kong Polytechnic University.
Since June 2018, he has been a Senior Lecturer

at the Department of Manufacturing, Materials and Mechatronics, RMIT
University, Melbourne, Australia. He serves as Associate Editors for the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS II and IEICE NONLINEAR
THEORY AND ITS APPLICATIONS. His research interests include Wireless
Sensor Networks, Internet of Things, Industry 4.0 Technologies, Cloud
Computing, and Additive Manufacturing.

Nuwan Ganganath (S’09-M’17) received the B.Sc.
(Hons) degree with first class honors in electronics
and telecommunication engineering from the Uni-
versity of Moratuwa, Sri Lanka, in 2010, the M.Sc.
degree in electrical engineering from the University
of Calgary, Canada in 2013, and the Ph.D. degree
in electronic and information engineering from the
Hong Kong Polytechnic University, Hong Kong in
2016. He is currently an Adjunct Research Fellow
at the School of Engineering at the University of
Western Australia, Australia.

Herbert Ho-Ching Iu (S’98–M’00–SM’06) re-
ceived the B.Eng. (Hons) degree in electrical and
electronic engineering from the University of Hong
Kong, Hong Kong, in 1997. He received the Ph.D.
degree in Electronic and Information Engineering
from the Hong Kong Polytechnic University, Hong
Kong, in 2000.

In 2002, he joined the School of Electrical, Elec-
tronic and Computer Engineering, the University of
Western Australia where he is currently a Professor.
His research interests include power electronics,

renewable energy, nonlinear dynamics, current sensing techniques, and mem-
ristive systems.

Prof. Iu currently serves as an Associate Editor of IEEE Transactions on
Power Electronics, IEEE Transactions on Smart Grids, IEEE Transactions
on Network Science and Engineering, IEEE Transactions on Circuits and
Systems–II and IEEE Access.

Chi K. Tse (M’90–SM’97–F’06) received the BEng
(Hons) degree in electrical engineering and the PhD
degree from the University of Melbourne, Australia,
in 1987 and 1991, respectively. He is presently Chair
Professor at the Hong Kong Polytechnic University,
Hong Kong, with which he was Head of the De-
partment of Electronic and Information Engineering
from 2005 to 2012. His research interests include
power electronics, nonlinear circuits, and complex
network applications.

http://www.thingiverse.com/thing:2380801
http://www.thingiverse.com/thing:1870254
http://www.thingiverse.com/thing:1870254
http://www.thingiverse.com/thing:56671
http://www.thingiverse.com/thing:56671

	Introduction
	Literature Review
	Problem Formulation
	Proposed Tool–Path Optimizer
	Parts Visiting Sequence
	Print Segments Visiting Sequence
	Refinement Process

	Problem Solvers
	Christofides' and Frederickson's Algorithms
	Ant Colony Optimization
	Modified Ant Colony Optimization

	Experiments
	Experiment Settings
	Experiment Results
	Accuracies
	Post–processing time
	Estimated Print Time
	Actual print time
	Visual quality

	Discussion
	Conclusion
	References
	Biographies
	Kai-Yin Fok
	Chi-Tsun Cheng
	Nuwan Ganganath
	Herbert Ho-Ching Iu
	Chi K. Tse

