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Abstract: The recently proposed b-modulation method for nonlinear Fourier transform-based 
fiber-optic transmission offers explicit control over the duration of the generated pulses and 
therewith solves a longstanding practical problem. The currently used b-modulation however 
suffers from a fundamental energy barrier. There is a limit to the energy of the pulses, in 
normalized units, that can be generated. In this paper, we discuss how the energy barrier can 
be shifted by proper design of the carrier waveform and the modulation alphabet. In an 
experiment, it is found that the improved b-modulator achieves both a higher Q-factor and a 
further reach than a comparable conventional b-modulator. Furthermore, it performs 
significantly better than conventional approaches that modulate the reflection coefficient. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Nonlinear impairments are a major limiting factor in fiber-optic data transmission. There has 
been significant interest in utilizing the nonlinear Fourier transform (NFT) for data 
transmission in the last few years [1–7]. The NFT decomposes the ideal Nonlinear 
Schrödinger Equation (NLS) into a set of parallel communication channels characterized by a 
nonlinear spectrum [8]. The propagation of signals encoded under this framework reduces, 
similar to linear channels in the conventional frequency domain, to a simple multiplication 
with a transfer function. The nonlinear spectrum is divided into two parts: the continuous 
spectrum, which depends on a real parameter ξ  (corresponding to the “dispersive” signal 

components), and the discrete spectrum where eigenvalues λ lie in the upper half of the 
complex plane (corresponding to the “solitonic” signal components). Exploiting nonlinearity 
in optical systems started two decades ago with on-off keying soliton transmissions. A form 
of ‘eigenvalue communication’ was first proposed in [9]. Following the advances of digital 
coherent technology in the last decade, arbitrarily complex phase and amplitude modulated 
signals can be generated and received. Thus, today more dimensions can be used in NFT-
based communication designs. Numerous proof-of-concept experiments have been 
demonstrated by many groups during the last few years. With the modulation of the discrete 
part (eigenvalue transmission), data rates up to 24 Gbps at 4 Gbaud (6 bits/symbol) have been 
reported [10]. By modulating the continuous part only, 32 Gb/s transmission with 64 
modulated nonlinear subcarriers was demonstrated over 1464 km in [11], showing over 1 dB 
performance advantage over conventional frequency division multiplexed (FDM) 
transmissions. The first system modulating both discrete and continuous modes at 26.3 Gbps 
has been demonstrated in [12]. 

However, a current issue in NFT-based transmission is that most modulation methods 
(i.e., methods to embed blocks of data in a nonlinear Fourier spectrum) do not offer tight 
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control over the duration of the pulse. One solution to this problem is to use the NFT for 
periodic signals instead of the more common NFT for vanishing signals [13–15]. The 
transmitter only transmits one period of the generated signal plus a cyclic prefix in this 
scenario, similar to conventional OFDM. The challenge of the periodic NFT approach is that 
the NFT for periodic signals is mathematically more complicated. It is in particular not 
straight-forward to enforce a desired period. So far, only relatively simple systems with a few 
degrees of freedom have been demonstrated. An alternative solution is our proposed b-
modulation method [16], which is based on the NFT for vanishing signals and can generate 
pulses of a finite, pre-specified duration in a simple way. This method was adopted in an 
experimental demonstration of 100 Gbps b-modulated nonlinear frequency division 
multiplexed (NFDM) transmission using 132 subcarriers [17]. A dual polarization NFDM 
transmission achieving a record net data rate of 400 Gbps based on b-modulation was 
demonstrated in [18]. 

In this paper, we extend our previous work [16] and add several modifications to the 
original b-modulation scheme, including flat top carriers and constellation shaping. The 
modified method is numerally studied to show the advantages of limited signal time duration 
compared with conventional modulation of the continuous spectrum ( q̂ -modulation). In a 

back-to-back (B2B) scenario, simulation results show that signal-noise interactions through 
NFT-processing can be significantly reduced for improved b-modulated signals. Based on the 
results, we experimentally compare the modified b-modulator techniques with conventional 

b- and q -modulation schemes for a 14.4 Gbps 16QAM NFDM transmission over 640km

standard single-mode fiber (SSMF). The proposed b-modulation scheme demonstrates a Q-
factor gain of ~1.2 dB and nonlinear tolerance (launched power) gain of ~4 dB over a 
conventional FDM system. The results serve as another step forward in designing high 
performance NDFM signaling techniques for nonlinear transmission systems. 

2. Introduction to the b-modulation method

2.1 Basics of the nonlinear Fourier transform 

The NFT of a signal ( )q t , which in our context is either the (normalized) input to or the

(normalized) output of a single-mode fiber with anomalous dispersion, is defined in a two-
step procedure. First, consider the Zakharov-Shabat problem (see, e.g., [8]) ȥ 
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where λ  is parameter. The NFT of ( )q t  has two parts defined in terms of the limits

( ) ( ): ;a aλ ∞ λ=  and ( ) : ( ; )b bλ ∞ λ= . The first part is the continuous spectrum

 ( ) : ( ) / ( )q b aξ ξ ξ= , where ξ ∈ . The second part is the discrete spectrum ( )k k k 1
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The main advantage of the NFT is that it simplifies the nonlinear Schrödinger equation 
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which models the evolution of the complex envelope ( , )u z t  at location z  and at retarded 

time t  in an ideal optical fiber. Denoting the functions ( )a λ  and ( )b λ  that correspond to the

signal ( ) ( , )q t u z t=  by ( )za λ  and ( )zb λ  respectively, the NFT of the fiber input ( )0,u t

can be reconstructed from the NFT of the fiber output ( , )u z t  using the relations 

( ) ( ) ( ) ( )24
0 0,  .j z

z za a b e bξξ ξ ξ ξ−= =  (3)

2.2 Conventional modulation methods for the continuous spectrum 

We first aim to embed data in the continuous spectrum of the fiber input. The discrete 
spectrum is not used and chosen to be empty. Several methods have been proposed to 
modulate a block of symbols Ns , , Ns− … ∈ , where   is a finite modulation alphabet, into 

the continuous spectrum. Let ( )ψ ξ  denote a carrier waveform, A 0>  a power control factor,

and s 0ξ >  a shift. Most modulation methods (e.g., [3, 19]) for  ( )q ξ  take one of two forms,

 ( ) ( )  ( )
22A ( ) ( )

1 2:    or   : 1 ,u j uq Au q e eξ ξξ ξ ξ <= = − (4)

where the power control factor A 0>  is a constant and 

( ) ( )u : ψ .
N

n s
n N

s nξ ξ ξ
=−

= −  (5)

2.3 The original b-modulation method 

The conventional modulation methods for the continuous spectrum offer no control over the 
duration of the fiber input and suffer from poor utilization of the temporal domain. Motivated 
by a classic result for the NFT with respect to the Korteweg-de Vries equation [24], it was 

recently proposed to modulate ( )b ξ  instead of  ( ) ( ) ( )/q b aξ ξ ξ=  [16]. The modulation

scheme in [16] was of the form 

( ) ( ) ( )Au ,        with A and  as defined above.b uξ ξ ξ= (6)

It was observed that the generated fiber-input ( )q t  would be time-limited with 

( ) 0     for ,
2 2

T T
q t t

 = ∉ −  
(7)

if the carrier waveform ( )ψ ξ  was bandlimited in the sense that its conventional inverse

Fourier transform 

( ) ( )Ψ : ψ
2

j d
e

∞
τξ

∞

ξτ ξ
π−

=  (8)

satisfies ( )Ψ 0τ =  for τ [ , ]T T∉ − . Note that this condition is a continuous-time version of

the realizability conditions derived in the context of codirectional coupler design [22]: in the 
absence of eigenvalues, the discrete-time version of ( )q t  is zero outside a given range if and 

only if the Fourier series coefficients of the discrete-time version of ( )b ξ  are zero outside a

related range. Also note that it is essential that the power scaling factor is a constant w.r.t. to 
the nonlinear spectral parameter ξ . Except in very specific special cases, a ξ -dependent 
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power control factor will lead to a time-domain signal that is no longer time-limited even if 
the carrier wave fulfills the condition mentioned above. 

The original b-modulation scheme in [16] is one of the first NFT-based modulation 
method that offers explicit control over the duration of the generated fiber inputs. It has been 
demonstrated experimentally in [17, 23], where the carrier waveform was a sinc pulse. We 
also remark that it was recently proposed [21] to embed information in the analytic extension 

( )b ξ  of  ( )q ξ , but the methods in [21] do not lead to time-limited signals.

2.4 The energy barrier 

The energy ( ) 2
E:= q t dt

∞

∞−
 of the generated fiber-input is known to satisfy [8]

( )( )21
E log 1 .

π
b dξ ξ

∞

−∞

= − − (9)

On the other hand, it is also known [8] that a valid ( )b ξ  satisfies ( ) 2 2
( ) 1a bξ ξ+ =  and

thus, in particular, 

( ) 1        .b for allξ ξ<  (10)

It was observed in [16] that even if the power control factor A  is driven towards the limit 

imposed by the condition ( ) ( )A u 1b ξ ξ= < , the energy of the generated pulses would not

surpass a certain finite limit. To better understand this phenomenon, let us consider the case 
of a single carrier with a unit symbol, i.e. ( ) ( )Aψb ξ ξ= . The single carrier case will be

indicative for the general case if the shift sξ  used in the definition of ( ) ( )Aub ξ ξ=  is large

enough. In the single carrier case, the condition ( ) 1b ξ <  translates into ( )A 1/ sup | ψ |
ξ

ξ< . 

The maximum energy we can achieve by adjusting the power control factor A  in this case 
thus is 

[ ]
( )( )

( )( )22

A 1/sup ψ

1
MCE ψ : lim log 1 A ψ d

ξ ξ
ξ ξ

π−

∞

→ −∞

= − − (11)

We call MCE[ψ]  the maximum carrier energy of the carrier waveform ( )ψ ξ . The MCE can

be both finite or infinite, depending on the carrier waveform. Consider, e.g., 

( ) { }
21 ,   1 

ψ ,    1,2,3, .
0,     1

n

example

if
n

if

ξ ξξ
ξ

 − ≤= ∈ …
>

(12)

The MCE of this carrier waveform is finite for any value of n , 

( )( )
1 1

2 2 2

A 1
1 1

1 1 4
MCE ψ lim log 1 A 1 log .n n

example

n
d dξ ξ ξ ξ

π π π−→
− −

  = − − − = − = < ∞    (13)

The carrier waveforms in [16] were impulse responses of raised cosines, and it can be 
checked numerically that their MCE is indeed finite as well. Interestingly, this is not true for 
all carrier waveforms. The MCE of a rectangular carrier waveform, 
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is actually infinite, 

[ ] ( )
1

2 2

A 1 1
1

1 2
MCE ψ lim log 1 A lim log(1 A ) .rect

A
dξ ∞

π π− −→ →
−

= − − = − − = (15)

Rectangular carriers however defeat the purpose of b-modulation – their inverse Fourier 
transform ( )Ψ τ  is not compactly supported, so that the duration of the generated pulses is

not finite anymore. The same discussion applies if a root raised cosine is chosen as the carrier 

( )ψ ξ , or if ( )b ξ  is formed similar to  ( )2q ξ  as in [18]. In both cases, the energy barrier is 

defeated, but the signals are no longer of finite duration because ( )b ξ  is not bandlimited.

In contrast, the energy barrier is not that relevant for conventional modulation of the 

continuous spectrum, i.e., the modulation of  ( )1q ξ  and  ( )2q ξ , respectively. The energy of a 

signal obtained by modulation of  ( )1q ξ  is given by 

( )  ( ) ( )( )22 22
1

1 1
log 1 log 1 A ψ .E q t dt q d d

∞ ∞ ∞

∞ ∞ ∞

ξ ξ ξ ξ
π π− − −

 = = + = + 
     (16) 

As soon as the absolute value of the carrier waveform can be lower bounded by some 
rectangle, the energy will go to infinity for A → ∞ . The same holds for the modulation of 


2 ( )q ξ , which has been especially designed to enable explicit control the pulse energy.

3. The improved b-modulator

3.1 Carrier waveform

In light of the discussion in the previous section, we find that the carrier waveform should at
least fulfill the following two conditions: ( )ψ ξ  should have a

i) compactly supported ( )Ψ τ  to ensure finite pulse durations; and

ii) large enough MCE to enable sufficiently high signal energies.

The sinc and raised cosine carriers used for b-modulation so far satisfy these conditions,
but there is nevertheless an issue with them that has not been obvious so far since we focused 
on the single carrier case until now. Ideally, the maximum energy we can achieve with a 
multicarrier system containing 2 1N +  carriers would be ( ) [ ]2 1 MCEN ψ+ . However, when

performing b-modulation with sinc or raised cosine carriers, the individual carriers are only 
guaranteed not to influence each other at the carrier centers due to the Nyquist property. At 
other nonlinear frequencies, the individual carriers do interact and can form a maximum at 
random nonlinear frequencies that is very hard to control. Since the amplification factor has 
to satisfy ( )

ξ
A 1/ sup | |b ξ< , such an uncontrollable maximum can limit the maximum energy 

in a multicarrier system to random value much less that ( ) [ ]2 1 MCEN ψ+ . To avoid this

issue, we require our carrier waveform to fulfill a third condition: ( )ψ ξ  should be
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iii) localized in the ξ  domain so that with reasonably large carrier spacing sξ , no

uncontrollable maxima occur in ( )b ξ .

To address all three conditions i)—iii), we propose to use Fourier-transformed flat top 
windows (e.g., [20]) as carrier waveforms since they are bandlimited, concentrated in the ξ  

domain, and approximate a rectangle at their center (which has infinite MCE). In our 
experiments and simulations, we used the carrier that corresponds to the flat-top window 

( ) ( )
15

flat top m
0

1,   11
Ψ a cos ,        ,

0,  m

if
r m r

T T T otherwise

ττ πττ τ
=

 ≤   = =    
    

  (17) 

which was designed using the “Program 1” Matlab script in [20] with inputs that put 
equal weight on the perfect flatness of the carrier around zero and the decay of the 
sidelobes (i.e., 64N = , 15M = , 0 7DN D= =  and 0delt = ). The constant 0T >  
is the desired pulse duration in normalized units (see Section 2.3). The coefficients 

ma  are given as Table 1. 

Table 1. The value of coefficients ma

0a = 1.00781249999087 4a = 2.01557690160615 8a = 1.80756640511884 12a = 0.229897459751809 

1a = 2.01562499996723 5a = 2.01459671013285 9a = 1.49055821347783 13a = 0.064961507923051 

2a = 2.01562499848123 6a = 2.00542418293614 10a = 1.03117157326193 14a = 0.0112874144984265 

3a = 2.01562428510123 7a = 1.95813292084616 11a = 0.563957100582878 15a = 0.000905697614069561 

The corresponding carrier waveform is 

( )
15

 m
0

a sin c sin c .flat top
m

T T
m m

ξ ξψ ξ
π π=

    = − + +    
    

  (18)

Both are shown as Fig. 1 for the duration 4.5T = . 

Fig. 1. The shape of the carrier ( )ψ ξ  and its inverse Fourier transform ( )Ψ τ  for 4.5=T . 

3.2 Constellation shaping 

The energy of the fiber input in the original b-modulation method ( ) A ( )b uξ ξ=  with ( )u ξ
as in (4) was adjusted through the power control factor A 0> . The energy of a single carrier 
that has been modulated with a symbol ns ∈  is, as above, 

[ ] ( )( )2 22
n

1
E s log 1 A ψ .ns d

∞

∞

ξ ξ
π −

= − − (19)
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A disadvantage of the original b-modulation method discussed earlier is that the energy ratio 

[ ] [ ]n kE s / E s  for two different carriers n k≠  can be very different from the energy ratio
2 2

ns / ks  of their symbols. This is in contrast to the linear case, where the ratios are equal. 

To avoid the generation of disproportionately weak carriers, we propose to abandon the 
power control factor A 0>  and use a reshaped version 

{ }shaped shaped shaped
1 Ma , ,a= … (20)

of the given modulation alphabet { }1 Ma , ,a= …  instead. 

In the improved b-modulator, a block of symbols Ns , , Ns− … ∈  is modulated as follows.

Denote the index of the value in the alphabet that ns  takes by ( )m n  such that ( )ns m na= . The

( )b ξ  for the given block of symbols is then given by

( ) ( ) ( )

N
shaped shaped shaped shaped

m n
m N

Ψ ,     where :=   a .n s nb s n sξ ξ ξ
=−

= − ∈   (21) 

The reshaped modulation alphabet is chosen as 

shaped
m m ma γ ,    where   : γ 0.ma= > (22)

Let dE 0>  denote some desired average energy (in normalized units). Assuming that 

[ ]MCE Ψ  is high enough to support dE , the mγ are defined indirectly by the relations

( )( ) ( )
2

22shaped
m d2 2

1

1
E a : log 1 ψ E ,

/

m
m m

M

a
a d

a a M

∞

∞

γ ξ ξ
π −

  = − − =  +…+
  (23) 

where m 1, , .M= …  The term in the middle of this equation is monotonously increasing in 

mγ , while the right-hand side is known and independent of mγ . Therefore, we could

determine the mγ using the bisection method; the integral was computed numerically. Note

that our choice of mγ ensures that the energy ratios of the modulated carriers match the

energy ratios of their symbols with respect to the original modulation alphabet, i.e., 

2 2
E / / .shaped shaped

n k n ks E s s s    =    (24)

In other words, the generation of disproportionately weak carriers is avoided. Another 
advantage is that the average modulated carrier energy matches the desired average energy, 

shaped shaped
1 M

d

E a E a
E  .

M

   +…+    = (25)

The mγ are monotonously increasing functions of the desired energy dE . As dE  approaches 

the maximum carrier energy [ ]MCE ψ , the mγ  will converge towards ( ) 22

ξ
1/ sup ma ψ ξ . 

3.3 Simulation examples 

In this subsection, we numerically investigate the performance of the improved b-modulator 
with that of several other methods in a back-to-back (B2B) scenario. The original modulation 
alphabet is a 16-QAM. It is shown together with its shaped version, for a desired carrier 
energy dE 4= , in Fig. 2(a). The fiber inputs generated by the original b-modulator (i.e., 
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( ) A ( )b uξ ξ= ; A  is adapted to control the signal energy; the constellation is not shaped),

the improved b-modulator (i.e., ( ) ( )b uξ ξ= ; the reshaped constellation is used to control the

average signal energy) and the two conventional modulators (from  ( )  ( )1 2,   q qξ ξ  mentioned 

in Section 2.2) all contain 2 1 9N + =  flat-top subcarriers with random symbols and a shift of 
15sξ = . We emphasize that in our setup both b-modulators, original and improved, use the 

same flat-top carrier. The reason for not using a sinc or the impulse response of a raised 
cosine was that, with such carriers, the original b-modulation scheme was not able to match 
the energies of the improved b-modulator. The advantage of this choice is that we can isolate 
the effect of constellation shaping in our investigations. Some example pulses are shown in 

Fig. 2(b). The symbol duration for the b-modulators is 4.5T = . For the q -modulation 

methods, much larger windows are used to generate the initial signals and then truncated to 
4.5T = . All four ( )q t  have the same energy. The ( )q t  generated by the b -modulators are

constrained to [-2.25 2.25] by design, while the other ( )q t  are more spread out and suffer

from slowly decaying tails. The fiber inputs ( )q t  generated by the b -modulators are exactly

zero outside the interval [-2.25, 2.25], but they are already very small for 1t > . This 

phenomenon can be explained with the shape that the inverse Fourier transform ( )Ψ τ  of the 

carrier waveform ( )ψ ξ  (see Fig. 1). It decays quickly and is very small long before it

becomes exactly zero. Consequently, the same holds for the inverse Fourier transform ( )B τ
of ( )b ξ , which in turn is at least indicative for the behavior of ( )q t ; for signals with low

amplitudes ( )b ξ  reduces to a conventional linear Fourier transform so that ( )B τ  reduces to

( )q t . Hence, we will later be able to truncate the signals generated by the b-modulators to

durations shorter than 4.5T = . The truncation error made will be much lower than for 

conventional q -modulation because the tail is rapidly, and not slowly, decaying to zero. To 

corroborate this claim, we show the 99.9% durations and bandwidths of each ( )q t  modulated

with randomly chosen blocks of symbols by the four methods in Fig. 2(c). It can be seen that 
the 99.9% durations of the pulses generated by the b-modulators are consistently lower than 
that for the conventional modulation methods. Figure 2(d) shows the (conventional) Fourier 
transforms of the four fiber input types, which are all very similar. 
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