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Abstract—Anti-flocking controlled mobile sensor networks
(MSNs) have demonstrated impressive dynamic area coverage
performances. Even though MSNs are often utilized in outdoor
environments that consist of uneven terrains, existing anti-
flocking control protocols are designed for flat terrain navigation.
Thus they tend to maneuver mobile sensory units along shortest
paths between navigation goals in an area of interest. Even though
navigating along shortest paths can be both time- and energy-
efficient on flat terrains, such motions can often result in excessive
energy consumptions on uneven terrains. This paper proposes an
energy-efficient anti-flocking control protocol for MSNs based on
a terrain adaptation force and a navigation goal selection method.
The proposed control protocol encourages mobile sensory units
to follow terrain contours whenever feasible. Test results show
that the proposed control protocol is a promising energy-efficient
solution for MSNs operating on uneven terrains.

Index Terms—Anti-flocking, energy-efficient, distributed mo-
tion control, mobile sensor networks, uneven terrains.

I. INTRODUCTION

URVEILLANCE systems often require manual deploy-

ment of stationary sensory units to eliminate coverage
holes [1]. Due to the inability of stationary sensory units to
self-organize themselves in a given area of interest (Aol), they
fail to cope with dynamic changes of the environment. With
the added mobility, mobile sensor networks (MSNs) overcome
many drawbacks of their stationary counterparts. A mobile
sensory unit can increase its coverage by keep moving in a
given Aol. A single mobile sensory unit can replace multiple
stationary sensory units in providing the same level of sensing
coverage. MSNs can start with an arbitrary spatial distribution
in the AOI and then self-organize to enchance their global
sensory coverage [2], [3]. They can reposition and reorganize
themselves in the Aol to take over malfunctioned units or
provide on-demand coverages [4]. Due to such advantages
of MSNs over their stationary counterparts, they have been
continously adopted in outdoor surveillance [5], [6].
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Even though MSNs are more versatile compared to station-
ary sensor networks, their surveillance performances vastly
depend on their motion coordination and control mechanisms.
Many existing MSN motion coordination and control mecha-
nisms have been based on the fully coordinated controls [5],
[7]. However, such control mechanisms restrain the robustness
and scalability of MSNs. Fully coordinated controlled MSNs
may fail to self-organize themselves to cope with unit addi-
tions or removals. Nature-inspired control mechanisms have
recently evolved as promising solutions to the above issue.
Such mechanisms can be further divided into two categories,
namely, flocking control [8]-[10] and anti-flocking control
[11]-[13]. Flocking control protocols were inspired by collec-
tive behaviors of animals, such as fish schools, bird flocks, and
mammal herds [14]. On the other hand, anti-flocking control
protocols were inspired by behaviors of solitary animals, such
as pumas, spiders, and chipmunks [15].

Anti-flocking control protocols have drawn considerable
attention in recent past due to their capability in providing
impressive dynamic area coverage for MSNs. In [12], three
heuristic rules were introduced to describe the behavior of
anti-flocking controlled systems. Mathematical interpretations
to those heuristic rules were introduced in [11]. Furthermore,
the concept of information maps was first proposed in the same
work to achieve fully distributed control of MSNs. In [13],
a simplified version of information maps were introduced.
The distributed anti-flocking control mecahnism proposed in
[13] outperforms dynamic area coverage performances of the
previously proposed control protocols [11], [12]. Even though
anti-flocking control protocols provide superior adaptability,
scalability, and robustness to MSNs, they typically assume a
terrain to be flat and ignore physical properties, e.g. friction
and gravity.

Existing anti-flocking control protocols force a mobile
sensory unit to move towards next immediate target along
shortest paths. However, shortest paths on uneven terrains
often consist of rapid elevation changes, resulting in the use
of excessive energy when mobile units move along such paths
[16]. Since MSNs are powered by portable energy sources
with limited capacity, their operational durations heavily rely
on their energy consumption profiles. Energy consumption of
MSNSs can be reduced by adopting low-power sensors [17],
[18]. Energy-efficient control mechanisms may also be applied
to further reduce the energy consumption of MSNs. To the best
knowledge of the authors, however, these mechanisms have not
yet been considered or adopted in MSN dynamic area coverage
applications. In order to fill this void, this paper proposes a
new distributed anti-flocking algorithm for MSNs which can
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Fig. 1. Samples of shortest and energy-optimal paths on (a) the terrain model

reduce their energy consumption in surveillance applications
on uneven terrains.

II. NAVIGATION ON UNEVEN TERRAINS

The focus of this work is on MSNs utilized in surveillance
applications on uneven terrains. Two such terrain models are
illustrated in Fig. 1. Note that the shortest paths between the
given locations on those terrains consist of bigger elevation
changes compared to those energy-optimal paths which tend
to follow terrain contours. Even though such path may vary for
different mobile units depending on their physical properties,
including their mass and the friction coefficient between their
wheels and the terrain, traversing contours is generally more
energy-efficient as the work to be done against gravity is
minimal. This property is used in this work to design energy-
efficient anti-flocking control protocol for MSNs. Interested
parties may refer to [16] for more details on shortest and
energy-optimal path planning on uneven terrains.

Consider a group of mobile sensory units navigating on a
terrain. Here, 7(z,y) denotes the terrain surface elevation of
the point (x, y). Let the projection of the position and velocity
vectors of a mobile unit ¢ at time ¢ onto the underlying x —
y plane are denoted by ¢; and p;, respectively. The gradient
vector of 7(z,y) is given by

_ [or(z,y) 67(z,y)

N ox oy

which is pointing toward the direction of the highest rate of
increase in elevation. The magnitude |y(z,y)| is the slope
of the terrain in that direction. In order to encourage mobile
units to follow the contours, any motion orthogonal to the
contours are discouraged by imposing a terrain adaptation
force proportional to the negative of the component of p; along
the gradient [19]. The terrain adaptation force for mobile unit
1 is given by
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1 and (b) the terrain model 2.

where kyp is a positive constant. Note that ||y(z,y)|| = 0 for
all (z,y) on flat terrains and for (z,y) that coincide with
local minimum or maximum points on uneven terrains. If
mobile unit ¢ is already following a contour, p; and 7(g;)
are orthogonal to each other, thus, p;[y(g;)]T = 0. That is, the
terrain adaptation force is only activated when a mobile unit
is deviating from a contour.

III. ENERGY-EFFICIENT ANTI-FLOCKING CONTROL

This section introduces the proposed energy-efficient anti-
flocking control protocol which is based on the terrain adap-
tation force introduced in the previous section and the anti-
flocking algorithm proposed in [13]. Consider an MSN of size
N. It is assumed that all N mobile units carry isotropic radial
sensors of range 75 > 0 and communication modules of range
r¢ > 2rs. The control input of mobile unit ¢ is given by

up = f+ fE+ 7 (1)

where f& and f§ respectively represent the de-centering and
selfishness terms.

In (1), the de-centering term is used to keep mobile units
away from each other to maximize instantaneous coverage and
avoid collisions. It is defined as
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where S; = {j : |l¢j—aill <7e,j=1,2,...,N,j#i}. In(2),
d is the minimum desired distance gap between mobile units
and v is a non-negative repulsive pairwise potential function
[13] which is given by

Kp [1 + cos (Wﬂ , if z€[0,d],
0,

w(za d) =

otherwise.

Here, k,, is a positive constant.



In (1), the selfishness term is used to drive mobile units to
visit those recently unexplored areas in the Aol to maximize
the cumulative area coverage. It is defined as

fzfg = Ks(’ri -

where x and k,, are positive constants. In (3), r; is the position
of the navigation goal of mobile unit 7 at time ¢. The selection
of navigation goals have a direct impact on the area coverage
performances as they help to guide the mobile units in the
Aol. Thus, r; need to be carefully calculated to improve area
coverage performances.

ql) — KoPi, (3)

A. Section of Navigation Goals

The proposed anti-flocking control protocol uses informa-
tion maps [13] to record the sensing history of an Aol. A new
navigation goal selection method is introduced to minimize
the sensory coverage overlap and to encourage mobile units
to follow the contours. It is assumed that each mobile unit
carries its own information map. To ease representation, the
Aol is first discretized into a set of square cells. Let the center
coordinates (z,y) of all cells be denoted by a set W and the
local information map of mobile unit ¢ be denoted by m;.
Thereon, m;(w) carries the information on the time that a
cell centred at w was last visited. Initially, m;(w) = 0 for all
w € W. As time evolves and the mobile units keep moving
in the Aol, m;(w) is updated as m;(w) =t if ||w — ¢;|| < rs
at time ¢ > 0.

Apart from updating local information maps with their
sensing history, mobile units exchange their information maps
as they communicate with other connected mobile units.
Suppose mobile unit ¢ is connected with mobile unit j at
time ¢, i.e. ||¢; — ¢;|| < rc. Then, mobile unit i receives the
local information map of mobile unit j and updates its local
information map as m;(w) = m;(w) if m;(w) > m;(w)
for any w € W. Similarly, mobile unit j receives the local
information map of mobile unit ¢ and updates its local informa-
tion map. Such direct exchanges of information maps lead to
indirect communication of sensing history among mobile units.
Assume mobile unit ¢ connects with mobile unit j and later
mobile unit ¢ connects with mobile unit k. Even though mobile
unit k£ has never communicated with mobile unit j before,
mobile unit £ can receive the slightly delayed sensing history
of mobile unit j via the information map from mobile unit
1. Such direct and indirect communications lead to efficient
information dissemination within an MSN and help in efficient
controlling of mobile units.

To calculate r;, first m; is evaluated using a benefit function
which is given by

pi(mi, w,t) = (t —mi(w))(p+ (L = p)hi(w)), &)
where 0 < p < 1.In (4), (t—m;(w)) is the time span after the
cell centered at w has been last covered by sensors of a mobile
unit according to the information map m,; at time ¢ > 0. In
4), \i(w) is given as
Ai(w) = exp(=01lg; — wl| = oflri —w]| )
— asllr(a) — r(w)]).

Here, o1 and o9 are used to prioritize locations that are close
to mobile unit ¢ and its current navigation goal, respectively.
In (5), o3 is used to give higher preferences to the locations at
the same elevation as mobile unit %, i.e. to prioritize locations
on the same contour as mobile unit 7. Mobile units should visit
the locations that have the highest benefit values first. Hence,
the next navigation goal location is selected as

Ti(t + 1) = argmaxw(mi,w’t)v
wEWi

where W; = {w|w € W, lw — g;|| > |w — gil| > r..5 € Si}.
The proposed anti-flocking algorithm adopts three recalcula-
tion criteria for navigation goals as given in [13].

IV. PERFORMANCE EVALUATIONS

In this section, the proposed anti-flocking control protocol
is analyzed against the anti-flocking control protocol proposed
in [13] using the terrain models illustrated in Fig. 1. Math-
ematical formulations of those terrain models are given in
[20]. The energy consumption for navigation during a given
time period is calculated as the summation of kinetic energy
differences, potential energy differences, and the work done
against friction. It is assumed that air resistance is negligible.
In all simulations, it is assumed that the mass of a mobile
unit is 10 kg, the friction coefficient is 0.01, and gravity is
9.81 ms~2. All simulations were carried out using MATLAB
software on a computer with Intel Core i5-6200U CPU, 16GB
of RAM, and Microsoft Windows 10.

The simulations were carried out to compare the motion
patterns of MSNs controlled by the two anti-flocking control
protocols under test. The parameters were set as follows:
rs = 15 m, 7. = 40 m, d = 27 m, xp = 10, K, = 15,
Ky = 0.6, kg = 0.1, 01 = 0.04, 05 = 0.01, and o3 = 0.1. In
the first simulation, three mobile sensory units were distributed
uniformly at random on the terrain model 1 and performed
monitoring until they achieve 100% cumulative area coverage,
i.e. a full scan. Motion patterns generated by the mobile
units under each control protocols are illustrated in Fig. 2.
According to the given results, the mobile units that are
controlled by the protocol in [13] tend to move in straight
paths where in contrast, mobile units that are controlled by the
proposed protocol tend to follow terrain contours. According
to the results obtained, the MSN controlled by the protocol
in [13] has consumed 3596.63 J in total to complete the full
scan. In comparisson, the MSN controlled by the proposed
controlled protocol has consumed only 2018.36 J to complete
the full scan. In the second simulation, four mobile units were
distributed uniformly at random on the terrain model 2 and
performed monitoring until they complete a full scan. The
corresponding motion patterns are illustrated in Fig. 3. In this
simulation, the MSN controlled by the protocol in [13] has
consumed 5652.72 J in a full scan. The MSN controlled by
the proposed controlled protocol has consumed only 4462.88
J to complete a full scan. According to the results of those
two simulations, the proposed protocol leads to more energy-
efficient navigation of MSNs over the control protocol in [13].

In order to further verify the above results, extensive simula-
tions were carried out using different numbers of mobile units
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Fig. 2. Motion patterns of 3 mobile units controlled by (a) the anti-flocking
control protocol in [13] and (b) the proposed anti-flocking control protocol,
on the terrain model 1. Circles and hexagons represent the mobile units and
their navigation goals. Curved trails in the same color as the mobile units
illustrate their path history. Gray colored lines in the background are contours
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Fig. 3. Motion patterns of 4 mobile units controlled by (a) the anti-flocking
control protocol in [13] and (b) the proposed anti-flocking control protocol,
on the terrain model 2.

which were innitially distributed uniformly at random on the
selected terrains. In all simulations, the following parameters
remained fixed for a fair evaluation: r, = 10 m, . = 30
m, d = 18 m, K, = 15, kK, = 0.6, ks = 0.1, o1 = 0.04,
o2 = 0.01, and o3 = 0.1. Three variations of the proposed
control protocol were obtained by setting «;, = 0, 5, and 10
correspondingly. Note that the effect of the terrain adaptation
force is eliminated by setting x; = 0. Such a setting helps to
evaluate the new navigation goal selection method against that
in [13].

The first set of simulations were carried out using the terrain
model 1. Statistical results of the simulations are given in Fig.
4. According to the results given in Fig. 4a, the instantaneous
area coverage of all MSNs under test linearly increases with
the network size. It is quite understandable as these anti-
flocking control protocols try to minimize the sensory coverage
overlaps by keeping mobile units away from each other.
Nevertheless, it is obvious that the proposed energy-efficient
controls do not affect the instantaneous area coverage of
MSNSs. According to the results given in Fig. 4b, the proposed
navigation goal selection method is able to reduce the energy
consumption of mobile units navigating on uneven terrains
by prioritizing locations with same elevation as that of the
mobile units. Most importantly, the energy consumption of
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consumption of MSNs during a full scan of the Aol. All data points have been
obtained by averaging results from 50 simulations using the terrain model 1.

mobile units has been further reduced with the introduction
of the proposed terrain adaptation force. Interestingly, further
increasing the effect of terrain adaptation force by increasing
Kp did not lend further reduction of energy consumption.

The second set of simulations were carried out using the
terrain model 2. Statistical results of the simulations are given
in Fig. 5. The given results further confirm the observations
made using the results given in Fig. 4.

V. DISCUSSION

According to the simulation results presented in the previous
section, the proposed distributed anti-flocking control protocol
is capable of minimizing the energy consumption of MSNs
utilized on uneven terrains while demonstrating similar dy-
namic area coverage performances as the anti-flocking control
protocol in [13]. However, mobile units may take longer
time to explore an environment under the proposed control
protocol as they tend to follow terrain contours which usually
results in longer paths compared to shortest possible paths.
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consumption of MSNs during a full scan of the Aol. All data points have been
obtained by averaging results from 50 simulations using the terrain model 2.

Hence, the proposed anti-flocking control protocol is more
suitable for applications which energy consumption is given
a high priority. This work only focuses on minimizing the
energy used for the navigation of mobile units. The energy
consumed by mobile units is not only for navigation but also
includes communication, sensing, processing, and so on. The
minimization of the energy consumption of those additional
modules should be addressed separately and it is out of the
scope of this work.

VI. CONCLUSION AND FUTURE WORK

An energy-efficient anti-flocking control protocol is pro-
posed for MSNs utilized on uneven terrains. A terrain adapta-
tion force is introduced to encourage mobile units to suppress
motions that are orthogonal to terrain contours. A navigation
goal selection method is proposed to minimize the sensory
coverage overlaps and energy consumption by prioritizing
locations with the same elevation as that of mobile units.

Simulation results demonstrate impressive energy saving ca-
pabilities of the proposed anti-flocking protocol.

All existing anti-flocking control protocols, including the
proposed protocol, try to keep mobile units moving all the
time. It could be possible to save more energy by resting some
of the mobile units if a satisfactory dynamic area coverage has
been achieved in their surrounding area. Hence, future work
should study the effect of stalling mobile units adaptively.
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