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It is well known that purchase of luxury fashion brands is strongly influenced by social needs such as the need for uniqueness and the
need of conformity. The existence of these two competing social needs separates customers into two groups who exhibit different
buying behaviors. This paper concerns the impacts of such social influences between different consumer groups on pricing and
advertising strategies of luxury fashion brands with penalty of insufficient advertising.We start by considering different advertising
allocation strategies and derive the corresponding local optimal pricing and advertising allocation policies, through which the
global optimal policy that maximizes the company’s profit can be obtained. Important insights on strategic advertising for luxury
fashion brands are discussed.

1. Introduction

With the spectacular growth of consumption in its market,
luxury fashion has become an area of growing interest to
practitioners as well as academicians. Due to its high-price
positioning, luxury fashion was used to be out of reach of
mass consumption; however, luxury fashion brands are now
developing strategies to manage broader diversity of con-
sumer preferences for increasing profits. Luxury fashion
brands such as Chanel, Christian Dior, Gucci, and Louis
Vuitton have been employing a variety of branding strategies
to tackle the problem of being out of reach of mass con-
sumption, particularly in Asian countries such as China,
Japan and Korea (notice that for many luxury fashion brands,
consumers from China are critical [1, 2], and their conspicu-
ous behaviors are very influential for luxury fashion brands’
operations).

In addition to various branding strategies such as brand
extensions [3] and strategic pricing [4], advertising is deemed
an effective strategy for luxury fashion brands to develop
and maintain huge demand and consumption. Apart from
the physical value (quality) their products provide, luxury
fashion brands highly emphasize the symbolic value (pres-
tige) their image project. As such, advertising is a common
tool that luxury brands rely on in building brand salience.

Advertising influences not only the “immediate” purchase
but also the long-term brand equity of the luxury brand.
Advertising, along with personal experience, is an unde-
niable force in creating brand equity [5]. One mechanism
of creating brand equity via advertising is by creating and
enhancing brand image.

Meanwhile, it is well known that consumption is strongly
influenced by social needs such as prestige and self-image
[6, 7]. For luxury fashion brands, consumers are influenced
by two competing social needs: the need for uniqueness and
the countervailing need for conformity in purchase [8, 9].
Accordingly, a luxury fashion brand needs to reconcile the
potential tradeoffs between exclusivity and accessibility on
target advertising groups. On the one hand, exclusivitymakes
a brand out of ordinary as well as projects a positive brand
association of user profiles; on the other hand, accessibility
provides sufficient sales and profits [10, 11].

Recognition of the social need for uniqueness and that
for conformity also implies the existence of two types of con-
sumers, namely, the elites and the majority masses. The elites
are usually more fashion conscious and would like to distin-
guish themselves from themasses in consumption, whilst the
masses seek to emulate the choices of the elites (see [12–14] for
the details). In this paper, following Zheng et al. [14], we refer
to the elite consumers and the majority masses as the leader
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group (LG) and the follower group (FG), respectively. The
former group usually plays a leadership role in the fashion
trend, whereas the latter one is usually following the purchase
of LG.

In light of the different buying behaviors between the two
groups of consumers, luxury fashion brands must target each
of them effectively and efficiently with proper allocation the
limited advertising budget in order to obtain its best payoff.
Take the classic high-end British fashion brand Burberry
as an example. Burberry holds its own fashion shows in
Milan every year to attract its elite customers. The brand also
strengthens the social interaction with its mass customers;
it is now the leading luxury fashion brand on Facebook
with over one million fans. In short, Burberry utilizes the
social influence for brand development, establishing a leading
presence across social media platforms, and creating new
communities of interest.

Zheng et al. [14] explore the impact of social influences on
the optimal pricing and advertising allocation strategies of a
luxury fashion brand in the presence of LG and FG, which
have social influences on each other. In this paper, we extend
Zheng et al. [14] with more realistic considerations. To be
specific, we investigate how a luxury fashion brand allocates
the limited advertising expense strategically to maximize its
profit. Similar to Zheng et al. [14], we consider a retail brand
owner that sells a luxury fashion product to the market that
consists of two groups of consumers (LG and FG) who have
social influence on each other. We consider the scenario that
there is a certain “basic amount” of advertising effort for each
market segment (FG, LG) in order to maintain the brand
strength; otherwise the brand would suffer in the long run
due to loss of goodwill from a group of consumers. To reflect
that a brand has concerns on its budget allocation for sus-
taining the respective brand’s role/positioning in the market
with respect to both groups of consumers, we consider that
there is a penalty cost in the form of a linear loss function for
any advertising effort lower than the basic amount for each
market segment.

2. Literature Review

Inmarketing science and operationsmanagement, there are a
considerable amount of studies that examine optimization of
analytical models with pricing and/or advertising decisions
under different settings. To take into consideration of the
effect of advertising, Krähmer [15] considers a model with
advertising that informs the public of brand names and cre-
ates the possibility of conspicuous consumption by rendering
brands as a signaling device. The author shows that advertis-
ing increases consumers’ willingness to pay which provides
a foundation, based on optimization behavior, for persuasive
approaches to advertising. Grosset andViscolani [16] propose
a model of a firm that advertises a product in a homoge-
neous market, where a constant exogenous interference is
present. They reveal that the optimal policy takes one of two
forms: either a positive and constant advertising effort or a
decreasing effort starting from a positive level and eventually
reaching the zero value at a finite exit time. Ghosh and Stock
[17] use a model of informative advertising to study the

effect of penetration on competing advertisers’ strategies and
profits. Conditions under which an increase in penetration
counter intuitively leads firms to increase advertising levels
and enjoy higher profits are identified. In Zheng et al. [14], the
authors consider that advertising has a direct impact on social
needs but lack of considering the impact of the penalty of the
insufficient advertising on the target groups. It is important
to consider the loss from the insufficient advertising for
the target group because in practices, low advertising effort
on the market might have a negative impact on market
demand.

It is well known that advertising on target groups can
increase the group’s consumption. In practice, most of the
time, advertising is targeted [18, 19]. Anand and Shachar [18]
study a model in which firms can target their advertisements
to particular groups of consumers, and advertising is noisy.
They consider the case that a particular product has a better
fit with the tastes of some consumers than those of the oth-
ers, and consumer-utility depends on the resulting “match”
between product attributes and their tastes. Raghavan and
Iyer [19] examine advertising strategy when competing firms
can target their advertising effort to different groups of con-
sumers within a market. With targeted advertising, they find
that firms advertise more to consumers who have a strong
preference for their product than to comparison shoppers
who can be attracted to the competition. They argue that
advertising less on comparison shoppers can be seen as a
way for firms to endogenously increase differentiation in the
market. Interestingly, they also find that target advertising
leads to higher profits, regardless of the firms’ ability to set
targeted prices.

Our study is related to the work in social factors and con-
spicuous consumption [15, 20, 21]. Focusing on the conspic-
uous products, Krähmer [15] indicates that brands are con-
sumed for image reasons and advertising creates a brand’s
image. He argues that advertising informs the public of brand
names and creates the possibility of conspicuous consump-
tion. In a price-competition framework, he shows that adver-
tising increases consumers’ willingness to pay and thus pro-
vides a foundation for determining the optimal advertising
strategy.Moreover, he finds that an incumbentmight strategi-
cally overinvest in advertising to deter entry, and competition
might be socially undesirable. McClure and Kumcu [20]
formalize the relationship between the optimal price/quantity
combination and the thoroughness of conspicuous product
promotions.They reveal that iterating towards the profitmax-
imizing thoroughness of product promotion will lead to a
backward bending price/quantity locus. In this paper, we
study an optimal control problem in the fashion apparel
industry.We establish the studywhich analytically shows how
a firm allocates the target advertising strategically on the lux-
ury fashion brands when facing the market demand is
affected by consumer desire for exclusivity and conformity,
respectively.

3. The Model

We consider the scenario that a company sells a fashion
product to the market with two groups of customers, namely,
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the leader-group (LG) customers and the follower-group
(FG) customers. Similar to Zheng et al. [14], the demands of
these two groups are interdependent: a higher demand of LG
induces a higher demand of FG, but a higher demand of FG
implies a lower demand of LG.The unit product cost is 𝑐, and
the unit retail price is 𝑝, where 𝑝 > 𝑐 > 0. We consider
the case that 𝑐 is exogenous, whilst 𝑝 is decided by the
company. Both groups are price sensitive, and demands of
both groups are strictly decreasing in 𝑝 (Chiu et al. [22]).
In order to increase the sales volume of the product, the
company implements advertising campaigns on LG and FG,
respectively, and the total advertising resource and effort of
the company spent on the advertising campaigns are denoted
by 𝑒. Let 𝜆 be the proportion of the effort to be spent on LG,
where 𝜆 ∈ [0, 1].Then (1−𝜆) is the proportion of the effort to
be spent on FG. The advertising cost function 𝐶(𝑒) is strictly
increasing in 𝑒, and the marginal cost of the total advertising
effort is strictly increasing in 𝑒; that is, 𝑑𝐶(𝑒)/𝑑𝑒 > 0 and
𝑑
2
𝐶(𝑒)/𝑑𝑒

2
> 0. In order to have closed-form solutions to

generate more analytical insights, we consider 𝐶(𝑒) = ℎ𝑒
2,

where ℎ > 0. We denote the strategy of company with
advertising and pricing by 𝜔 = {𝑒, 𝜆, 𝑝}. We only focus on
the set of finite 𝜔; that is, 𝜔 ∈ Ω = {0 ≤ 𝑒 < +∞, 0 ≤ 𝜆 ≤ 1,

𝑐 < 𝑝 < +∞}. To reflect the interdependency of the demands
of different customer groups in the luxury fashionmarket, we
adopt the following additive demand functions of LG and FG,
respectively:

𝐷
𝐿
(𝜔) = [𝑉

𝐿
(𝜔)]
+

, 𝐷
𝐹
(𝜔) = [𝑉

𝐹
(𝜔)]
+

, (1)

where 𝑉
𝐿
(𝜔) = 𝑥

𝐿
+ 𝑎𝜆𝑒 − 𝑏𝐷

𝐹
(𝜔) − 𝑔𝑝, 𝑉

𝐹
(𝜔) = 𝑥

𝐹
+ 𝑎(1 −

𝜆)𝑒 + 𝛽𝐷
𝐿
(𝜔) − 𝛾𝑝, [𝑌]+ = max{0, 𝑌}, and 𝑥

𝐿
, 𝑥
𝐹
, 𝑎, 𝛼, 𝑏,

𝛽, 𝑔, and 𝛾 are all nonnegative.
Different from Zheng et al. [14], we further consider that

certain amount of advertising is needed for each market
segment in order to maintain the brand strength; otherwise
the brand would suffer in the long run due to loss of goodwill
from a group of consumers. We hence consider the following
linear loss functions (Marinelli [23]) for insufficient advertis-
ing for LG and FG: Λ

𝐿
(𝑒) = 𝑚[𝑇 − 𝜆𝑒]

+ and Λ
𝐹
(𝑒) = 𝜇[𝜏 −

(1 − 𝜆)𝑒]
+, respectively, where 𝑇 ≥ 0 and 𝜏 ≥ 0 are the

minimumadvertising effort/resources for LG andFG, respec-
tively, and 𝑚 ≥ 0 and 𝜇 ≥ 0 are the marginal losses due
to insufficient advertising effort/resources that are assigned
for LG and FG, respectively. Accordingly, the profit of the
company is

𝜋
𝐿𝐿
(𝜔) = (𝑝 − 𝑐)𝐷 (𝜔) − 𝐶 (𝑒) − Λ

𝐿
(𝑒) − Λ

𝐹
(𝑒) ,

= (𝑝 − 𝑐)𝐷 (𝜔) − ℎ𝑒
2
− 𝑚[𝑇 − 𝜆𝑒]

+

− 𝜇[𝜏 − (1 − 𝜆) 𝑒]
+
.

(2)

In this section, our objective is to derive the optimal
advertising andpricing strategy for the social influencemodel
with linear loss function for insufficient advertising. Mathe-
matically, we consider the following optimization model:

max
𝜔∈Ω

𝜋
𝐿𝐿
(𝜔) = (𝑝 − 𝑐)𝐷 (𝜔) − 𝐶 (𝑒) − Λ

𝐿
(𝑒) − Λ

𝐹
(𝑒) ,

(P-SILL)

whereΩ = {𝑒 ≥ 0, 0 ≤ 𝜆 ≤ 1, 𝑝 > 𝑐}. (SILL stands for Social
Influence with Linear (L)oss penalty for insufficient advertis-
ing.)

Denote the optimal solution of (P-SILL) by 𝜔∗ = {𝑒
∗
,

𝜆
∗
, 𝑝
∗
}. Because of the presence of the penalty functions

of insufficient advertising, there exist some situations that
𝜋
𝐿𝐿
(𝜔
∗
) < 0; that is, the company is not profitable. In this

paper, we only consider the situations that the company is
profitable; that is, there exist some feasible 𝜔 that 𝜋

𝐿𝐿
(𝜔) > 0.

Similar to Zheng et al. [14], we have the following assumption.

Assumption 1. 𝑥
𝐿
> 𝑔𝑐 and 𝑥

𝐹
> 𝛾𝑐.

We employ Assumption 1 to make sure that there are
positive product demands in bothmarket segments when the
product is sold at production cost, and the social influences
are not considered.

Notice that since Λ
𝐿
(𝑒) and Λ

𝐹
(𝑒) are nondifferentiable

at 𝜆𝑒 = 𝑇 and (1 − 𝜆)𝑒 = 𝜏, respectively, 𝜋
𝐿𝐿
(𝜔) is non-dif-

ferentiable at 𝑒 = 𝑇/𝜆 and 𝑒 = 𝜏/(1 − 𝜆).
To deal with the fact that 𝜋

𝐿𝐿
(𝜔) is non-differentiable at

some points, we consider the following four exclusive strate-
gies in determining the optimal advertising and pricing
policy for the company.

Strategy 1. Advertising effort assigned to both market seg-
ments are sufficient; that is, 𝜆𝑒 ≥ 𝑇 and (1 − 𝜆)𝑒 ≥ 𝜏. In this
case, we have 𝑒 ≥ 𝑇 + 𝜏.

Strategy 2. Advertising effort assigned to LG is sufficient but
that to FG is insufficient; that is, 𝜆𝑒 ≥ 𝑇 and (1 − 𝜆)𝑒 < 𝜏. In
this case, we have 𝑒 ≥ 𝑇.

Strategy 3. Advertising effort assigned to LG is insufficient
but that to FG is sufficient; that is, 𝜆𝑒 < 𝑇and (1 − 𝜆)𝑒 ≥ 𝜏. In
this case, we have 𝑒 ≥ 𝜏.

Strategy 4. Advertising effort assigned to both market seg-
ments are insufficient, that is, 𝜆𝑒 < 𝑇 and (1 − 𝜆)𝑒 < 𝜏. In
this case, we have 𝑒 < 𝑇 + 𝜏.

Here, we consider the marketing strategy that the com-
pany sells the product to both FG and LG; in other words, we
assume 𝐷

𝐿
(𝜔) > 0 and 𝐷

𝐹
(𝜔) > 0. To facilitate presentation,

we use 𝑗 = 1, 2, 3, 4 to represent strategy 𝑗. All proofs of prop-
ositions are relegated to the Appendix.

In this paper, we focus on deriving the local optimal
advertising and pricing policies, as well as the respective
associated necessary conditions (and sufficient conditions as
well if it can be solved out analytically) for local optimality for
individual strategies. (Due to the complexity of the problem,
it is very difficult to obtain the necessary and sufficient con-
ditions for optimality for every strategy.Therefore, wemainly
focus on exploring the necessary conditions for optimality.)
For any given market parameters, the company can check
the necessary conditions for each strategy. If any one of the
necessary conditions of a particular strategy does not hold,
then the local optimal of that particular strategy does not
exist. In other words, the necessary conditions can be used
to screen out the strategies that never provide 𝜔∗ (the global
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optimal solution). Afterwards, the company can calculate the
corresponding company’s profits amongst the strategies with
local optimal policies satisfying the necessary conditions to
identify the global optimal strategy, which is the one that gives
the maximum profit to the company.

The total demand of the product is

𝐷 (𝜔) =

(𝐵 − 𝐺 (𝑝 − 𝑐) + 𝛼 (1 − 𝑏) 𝑒 + 𝜆𝑁
𝐼
𝑒)

(1 + 𝑏𝛽)

(3)

and the associated company’s profit is

𝜋
𝐿𝐿
(𝜔) =

{−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) [𝐵 + 𝛼 (1 − 𝑏) 𝑒 + 𝜆𝑁
𝐼
𝑒]}

(1 + 𝑏𝛽)

− ℎ𝑒
2
− 𝑚[𝑇 − 𝜆𝑒]

+
− 𝜇[𝜏 − (1 − 𝜆) 𝑒]

+
,

(4)

where 𝐺 = (1 − 𝑏)𝛾 + (1 + 𝛽)𝑔, 𝐵 = 𝑋 − 𝐺𝑐, and𝑁
𝐼
= 𝑎(1 +

𝛽) − 𝛼(1 − 𝑏).

3.1. Strategy 1. According to the basic conditions of Strategy
1, the company’s profit is

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) [𝐵 + 𝛼 (1 − 𝑏) 𝑒 + 𝜆𝑁
𝐼
𝑒]

1 + 𝑏𝛽

− ℎ𝑒
2
.

(5)

We first study the optimal 𝜆 for Strategy 1.

Proposition 2. For Strategy 1, (a) 𝜆∗ = 𝑇/(𝑇+𝜏) if 𝑒 = 𝑇+𝜏;
(b) 𝜆∗ = 1 − 𝜏/𝑒 if 𝑁

𝐼
> 0 and 𝑒 > 𝑇 + 𝜏; (c) 𝜆∗ = 𝑇/𝑒 if

𝑁
𝐼
< 0 and 𝑒 > 𝑇+𝜏; (d) 𝜆∗ can take any value which satisfies

(1 − 𝜆
∗
)𝑒 ≥ 𝜏 and 𝜆∗𝑒 ≥ 𝑇 if𝑁

𝐼
= 0.

Proposition 2 shows that the value of 𝜆∗ takes different
forms under various situations. Specifically, if 𝑒 = 𝑇 + 𝜏, then
𝜆
∗
= 𝑇/(𝑇 + 𝜏), and hence 𝜆∗𝑒 = 𝑇 and (1 − 𝜆∗)𝑒 = 𝜏. On

the one hand, if the company wants to assign the minimum
total advertising effort, the optimal advertising effort assigned
to individual market segments is just the minimum effort
in individual market segments. On the other hand, if the
company wants to assign a greater advertising effort (i.e., 𝑒 >
𝑇+𝜏), then the company should check the value of𝑁

𝐼
first. If

𝑁
𝐼
≥ 0, then 𝜆∗ = 1 − 𝜏/𝑒, in turn 𝜆∗𝑒 > 𝑇 and (1 − 𝜆∗)𝑒 = 𝜏.

Equivalently, the advertising effort assigned to LG is higher
than the minimum requirement, but the advertising effort
assigned to FG is just sufficient for 𝑒 > 𝑇 + 𝜏 and 𝑁

𝐼
≥ 0.

If 𝑁
𝐼
≤ 0, then 𝜆

∗
𝑒 = 𝑇 and (1 − 𝜆

∗
)𝑒 > 𝜏. (Noting

that 𝜆∗ can take any value which satisfies (1 − 𝜆
∗
)𝑒 ≥ 𝜏

and 𝜆
∗
𝑒 ≥ 𝑇 if 𝑁

𝐼
= 0. However, for simplicity, we only

demonstrate here the two special cases: 𝜆∗ satisfies (1−𝜆∗)𝑒 =
𝜏, and 𝜆

∗ satisfies 𝜆∗𝑒 = 𝑇, for 𝑁
𝐼
= 0.) Therefore, the

advertising effort assigned to FG is higher than theminimum
requirement, but the advertising effort assigned to LG is just
sufficient. As a remark, 𝑁

𝐼
represents the sensitivity of 𝜆

to product demand. Therefore, a bigger 𝜆 advances product
demand as well as company’s profit if𝑁

𝐼
is positive, a smaller

𝜆 advances product demand as well as company’s profit if𝑁
𝐼

is negative, and the value of 𝜆 does not affect product demand
and company’s profit if𝑁

𝐼
= 0.

Following Proposition 2, we further consider three sub-
strategies of Strategy 1:

Strategy 1(a): 𝜆∗ = 𝑇/(𝑇 + 𝜏) and 𝑒∗ = 𝑇 + 𝜏;
Strategy 1(b): 𝜆∗ = 1 − 𝜏/𝑒

∗, 𝑁
𝐼
≥ 0 and 𝑒∗ > 𝑇 + 𝜏;

and
Strategy 1(c): 𝜆∗ = 𝑇/𝑒∗,𝑁

𝐼
≤ 0 and 𝑒∗ > 𝑇 + 𝜏.

Notice that the above-mentioned conditions are specific for
the associated substrategies. In particular, they satisfy the
following three basic conditions of Strategy 1: 𝜆𝑒 ≥ 𝑇, (1 −
𝜆)𝑒 ≥ 𝜏, and 𝑒 ≥ 𝑇 + 𝜏. We now need to check whether they
fulfill the remaining basic conditions of Strategy 1, namely:
𝐷
𝐿
(𝜔) > 0 and𝐷

𝐹
(𝜔) > 0.

Denoted by 𝜔∗
𝐼.1(𝑖)

the local optimal advertising and pric-
ing policy for Strategy 1(𝑖), where 𝑖 = 𝑎, 𝑏, 𝑐. Next, we explore
the local optimal advertising and pricing policies for each
substrategy of Strategy 1.

Strategy 1(a). Specific conditions: 𝐷
𝐿
(𝜔) > 0, 𝐷

𝐹
(𝜔) > 0,

𝜆
∗
= 𝑇/(𝑇 + 𝜏), and 𝑒∗ = 𝑇 + 𝜏.
By putting 𝑒∗ = 𝑇 + 𝜏 and 𝜆∗ = 𝑇/(𝑇 + 𝜏) into (5), the

company’s profit for Strategy 1(a) becomes

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

1 + 𝑏𝛽

+

(𝑝 − 𝑐) [𝐵 + 𝑎 (1 + 𝛽) 𝑇 + 𝛼 (1 − 𝑏) 𝜏]

1 + 𝑏𝛽

− ℎ(𝑇 + 𝜏)
2
.

(6)

Notice that right hand side of (5) depends on 𝑝 only.

Proposition 3. For Strategy 1(a), the local optimal advertis-
ing and pricing policy exists only if (i) 𝐷

𝐿
(𝜔
∗

𝐼.1(𝑎)
) > 0 and

𝐷
𝐹
(𝜔
∗

𝐼.1(𝑎)
) > 0; (ii)𝐺 > 0; and (iii)𝐵+𝑎(1+𝛽)𝑇+𝛼(1−𝑏)𝜏 > 0.

Moreover, if the local optimal advertising and pricing policy for
Strategy 1(a) exists, then it is unique and is given by

𝜔
∗

𝐼.1(𝑎)
= {𝑒
∗

𝐼.1(𝑎)
= 𝑇 + 𝜏, 𝜆

∗

𝐼.1(𝑎)
=

𝑇

(𝑇 + 𝜏)

,

𝑝
∗

𝐼.1(𝑎)
=

𝐵 + 𝑎 (1 + 𝛽) 𝑇 + 𝛼 (1 − 𝑏) 𝜏

2𝐺

+ 𝑐} ,

(7)

𝜋
𝐿𝐿
(𝜔
∗

𝐼.1(𝑎)
) =

[𝐵 + 𝑎 (1 + 𝛽) 𝑇 + 𝛼 (1 − 𝑏) 𝜏]
2

4𝐺 (1 + 𝑏𝛽)

− ℎ(𝑇 + 𝜏)
2
.

(8)

The necessary conditions for the existence of 𝜔∗
𝐼.1(𝑎)

are
shown in Proposition 3. Specifically, conditions in Propo-
sition 3(i) are the basic conditions for any substrategy of
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Strategy 1. The condition in Proposition 3(ii) ensures that the
company’s profit function is concave in 𝑝, whereas the one in
Proposition 3(iii) ensures that the constraint𝑝 > 𝑐 is satisfied.
Moreover, Proposition 3 shows the explicit formulas of the
local optimal advertising and pricing policy (if it exists) and
the associated company’s profit for Strategy 1(a).

By considering the sensitivity of 𝑇 to 𝑒∗
𝐼.1(𝑎)

, 𝜆∗
𝐼.1(𝑎)

, and
𝑝
∗

𝐼.1(𝑎)
, we find that 𝑒∗

𝐼.1(𝑎)
, 𝜆∗
𝐼.1(𝑎)

and 𝑝
∗

𝐼.1(𝑎)
are all strictly

increasing in 𝑇 (because 𝑑𝑒∗
𝐼.1(𝑎)

/𝑑𝑇 = 1 > 0, 𝑑𝜆∗
𝐼.1(𝑎)

/𝑑𝑇 =

𝜏/(𝑇 + 𝜏)
2
> 0, and𝑑𝑝∗

𝐼.1(𝑎)
/𝑑𝑇 = 𝑎(1+𝛽)/(2𝐺) > 0). In other

words, a bigger 𝑇 induces a higher optimal total advertising
effort, a bigger optimal proportion of advertising effort
allocated to LG, and a higher local optimal retail price of the
product. On the other hand, 𝑒∗

𝐼.1(𝑎)
is strictly increasing in 𝜏,

and 𝜆∗
𝐼.1(𝑎)

is strictly decreasing in 𝜏. Besides, 𝑝∗
𝐼.1(𝑎)

is strictly
increasing in 𝜏 for 𝑏 < 1, and 𝑝∗

𝐼.1(𝑎)
is strictly decreasing in

𝜏 for 𝑏 > 1. This shows that 𝑇 and 𝜏 affect 𝜔∗
𝐼.1(𝑎)

differently.
Interestingly, the values of 𝑚 and 𝜇 do not affect 𝜔∗

𝐼.1(𝑎)
and

𝜋
𝐿𝐿
(𝜔
∗

𝐼.1(𝑎)
). An intuitive reason for this is that the advertising

effort assigned to both market segments is sufficient, so
the penalties (𝑚 and 𝜇) for insufficient advertisings can be
ignored.

Strategy 1(b). Specific conditions: 𝐷
𝐿
(𝜔) > 0, 𝐷

𝐹
(𝜔) > 0,

𝜆
∗
= 1 − 𝜏/𝑒

∗,𝑁
𝐼
≥ 0, and 𝑒∗ > 𝑇 + 𝜏.

By putting𝜆∗ = 1−𝜏/𝑒∗ into (5), the profit of the company
for Strategy 1(b) becomes

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) [𝐵 + 𝑎 (1 + 𝛽) 𝑒 − 𝜏𝑁
𝐼
]

1 + 𝑏𝛽

− ℎ𝑒
2
.

(9)

Proposition 4. For Strategy 1(b), the local optimal advertising
effort (as a function of 𝑝) is given by

𝑒
∗

𝐼.1(𝑏)
(𝑝) =

𝑎 (1 + 𝛽)

2ℎ (1 + 𝑏𝛽)

(𝑝 − 𝑐) , (10)

and 𝑒∗
𝐼.1(𝑏)

(𝑝) is strictly increasing in 𝑝.

Proposition 4 asserts that, for Strategy 1(b), a higher retail
price induces a high optimal advertising effort. Results of
Proposition 4 are not surprising especially for luxury prod-
ucts. Advertising usually provides surpluses to luxury prod-
ucts, which are reflected by a higher retail price of the luxury
product.

Proposition 5. Let 𝑌 = 4ℎ𝐺(1 + 𝑏𝛽) − 𝑎
2
(1 + 𝛽)

2. Then, for
Strategy 1(b), the local optimal advertising and pricing policy
exists only if (i) 𝑁

𝐼
≥ 0, 𝐷

𝐿
(𝜔
∗

𝐼.1(𝑏)
) > 0 and 𝐷

𝐹
(𝜔
∗

𝐼.1(𝑏)
) > 0;

(ii) 𝑌 > 0; (iii) 𝐵 > 𝑌(𝑇 + 𝜏)/[𝑎(1 + 𝛽)] + 𝑁
𝐼
𝜏. Moreover, if

the local optimal advertising and pricing policy for Strategy 1(b)
exists, then it is unique and is given by

𝜔
∗

𝐼.1(𝑏)
= {𝑒
∗

𝐼.1(𝑏)
, 𝜆
∗

𝐼.1(𝑏)
, 𝑝
∗

𝐼.1(𝑏)
} , (11)

𝜋
𝐿𝐿
(𝜔
∗

𝐼.1(𝑏)
) =

ℎ(𝐵 − 𝑁
𝐼
𝜏)
2

𝑌

,
(12)

where 𝑒∗
𝐼.1(𝑏)

= 𝑎(1 + 𝛽)(𝐵 − 𝑁
𝐼
𝜏)/𝑌, 𝜆∗

𝐼.1(𝑏)
= 1 − 𝜏/𝑒

∗

𝐼.1(𝑏)
,

and 𝑝∗
𝐼.𝑖(𝑏)

= 𝑐 + 2ℎ(𝐵 − 𝑁
𝐼
𝜏)(1 + 𝑏𝛽)/𝑌.

Thenecessary conditions for𝜔∗
𝐼.1(𝑏)

being finite are shown
in Proposition 5. Specifically, conditions in Proposition 5(i)
are the specific conditions of Strategy 1(b). The condition
in Proposition 5(ii) ensures that the profit function of the
company for Strategy 1(b) is concave in 𝑝. The condition in
Proposition 5(iii) ensures 𝑒 > 𝑇 + 𝜏 which is another basic
condition for Strategy 1(b). Notice that 𝑝∗

𝐼.1(𝑏)
> 𝑐 if and only

if 𝐵 > 𝑁
𝐼
𝜏. Because 𝐵 > 𝑌(𝑇 + 𝜏)/[𝑎(1 + 𝛽)] + 𝑁

𝐼
𝜏 implies

that 𝐵 > 𝑁
𝐼
𝜏, the condition in Proposition 5(iii) does cover

the constraint 𝑝 > 𝑐. Moreover, Proposition 5 provides the
explicit formulas of the local optimal advertising and pricing
policy (if it exists) and the associated company’s profit for
Strategy 1(b).

According to Proposition 5, 𝑒∗
𝐼.1(𝑎)

, 𝜆∗
𝐼.1(𝑎)

, 𝑝∗
𝐼.1(𝑎)

, and
𝜋
𝐿𝐿
(𝜔
∗

𝐼.1(𝑏)
) are decreasing in 𝜏(𝑑𝜆

∗

𝐼.1(𝑎)
/𝑑𝑇 = −𝑌𝐵/𝑎(1 +

𝛽)(𝐵 − 𝑁
𝐼
𝜏)
2
< 0, and the other derivatives are trivial, but

independent of 𝑇. In other words, for Strategy 1(b), a bigger 𝜏
induces a lower advertising effort, a smaller portion of adver-
tising effort allocated to LG, and a lower optimal retail price
of the product. However, 𝑇 does not affect 𝑒∗

𝐼.1(𝑎)
, 𝜆∗
𝐼.1(𝑎)

,
𝑝
∗

𝐼.1(𝑎)
, and 𝜋

𝐿𝐿
(𝜔
∗

𝐼.1(𝑏)
).

Finally, similar to Strategy 1(a), the value of 𝑚 and 𝜇 do
not affect 𝜔∗

𝐼.1(𝑏)
and 𝜋

𝐿𝐿
(𝜔
∗

𝐼.1(𝑏)
), as the advertising budgets

assigned to both market segments are sufficient, and hence
the penalties 𝑚 and 𝜇 for insufficient advertisings can be
ignored for Strategy 1(b).

Strategy 1(c). Specific conditions: 𝐷
𝐿
(𝜔) > 0, 𝐷

𝐹
(𝜔) > 0,

𝑁
𝐼
≤ 0, 𝑒∗ > 𝑇 + 𝜏, and 𝜆∗ = 𝑇/𝑒∗.
First of all, 𝑁

𝐼
≤ 0 is equivalent to 𝑎(1 + 𝛽) ≤ 𝛼(1 −

𝑏) which implies 𝑏 < 1 as 𝑎(1 + 𝛽) > 0. Then, by putting
𝜆
∗
= 𝑇/𝑒

∗ into (5), the profit of the company for Strategy 1(c)
becomes

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) [𝐵 + 𝛼 (1 − 𝑏) 𝑒 + 𝑇𝑁
𝐼
]

1 + 𝑏𝛽

− ℎ𝑒
2
.

(13)

Similar to Strategy 1(b), we obtain the following results for
Strategy 1(c).



6 Mathematical Problems in Engineering

Proposition 6. Let 𝑍 = 4ℎ𝐺(1 + 𝑏𝛽) − 𝛼
2
(1 − 𝑏)

2. Then, for
Strategy 1(c), (a) the local optimal advertising effort (as a func-
tion of 𝑝) is given by

𝑒
∗

𝐼.1(𝑐)
(𝑝) =

𝛼 (1 − 𝑏)

2ℎ (1 + 𝑏𝛽)

(𝑝 − 𝑐) , (14)

and 𝑒∗
𝐼.1(𝑐)

(𝑝) is strictly increasing in 𝑝.
(b)The local optimal advertising and pricing strategy exists

only if (i) 𝑁
𝐼
≤ 0, 𝐷

𝐿
(𝜔
∗

𝐼.1(𝑐)
) > 0 and 𝐷

𝐹
(𝜔
∗

𝐼.1(𝑐)
) > 0; (ii)

𝑍 > 0; (iii) 𝐵 > 𝑍(𝑇 + 𝜏)/[𝛼(1 − 𝑏)] − 𝑁
𝐼
𝑇. Moreover, if

the local optimal advertising and pricing policy for Strategy 1(c)
exists, then it is unique and is given by

𝜔
∗

𝐼.1(𝑐)
= {𝑒
∗

𝐼.1(𝑐)
, 𝜆
∗

𝐼.1(𝑐)
, 𝑝
∗

𝐼.1(𝑐)
} , (15)

𝜋
𝐿𝐿
(𝜔
∗

𝐼.1(𝑐)
) =

ℎ(𝐵 + 𝑁
𝐼
𝑇)
2

𝑍

,
(16)

where 𝑒∗
𝐼.1(𝑐)

= 𝛼(1−𝑏)(𝐵+𝑁
𝐼
𝑇)/𝑍, 𝜆∗

𝐼.1(𝑐)
= 𝑇𝑍/𝛼(1−𝑏)(𝐵+

𝑁
𝐼
𝑇), and 𝑝∗

𝐼.1(𝑐)
= 2ℎ(𝐵 + 𝑁

𝐼
𝑇)(1 + 𝑏𝛽)/𝑍 + 𝑐.

Similar to Propositions 4 and 5 for Strategy 1(b), Proposi-
tion 6(a) shows that the optimal advertising effort is increas-
ing in the optimal retail price for Strategy 1(c), and the neces-
sary conditions for 𝜔∗

𝐼.1(𝑐)
being finite are shown in Proposi-

tion 6(b). Specifically, conditions in Proposition 6(b)(i) are
the specific conditions of Strategy 1(c). The condition in
Proposition 6(b)(ii) ensures that the profit function of the
company for Strategy 1(c) is concave in 𝑝, whereas the one
in Proposition 6(b)(iii) ensures 𝑒 > 𝑇 + 𝜏, which is another
basic condition for Strategy 1(c). Notice that 𝑝∗

𝐼.𝑖(𝑐)
> 𝑐 if

𝐵 > 𝑍(𝑇 + 𝜏)/[𝛼(1 − 𝑏)] − 𝑁
𝐼
𝑇. Moreover, Proposition 6(b)

provides the explicit formulas of the local optimal advertising
and pricing policy (if it exists) and the associated company’s
profit for Strategy 1(c).

According to Proposition 6, 𝜋
𝐿𝐿
(𝜔
∗

𝐼.1(𝑐)
), 𝑒∗
𝐼.1(𝑐)

, and 𝑝∗
𝐼.1(𝑐)

are decreasing in𝑇, while 𝜆∗
𝐼.1(𝑐)

is increasing in𝑇.This shows
that the company will spend less on advertising, will be more
focused on LG, and will set a lower retail price of the product
when𝑇 increases. Although there is less expenditure spent on
advertising, the company still loses profit due to a lower retail
price of the product offered to the customers. On the other
hand, 𝑒∗

𝐼.1(𝑐)
, 𝜆∗
𝐼.1(𝑐)

, and 𝑝∗
𝐼.1(𝑐)

are independent of 𝜏. Similarly,
these findings are caused by the technical issue, as 𝑇 does not
include in any specific condition of Strategy 1(c).

Finally, similar to Strategies 1(a) and 1(b), the values of𝑚
and 𝜇 do not affect 𝜔∗

𝐼.1(𝑐)
and 𝜋

𝐿𝐿
(𝜔
∗

𝐼.1(𝑐)
), as the advertising

effort assigned to both market segments are sufficient, and
hence the penalties 𝑚 and 𝜇 for insufficient advertising can
be ignored for Strategy 1(c).

3.2. Strategy 2. According to the basic conditions of Strategy
2, the company’s profit is

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) [𝐵 + 𝛼 (1 − 𝑏) 𝑒 + 𝜆𝑁
𝐼
𝑒]

1 + 𝑏𝛽

− ℎ𝑒
2
− 𝜇 [𝜏 − (1 − 𝜆) 𝑒] .

(17)

Proposition 7. For Strategy 2, (a) the local optimal advertising
and pricing policy does not satisfy𝑁

𝐼
(𝑝 − 𝑐) < 𝜇(1 + 𝑏𝛽) and

𝑒 ≥ 𝑇 + 𝜏 simultaneously; (b) 𝜆∗ = 1 if 𝑒 = 𝑇; (c) 𝜆∗ = 1 if
𝑁
𝐼
(𝑝 − 𝑐) > 𝜇(1 + 𝑏𝛽) and 𝑒 > 𝑇; (d) 𝜆∗ = 𝑇/𝑒 if𝑁

𝐼
(𝑝 − 𝑐) <

𝜇(1 + 𝑏𝛽) and 𝑇 < 𝑒 < 𝑇 + 𝜏; and (e) multiple 𝜆∗ exist if
𝑁
𝐼
(𝑝 − 𝑐) = 𝜇(1 + 𝑏𝛽) and 𝑒 > 𝑇.

Proposition 7 asserts that we can ignore all the cases for
which 𝑁

𝐼
(𝑝 − 𝑐) < 𝜇(1 + 𝑏𝛽) and 𝑒 ≥ 𝑇 + 𝜏 under Strategy

2. It also shows that the value of 𝜆∗ varies under different
situations. Specifically, if the company wants to assign the
advertising effort such that 𝑒 = 𝑇, we have 𝜆∗ = 1. However,
if the companywants to assign the advertising effort such that
𝑒 > 𝑇, then the company should take into account the values
of𝑁
𝐼
(𝑝−𝑐) and𝜇(1+𝑏𝛽). In particular, if𝑁

𝐼
(𝑝−𝑐) > 𝜇(1+𝑏𝛽),

then 𝜆∗ = 1; if 𝑁
𝐼
(𝑝 − 𝑐) < 𝜇(1 + 𝑏𝛽), then 𝜆∗ = 𝑇/𝑒; if

𝑁
𝐼
(𝑝 − 𝑐) = 𝜇(1 + 𝑏𝛽), then for any given 𝑒 > 𝑇, any 𝜆 that

satisfies (1 − 𝜆)𝑒 < 𝜏 and 𝜆𝑒 ≥ 𝑇 is optimal for Strategy 2.
In other words, if 𝑁

𝐼
(𝑝 − 𝑐) > 𝜇(1 + 𝑏𝛽), then the company

should assign its advertising effort to LG only. If𝑁
𝐼
(𝑝 − 𝑐) <

𝜇(1+𝑏𝛽), then the company should assign to LG itsminimum
required advertising effort 𝑇, whereas to FG it should assign
the advertising effort less than 𝜏, theminimumrequired effort
for the group. Lastly, if 𝑁

𝐼
(𝑝 − 𝑐) = 𝜇(1 + 𝑏𝛽), then the

company can select any𝜆 that satisfies (1−𝜆)𝑒 < 𝜏 and𝜆𝑒 ≥ 𝑇.
As 𝜆 = 1 satisfies (1 − 𝜆)𝑒 < 𝜏 and 𝜆𝑒 ≥ 𝑇 for any given > 𝑇,
we take 𝜆∗ = 1 for 𝑁

𝐼
(𝑝 − 𝑐) = 𝜇(1 + 𝑏𝛽). According to the

previous discussions, we further consider four substrategies
of Strategy 2:

Strategy 2(a): 𝑒 = 𝑇, 𝜆∗ = 1;

Strategy 2(b):𝑁
𝐼
(𝑝−𝑐) > 𝜇(1+𝑏𝛽), 𝑒 > 𝑇, and 𝜆∗ = 1;

Strategy 2(c):𝑁
𝐼
(𝑝−𝑐) = 𝜇(1+𝑏𝛽), 𝑒 > 𝑇, and 𝜆∗ = 1;

and

Strategy 2(d):𝑁
𝐼
(𝑝 − 𝑐) < 𝜇(1 + 𝑏𝛽), 𝑇 < 𝑒 < 𝑇 + 𝜏,

and 𝜆∗ = 𝑇/𝑒.

The above-mentioned conditions are specific for the asso-
ciated substrategies. In particular, they satisfy the following
three basic conditions of Strategy 2: 𝜆𝑒 ≥ 𝑇, (1 − 𝜆)𝑒 < 𝜏, and
𝑒 ≥ 𝑇. Next, we need to check whether they also fulfill the
remaining basic conditions of Strategy 2, namely, 𝐷

𝐿
(𝜔) > 0

and𝐷
𝐹
(𝜔) > 0.

Denote by 𝜔∗
𝐼.2(𝑖)

, for 𝑖 = 𝑎, 𝑏, 𝑐, 𝑑, the local optimal adver-
tising and price policy for Strategy 2(𝑖). Next, we explore the
local optimal advertising and pricing policies for individual
substrategies.

Strategy 2(a). Specific conditions: 𝐷
𝐿
(𝜔) > 0, 𝐷

𝐹
(𝜔) > 0,

𝑒 = 𝑇, and 𝜆∗ = 1.
By putting 𝑒 = 𝑇 and 𝜆∗ = 1 into (17), the profit of the

company for Strategy 2(a) becomes

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) [𝐵 + 𝑎 (1 + 𝛽) 𝑇]

1 + 𝑏𝛽

− ℎ𝑇
2
− 𝜇𝜏.

(18)
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Proposition 8. For Strategy 2(a), the local optimal advertising
and pricing policy exists only if (i) 𝐷

𝐿
(𝜔
∗

𝐼.2(𝑎)
) > 0 and

𝐷
𝐹
(𝜔
∗

𝐼.2(𝑎)
) > 0; (ii) 𝐺 > 0; and (iii) 𝐵 + 𝑎(1 + 𝛽)𝑇 > 0.

Moreover, if the local optimal advertising and pricing policy for
Strategy 2(a) exists, then it is unique and is given by

𝜔
∗

𝐼.2(𝑎)
= {𝑒
∗

𝐼.2(𝑎)
= 𝑇, 𝜆

∗

𝐼.2(𝑎)
= 1,

𝑝
∗

𝐼.2(𝑎)
= 𝑐 +

[𝐵 + 𝑎 (1 + 𝛽) 𝑇]

(2𝐺)

} ,

(19)

𝜋
𝐿𝐿
(𝜔
∗

𝐼.2(𝑎)
) =

𝐵
2
+ 2𝐵𝑎 (1 + 𝛽) 𝑇 − 𝑌𝑇

2

4𝐺 (1 + 𝑏𝛽)

− 𝜇𝜏. (20)

The necessary conditions for𝜔∗
𝐼.2(𝑎)

being finite are shown
in Proposition 8. Specifically, conditions in Proposition 8(i)
are the basic conditions of Strategy 2.The condition in Propo-
sition 8(ii) ensures that the profit function of the company
for Strategy 2(a) is concave in 𝑝, whereas the condition
in Proposition 8(iii) ensures that 𝑝∗

𝐼.2(𝑎)
> 𝑐. Moreover,

Proposition 8 provides the explicit formulas of the local
optimal advertising and pricing strategy and the associated
company’s profit for Strategy 2(a). Furthermore, 𝑒∗

𝐼.2(𝑎)
and

𝑝
∗

𝐼.2(𝑎)
are strictly increasing in 𝑇. In other words, for Strategy

2(a), a bigger 𝑇 induces a higher optimal advertising effort
and a higher retail price of the product. On the other hand,
according to Proposition 8, we know that 𝑒∗

𝐼.2(𝑎)
and 𝑝∗

𝐼.2(𝑎)
are

independent of 𝜏.

Strategy 2(b). Specific conditions: 𝐷
𝐿
(𝜔) > 0, 𝐷

𝐹
(𝜔) > 0,

𝑁
𝐼
(𝑝 − 𝑐) > 𝜇(1 + 𝑏𝛽), 𝑒 > 𝑇, and 𝜆∗ = 1.
By putting 𝜆∗ = 1 into (17), the profit of the company for

Strategy 2(b) becomes

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) [𝐵 + 𝑎 (1 + 𝛽) 𝑒]

1 + 𝑏𝛽

− ℎ𝑒
2
− 𝜇𝜏.

(21)

As 𝑝 > 𝑐 and 𝜇(1 + 𝑏𝛽) > 0, 𝑁
𝐼
(𝑝 − 𝑐) > 𝜇(1 + 𝑏𝛽) implies

𝑁
𝐼
> 0.

Proposition 9. For Strategy 2(b), (a) the local optimal adver-
tising effort is given by

𝑒
∗

𝐼.2(𝑏)
(𝑝) = 𝑒

∗

𝐼.1(𝑏)
(𝑝) =

𝑎 (1 + 𝛽) (𝑝 − 𝑐)

[2ℎ (1 + 𝑏𝛽)]

, (22)

and 𝑒∗
𝐼.2(𝑏)

(𝑝) is strictly increasing in 𝑝.
(b) The local optimal advertising and pricing policy exists

only if (i) 𝑁
𝐼
> 0, 𝐷

𝐿
(𝜔
∗

𝐼.2(𝑏)
) > 0, and 𝐷

𝐹
(𝜔
∗

𝐼.2(𝑏)
) > 0; (ii)

𝑌 > 0; (iii) 𝐵 > 𝑇𝑌/[𝑎(1 + 𝛽)]; and (iv) 𝐵 ≥ 𝜇𝑌/(2ℎ𝑁
𝐼
).

Moreover, if the local optimal advertising and pricing policy for
Strategy 2(b) exists, then it is unique and is given by

𝜔
∗

𝐼.2(𝑏)
= {𝑒
∗

𝐼.2(𝑏)
, 𝜆
∗

𝐼.2(𝑏)
, 𝑝
∗

𝐼.2(𝑏)
} , (23)

𝜋
𝐿𝐿
(𝜔
∗

𝐼.2(𝑏)
) =

ℎ𝐵
2

𝑌

− 𝜇𝜏, (24)

where 𝑒∗
𝐼.2(𝑏)

= 𝑎(1 + 𝛽)𝐵/𝑌, 𝜆∗
𝐼.2(𝑏)

= 1, and 𝑝∗
𝐼.2(𝑏)

= 2ℎ𝐵(1 +

𝑏𝛽)/𝑌 + 𝑐.

Proposition 9(a) shows that, for Strategy 2(b), high retail
price should be supported by high advertising effort of the
company.

The necessary conditions for 𝜔
∗

𝐼.2(𝑏)
being finite are

shown in Proposition 9(b). Specifically, conditions in Propo-
sition 9(b)(i) are the specific conditions of Strategy 2(b). The
condition in Proposition 9(b)(ii) ensures that the profit func-
tion of the company for Strategy 2(b) is concave in 𝑝, whereas
that in Proposition 9(b)(iii) ensures 𝑒 > 𝑇 which is the basic
condition for Strategy 2(b). The condition in Proposi-
tion 9(b)(iv) ensures that 𝑁

𝐼
(𝑝 − 𝑐) > 𝜇(1 + 𝑏𝛽) which is

another basic condition for Strategy 2(b), noting that the
constraint 𝑝∗

𝐼.2(𝑏)
> 𝑐 is fulfilled under the condition in

Proposition 9(b)(iii). Moreover, Proposition 9(b) provides
the explicit formulas of the local optimal advertising and
pricing policy and the associated company’s profit for Strategy
2(b). Furthermore, 𝜋

𝐿𝐿
(𝜔
∗

𝐼.2(𝑏)
) is strictly decreasing in 𝜏 and

𝜇, but is independent of 𝑇 and𝑚.
Interestingly, as shown by Proposition 9(b), 𝑒∗

𝐼.2(𝑏)
, 𝜆∗
𝐼.2(𝑏)

,
and 𝑝

∗

𝐼.2(𝑏)
are independent of 𝜏 and 𝑇. These findings are

different from previous findings in which both the optimal
advertising effort and the optimal retail price depend on
either 𝜏 or 𝑇. On the other hand, 𝑒∗

𝐼.2(𝑏)
, 𝜆∗
𝐼.2(𝑏)

and 𝑝∗
𝐼.2(𝑏)

are
independent of 𝜇 and𝑚.

Strategy 2(c). Specific conditions: 𝐷
𝐿
(𝜔) > 0, 𝐷

𝐹
(𝜔) > 0,

𝑁
𝐼
(𝑝 − 𝑐) = 𝜇(1 + 𝑏𝛽), 𝑒 > 𝑇, and 𝜆∗ = 1.
As 𝑝 > 𝑐 and 𝜇(1+𝑏𝛽) > 0,𝑁

𝐼
(𝑝− 𝑐) = 𝜇(1+𝑏𝛽) implies

𝑁
𝐼
> 0.

Proposition 10. For Strategy 2(c), (a) the local optimal adver-
tising effort as a function of 𝑝 is given by

𝑒
∗

𝐼.2(𝑐)
(𝑝) = 𝑒

∗

𝐼.2(𝑏)
(𝑝) =

𝑎 (1 + 𝛽) (𝑝 − 𝑐)

[2ℎ (1 + 𝑏𝛽)]

, (25)

and 𝑒∗
𝐼.2(𝑐)

(𝑝) is strictly increasing in 𝑝.
(b) The local optimal advertising and pricing policy exists

only if (i)𝑁
𝐼
> 0,𝐷

𝐿
(𝜔
∗

𝐼.2(𝑐)
) > 0, and𝐷

𝐹
(𝜔
∗

𝐼.2(𝑐)
) > 0; and (ii)

𝑎𝜇(1 + 𝛽) > 2ℎ𝑁
𝐼
𝑇. Moreover, if the local optimal advertising

and pricing policy for Strategy 2(c) exists, then it is unique and
is given by

𝜔
∗

𝐼.2(𝑐)
= {𝑒
∗

𝐼.2(𝑐)
, 𝜆
∗

𝐼.2(𝑐)
, 𝑝
∗

𝐼.2(𝑐)
} , (26)

𝜋
𝐿𝐿
(𝜔
∗

𝐼.2(𝑐)
) =

𝐵𝜇

𝑁
𝐼

−

𝑌𝜇
2

4ℎ𝑁
2

𝐼

− 𝜇𝜏, (27)

where 𝑒∗
𝐼.2(𝑐)

= 𝑎𝜇(1 + 𝛽)/(2ℎ𝑁
𝐼
), 𝜆∗
𝐼.2(𝑐)

= 1, and 𝑝∗
𝐼.2(𝑐)

= 𝑐 +

𝜇(1 + 𝑏𝛽)/𝑁
𝐼
.
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Proposition 10(a) asserts that, for Strategy 2(c), a high
retail price should be supported by a high advertising effort
of the brand.

The necessary conditions for𝜔∗
𝐼.2(𝑐)

being finite are shown
in Proposition 10(b). Specifically, conditions in Proposi-
tion 10(b)(i) are the specific conditions of Strategy 2(c).
Proposition 10(b) also provides the explicit formulas of the
local optimal advertising and pricing policy and the asso-
ciated company’s profit for Strategy 2(c). Furthermore,
𝜋
𝐿𝐿
(𝜔
∗

𝐼.2(𝑐)
) is strictly decreasing in 𝜏 and independent of 𝑇

and𝑚.
As shown in Proposition 10(b), 𝑒∗

𝐼.2(𝑐)
, 𝜆∗
𝐼.2(𝑐)

, and 𝑝∗
𝐼.2(𝑐)

are independent of 𝜏 and 𝑇. These findings are similar to
those for Strategy 2(b). On the other hand 𝑒∗

𝐼.2(𝑐)
and𝑝∗

𝐼.2(𝑐)
are

increasing in 𝜇 but are independent of𝑚. Moreover, 𝜆∗
𝐼.2(𝑐)

is
independent of 𝜇 and𝑚.

Strategy 2(d). Specific conditions: 𝐷
𝐿
(𝜔) > 0, 𝐷

𝐹
(𝜔) > 0,

𝑁
𝐼
(𝑝 − 𝑐) < 𝜇(1 + 𝑏𝛽), 𝑇 < 𝑒 < 𝑇 + 𝜏 and 𝜆∗ = 𝑇/𝑒.
By putting 𝜆∗ = 𝑇/𝑒 into (17), the profit of the company

for Strategy 2(d) becomes

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) [𝐵 + 𝛼 (1 − 𝑏) 𝑒 + 𝑇𝑁
𝐼
]

1 + 𝑏𝛽

− ℎ𝑒
2
− 𝜇 [𝑇 + 𝜏 − 𝑒] .

(28)

Proposition 11. For Strategy 2(d), (a) the local optimal adver-
tising effort as a function of retail price 𝑝 is given by

𝑒
∗

𝐼.2(𝑑)
(𝑝) =

𝛼 (𝑝 − 𝑐) (1 − 𝑏)

[2ℎ (1 + 𝑏𝛽)]

+ 𝜇. (29)

(b) The local optimal advertising and pricing policy exists only
if (i) 𝐷

𝐿
(𝜔
∗

𝐼.2(𝑑)
) > 0 and 𝐷

𝐹
(𝜔
∗

𝐼.2(𝑑)
) > 0; (ii) 𝑍 > 0; (iii)

𝑇 < 𝑒
∗

𝐼.2(𝑑)
< 𝑇 + 𝜏; (iv) 2ℎ(𝐵 + 𝑁

𝐼
𝑇) + 𝛼𝜇(1 − 𝑏) > 0; and (v)

𝑁
𝐼
[2ℎ(𝐵 + 𝑁

𝐼
𝑇) + 𝛼𝜇(1 − 𝑏)] ≤ 𝜇𝑍. Moreover, if the local

optimal advertising and pricing policy for Strategy 2(d) exists,
then it is unique and is given by

𝜔
∗

𝐼.2(𝑑)
= {𝑒
∗

𝐼.2(𝑑)
, 𝜆
∗

𝐼.2(𝑑)
, 𝑝
∗

𝐼.2(𝑑)
} , (30)

𝜋
𝐿𝐿
(𝜔
∗

𝐼.2(𝑑)
) =

[2ℎ𝐵 + 2ℎ𝑁
𝐼
𝑇 + 𝛼𝜇 (1 − 𝑏)]

2

+ 𝜇
2
𝑍

4ℎ𝑍

− 𝜇 (𝑇 + 𝜏) ,

(31)

where 𝑒∗
𝐼.2(𝑑)

= 𝛼(1−𝑏)[2ℎ(𝐵+𝑁
𝐼
𝑇)+𝛼𝜇(1−𝑏)]/2ℎ𝑍+𝜇/2ℎ,

𝜆
∗

𝐼.2(𝑑)
= 𝑇/𝑒

∗

𝐼.2(𝑑)
, and 𝑝∗

𝐼.2(𝑑)
= (1+𝑏𝛽)[2ℎ(𝐵+𝑁

𝐼
𝑇)+𝛼𝜇(1−

𝑏)]/𝑍 + 𝑐, 𝜋
𝐿𝐿
(𝜔) = (−𝐺(𝑝 − 𝑐)

2
+ (𝑝 − 𝑐)[𝐵 + 𝛼(1 − 𝑏)𝑒 +

𝑇𝑁
𝐼
])/(1 + 𝑏𝛽) − ℎ𝜇

2
− 𝜇[𝑇 + 𝜏 − 𝜇].

Noting that 𝑒∗
𝐼.2(𝑑)

(𝑝) is strictly increasing in 𝑝 only if 𝑏 <
1. If 𝑏 > 1, then 𝑒∗

𝐼.2(𝑑)
(𝑝) is strictly decreasing in 𝑝.Therefore,

Proposition 11(a) asserts that a high advertising effort of the
company does not always support a high retail price and it
does happen if 𝑏 > 1 for Strategy 2(d).

The necessary conditions for𝜔∗
𝐼.2(𝑑)

being finite are shown
in Proposition 11(b). Specifically, conditions in Proposi-
tion 11(b)(i) are the basic conditions of Strategy 2, whilst that
in Proposition 11(b)(ii) ensures that the profit function of the
company for Strategy 2(d) is concave in 𝑝. The condition in
Proposition 11(b)(iii) ensures 𝑇 < 𝑒 < 𝑇 + 𝜏 which is one
of the specific conditions of Strategy 2(d), whereas the one
in Proposition 11(b)(iv) ensures that 𝑝∗

𝐼.2(𝑑)
> 𝑐. Finally, the

condition in Proposition 11(b)(v) ensures that 𝑁
𝐼
(𝑝 − 𝑐) <

𝜇(1+𝑏𝛽)which is another specific condition of Strategy 2(d).
Moreover, Proposition 11(b) provides the explicit formulas
of the local optimal advertising and pricing policy, and the
associated company’s profit for Strategy 2(d).

By considering the sensitivities of 𝑒∗
𝐼.2(𝑑)

and 𝑝
∗

𝐼.2(𝑑)
, we

observe that 𝑒∗
𝐼.2(𝑑)

and 𝑝∗
𝐼.2(𝑑)

are increasing in 𝑇 if 𝑁
𝐼
> 0,

decreasing in 𝑇 if𝑁
𝐼
< 0, whilst they are independent of 𝑇 if

𝑁
𝐼
= 0. In other words, a bigger 𝑇 induces a bigger optimal

advertising effort and a higher optimal retail price for Strategy
2(d) if𝑁

𝐼
is positive. By contrast, a bigger𝑇 induces a smaller

optimal advertising effort and a smaller optimal retail price
for Strategy 2(d) if𝑁

𝐼
is negative. Regarding the sensitivities

of 𝜏 to 𝑒
∗

𝐼.2(𝑑)
, 𝜆∗
𝐼.2(𝑑)

, and 𝑝
∗

𝐼.2(𝑑)
, from Proposition 15, it is

obvious that 𝑒∗
𝐼.2(𝑑)

, 𝜆∗
𝐼.2(𝑑)

, and 𝑝∗
𝐼.2(𝑑)

are independent of 𝜏.

3.3. Strategy 3. According to the basic conditions of Strategy
3, the company’s profit for Strategy 3 is

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) [𝐵 + 𝛼 (1 − 𝑏) 𝑒 + 𝜆𝑁
𝐼
𝑒]

1 + 𝑏𝛽

− ℎ𝑒
2
− 𝑚 (𝑇 − 𝜆𝑒) .

(32)

We first study the optimal solution of 𝜆 for Strategy 3.

Proposition 12. For Strategy 3, (a) the local optimal advertis-
ing and pricing policy does not satisfy𝑁

𝐼
(𝑝 − 𝑐) > −𝑚(1 + 𝑏𝛽)

and 𝑒 ≥ 𝑇 + 𝜏 simultaneously; (b) if 𝑒 = 𝜏, then 𝜆∗ = 0; (c) if
𝑁
𝐼
(𝑝 − 𝑐) > −𝑚(1 + 𝑏𝛽) and 𝜏 < 𝑒 < 𝑇+ 𝜏, then 𝜆∗ = 1 − 𝜏/𝑒;

(d) if 𝑁
𝐼
(𝑝 − 𝑐) < −𝑚(1 + 𝑏𝛽) and 𝑒 > 𝜏, then 𝜆∗ = 0; (e)

multiple 𝜆∗ exist if𝑁
𝐼
(𝑝 − 𝑐) = −𝑚(1 + 𝑏𝛽) and 𝑒 > 𝑇.

Proposition 12 asserts that we can ignore all the cases for
which𝑁

𝐼
(𝑝 − 𝑐) > −𝑚(1 + 𝑏𝛽) and 𝑒 ≥ 𝑇 + 𝜏, under Strategy

3. Moreover, Proposition 12 shows that the value of 𝜆∗ varies
under different situations. Specifically, if the company wants
to exert its advertising effort as 𝑒 = 𝜏, then the company
should assign advertising effort to FG only, that is, 𝜆∗ = 0.
However, if the company wants to exert an advertising effort
greater than 𝜏 (i.e., 𝑒 > 𝜏), then the company should check
the value of𝑁

𝐼
(𝑝− 𝑐) +𝑚(1+ 𝑏𝛽). If𝑁

𝐼
(𝑝− 𝑐) > −𝑚(1+ 𝑏𝛽),

then 𝜆∗ = (1−𝜆)/𝑒. If𝑁
𝐼
(𝑝−𝑐) < −𝑚(1+𝑏𝛽), then 𝜆∗ = 0. If

𝑁
𝐼
(𝑝−𝑐) = −𝑚(1+𝑏𝛽), then there exist multiple 𝜆∗. In other

words, if𝑁
𝐼
(𝑝 − 𝑐) < −𝑚(1 + 𝑏𝛽), then the company should

assign the advertising effort to FG only. However, if 𝑁
𝐼
(𝑝 −

𝑐) > −𝑚(1 + 𝑏𝛽), then the company should assign to FG
the minimum advertising resource for the group (i.e., 𝜏) and
to LG it should assign the advertising effort less than the
minimum advertising resource for the group (i.e., 𝑇).
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As𝑝 > 𝑐 and𝑚(1+𝑏𝛽) > 0,𝑁
𝐼
(𝑝−𝑐) ≤ −𝑚(1+𝑏𝛽) implies

that 𝑁
𝐼
< 0 and hence 𝑏 < 1. Furthermore, for 𝑁

𝐼
(𝑝 − 𝑐) =

𝜇(1 + 𝑏𝛽), the company can select any 𝜆 that satisfies (1 −
𝜆)𝑒 < 𝜏 and 𝜆𝑒 ≥ 𝑇. As 𝜆 = 0 satisfies (1 − 𝜆)𝑒 ≥ 𝜏 and
𝜆𝑒 < 𝑇 for any given 𝑒 > 𝑇, we take 𝜆∗ = 0 for 𝑁

𝐼
(𝑝 − 𝑐) =

−𝑚(1 + 𝑏𝛽). Further to the previous discussions, we consider
four substrategies of Strategy 3:

Strategy 3(a): 𝑒 = 𝜏 and 𝜆∗ = 0;
Strategy 3(b):𝑁

𝐼
(𝑝 − 𝑐) > −𝑚(1 + 𝑏𝛽), 𝜏 < 𝑒 < 𝑇 + 𝜏,

and 𝜆∗ = 1 − 𝜏/𝑒;
Strategy 3(c): 𝑏 < 1,𝑁

𝐼
< 0,𝑁

𝐼
(𝑝 − 𝑐) < −𝑚(1 + 𝑏𝛽),

𝑒 > 𝜏, and 𝜆∗ = 0;
Strategy 3(d): 𝑏 < 1,𝑁

𝐼
< 0,𝑁

𝐼
(𝑝 − 𝑐) = −𝑚(1 + 𝑏𝛽),

𝑒 > 𝜏, and 𝜆∗ = 0.

The above-mentioned conditions are specific to the associ-
ated substrategies. In particular, they satisfy the three basic
conditions of Strategy 3: 𝜆𝑒 < 𝑇, (1−𝜆)𝑒 ≥ 𝜏, and 𝑒 ≥ 𝜏. Next
weneed to considerwhether these substrategies also fulfill the
remaining basic conditions of Strategy 3, namely, 𝐷

𝐿
(𝜔) > 0

and𝐷
𝐹
(𝜔) > 0.

We denote by 𝜔∗
𝐼.3(𝑖)

, for 𝑖 = 𝑎, 𝑏, 𝑐, 𝑑, the local optimal
advertising and pricing policy for Strategy 3(𝑖). We now
proceed to explore the local optimal advertising and pricing
policies for individual substrategies.

Strategy 3(a). Specific conditions:𝐷
𝐿
(𝜔) > 0 and𝐷

𝐹
(𝜔) > 0,

𝑒 = 𝜏, and 𝜆∗ = 0.
By putting 𝑒 = 𝜏 and 𝜆∗ = 0 into (17), the profit of the

company for Strategy 3(a) becomes

𝜋
𝐿𝐿
(𝜔) =

(𝑝 − 𝑐) [𝐵 + 𝛼 (1 − 𝛽) 𝜏] − 𝐺(𝑝 − 𝑐)
2

1 + 𝑏𝛽

− ℎ𝑇
2
− 𝑚𝑇.

(33)

Proposition 13. For Strategy 3(a), the local optimal advertis-
ing and pricing policy exists only if (i) 𝐷

𝐿
(𝜔
∗

𝐼.3(𝑎)
) > 0 and

𝐷
𝐹
(𝜔
∗

𝐼.3(𝑎)
) > 0; (ii)𝐺 > 0; and (iii)𝐵+𝛼(1−𝑏)𝜏 > 0.Moreover,

if the local optimal advertising and pricing policy for Strategy
3(a) exists, then it is unique and is given by

𝜔
∗

𝐼.3(𝑎)
= {𝑒
∗

𝐼.3(𝑎)
= 𝜏, 𝜆

∗

𝐼.3(𝑎)
= 0,

𝑝
∗

𝐼.3(𝑎)
= 𝑐 +

[𝐵 + 𝛼 (1 − 𝑏𝛽) 𝜏]

(2𝐺)

} ,

(34)

𝜋
𝐿𝐿
(𝜔
∗

𝐼.3(𝑎)
) =

𝐵
2
+ 2𝐵𝛼 (1 − 𝑏) 𝜏 − 𝑍𝜏

2

4𝐺 (1 + 𝑏𝛽)

− 𝑚𝑇. (35)

The necessary conditions for𝜔∗
𝐼.3(𝑎)

being finite are shown
in Proposition 13. Specifically, conditions in Proposition 13(i)
are the basic conditions of Strategy 3, and the condition
in Proposition 13(ii) ensures that the profit function of
the company for Strategy 3(a) is concave in 𝑝, whilst that
in Proposition 13(iii) ensures that 𝑝∗

𝐼.3(𝑎)
> 𝑐. Moreover,

Proposition 13 shows the explicit formulas of the local optimal

advertising and pricing policy, as well as the associated
company’s profit for Strategy 3(a).

For the sensitivity of 𝜏 to 𝑒∗
𝐼.3(𝑎)

and 𝑝∗
𝐼.3(𝑎)

, from Propo-
sition 13, we find that 𝑒∗

𝐼.3(𝑎)
is always strictly increasing in 𝜏.

𝑝
∗

𝐼.3(𝑎)
is strictly increasing in 𝜏 only if 𝑏 < 1; if 𝑏 > 1, then

𝑝
∗

𝐼.3(𝑎)
is strictly decreasing in 𝜏. In other words, for Strategy

3(a), a bigger 𝜏 always induces a higher optimal advertising
effort. A bigger 𝜏 also induces a higher retail price of the
product if 𝑏 > 1, but it induces a lower retail price of the
product if 𝑏 < 1.

Strategy 3(b). Specific conditions: 𝐷
𝐿
(𝜔) > 0, 𝐷

𝐹
(𝜔) > 0,

𝑁
𝐼
(𝑝 − 𝑐) > −𝑚(1 + 𝑏𝛽), 𝜏 < 𝑒 < 𝑇 + 𝜏, and 𝜆∗ = 1 − 𝜏/𝑒.
By putting𝜆∗ = 1−𝜏/𝑒 into (32), the profit of the company

for Strategy 3(b) becomes

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) [𝐵 + 𝑎 (1 + 𝛽) 𝑒 − 𝜏𝑁
𝐼
]

1 + 𝑏𝛽

− ℎ𝑒
2
− 𝑚 (𝑇 − 𝑒 + 𝜏) .

(36)

Proposition 14. For Strategy 3(b), (a) the local optimal
advertising effort as a function of retail price 𝑝 is given by

𝑒
∗

𝐼.3(𝑏)
(𝑝) =

𝑎 (1 + 𝛽)

2ℎ (1 + 𝑏𝛽)

(𝑝 − 𝑐) +

𝑚

2ℎ

. (37)

Moreover, 𝑒∗
𝐼.3(𝑏)

(𝑝) is strictly increasing in 𝑝.
(b) The local optimal advertising and pricing policy exists

only if (i) 𝐷
𝐿
(𝜔
∗

𝐼.3(𝑏)
) > 0 and 𝐷

𝐹
(𝜔
∗

𝐼.3(𝑏)
) > 0; (ii) 𝑌 > 0; (iii)

𝐵 > 𝑁
𝐼
𝜏−𝑎𝑚(1+𝛽)/(2ℎ); (iv) (Θ𝜏−2mG(1+𝑏𝛽))/𝑎(1+𝛽) <

𝐵 < (𝑌𝑇+Θ𝜏−2𝑚𝐺(1+𝑏𝛽))/𝑎(1+𝛽); and (v) [2ℎ(𝐵−𝑁
𝐼
𝜏)+

𝑎𝑚(1+𝛽)]𝑁
𝐼
> −𝑚𝑌, whereΘ = 4ℎ𝐺(1+𝑏𝛽)−𝑎𝛼(1+𝛽)(1−𝑏)

and 𝑌 = 4ℎ𝐺(1 + 𝑏𝛽) − 𝑎
2
(1 + 𝛽)

2. Moreover, (c) if the local
optimal advertising and pricing policy for Strategy 3(b) exists,
then it is unique and is given by

𝜔
∗

𝐼.3(𝑏)
= {𝑒
∗

𝐼.3(𝑏)
, 𝜆
∗

𝐼.3(𝑏)
, 𝑝
∗

𝐼.3(𝑏)
} , (38)

𝜋
𝐿𝐿
(𝜔
∗

𝐼.3(𝑏)
) =

[2ℎ (𝐵 − 𝑁
𝐼
𝜏) + 𝑎𝑚 (1 + 𝛽)]

2

4ℎ
2
𝑌

− 𝑚 (𝑇 + 𝜏) +

𝑚
2

4ℎ

,

(39)

where 𝑒∗
𝐼.3(𝑏)

= 𝑎(1+𝛽)[2ℎ(𝐵−𝑁
𝐼
𝜏)+𝑎𝑚(1+𝛽)]/2ℎ𝑌+𝑚/2ℎ,

𝜆
∗

𝐼.3(𝑏)
= 1 − 𝜏/𝑒

∗

𝐼.3(𝑏)
, and 𝑝∗

𝐼.3(𝑏)
= 𝑐 + (1 + 𝑏𝛽)[2ℎ(𝐵 −𝑁

𝐼
𝜏) +

𝑎𝑚(1 + 𝛽)]/𝑌.

Proposition 14(a) implies that, for Strategy 3(b), a high
optimal retail price results in a high optimal advertising
effort. Proposition 14(c) shows the explicit formulas of the
local optimal advertising and pricing policy and the associ-
ated company’s profit for Strategy 3(b). Moreover, conditions
in Proposition 14(b)(i) are the basic conditions of Strategy
3; the condition in Proposition 14(b)(ii) ensures that the
profit function of the company for Strategy 3(b) is concave
in 𝑝 whilst that in Proposition 14(b)(iii) ensures 𝑝 > 𝑐; the
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condition in Proposition 14(b)(iv) ensures that 𝜏 < 𝑒 < 𝑇 + 𝜏
which is the specific condition of Strategy 3(b). Finally, the
condition in Proposition 14(b) ensures that 𝑁

𝐼
(𝑝 − 𝑐) >

−𝑚(1 + 𝑏𝛽), which is also the specific condition for Strategy
3(b).

Considering the sensitivities of 𝑇 with respect to 𝑒∗
𝐼.3(𝑏)

,
𝜆
∗

𝐼.3(𝑏)
, and 𝑝

∗

𝐼.3(𝑏)
, we observe that all 𝑒∗

𝐼.3(𝑏)
, 𝜆∗
𝐼.3(𝑏)

, and
𝑝
∗

𝐼.3(𝑏)
depend on 𝑁

𝐼
. A bigger 𝑇 induces a smaller optimal

advertising effort and a lower optimal retail price for Strategy
3(b) if 𝑁

𝐼
is positive. On the contrary, a bigger 𝑇 induces a

bigger optimal advertising effort and a higher optimal retail
price for Strategy 3(b) if 𝑁

𝐼
is negative. Finally, a bigger 𝑇

induces a smaller 𝜆∗
𝐼.3(𝑏)

if𝑁
𝐼
= 0.

Strategy 3(c). Specific conditions: 𝐷
𝐿
(𝜔) > 0, 𝐷

𝐹
(𝜔) > 0,

𝑁
𝐼
< 0,𝑁

𝐼
(𝑝 − 𝑐) < −𝑚(1 + 𝑏𝛽), 𝑒 > 𝜏 and 𝜆∗ = 0.

By putting 𝜆∗ = 0 into (32), the profit of the company for
Strategy 3(c) becomes

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) [𝐵 + 𝛼 (1 − 𝑏) 𝑒]

1 + 𝑏𝛽

− ℎ𝑒
2
− 𝑚𝑇.

(40)

Proposition 15. For Strategy 3(c), (a) the local optimal adver-
tising effort as a function of retail price 𝑝 is given by

𝑒
∗

𝐼.3(𝑐)
(𝑝) =

𝛼 (1 − 𝑏) (𝑝 − 𝑐)

2ℎ (1 + 𝑏𝛽)

, (41)

and 𝑒∗
𝐼.3(𝑐)

(𝑝) is strictly increasing in 𝑝.
(b) The local optimal advertising and pricing policy exists

only if (i)𝑁
𝐼
< 0, 𝐷

𝐿
(𝜔
∗

𝐼.3(𝑐)
) > 0 and 𝐷

𝐹
(𝜔
∗

𝐼.3(𝑐)
) > 0; (ii) 𝑍 >

0; (iii) 𝐵 > 𝜏𝑍/[𝛼(1 − 𝑏)]; and (iv) 𝐵 > −𝑚𝑍/(2ℎ𝑁
𝐼
), where

𝑍 = 4ℎ𝐺(1 + 𝑏𝛽) − 𝛼
2
(1 − 𝑏)

2. Moreover, if the local optimal
advertising and pricing policy for Strategy 3(c) exists, then it is
unique and is given by

𝜔
∗

𝐼.3(𝑐)
= {𝑒
∗

𝐼.3(𝑐)
=

𝛼𝐵 (1 − 𝑏)

𝑍

, 𝜆
∗

𝐼.3(𝑐)
= 0,

𝑝
∗

𝐼.3(𝑐)
= 𝑐 +

2ℎ𝐵 (1 + 𝑏𝛽)

𝑍

} ,

(42)

𝜋
𝐿𝐿
(𝜔
∗

𝐼.3(𝑐)
) =

ℎ𝐵
2

𝑍

− 𝑚𝑇. (43)

Proposition 15(a) shows that, for Strategy 3(c), a higher
retail price induces a higher optimal advertising effort of
the brand. Proposition 15(b) shows the explicit formulas of
the local optimal advertising and pricing policy and the
associated company’s profit for Strategy 3(c).Moreover, it also
states the necessary conditions for having a finite 𝜔∗

𝐼.3(𝑐)
. Plus,

according to Proposition 15(b) 𝑒∗
𝐼.3(𝑐)

, 𝜆∗
𝐼.3(𝑐)

, and 𝑝∗
𝐼.3(𝑐)

are all
independent of 𝑇, 𝜏,𝑚, and 𝜇.

Strategy 3(d). Specific conditions:𝐷
𝐿
(𝜔) > 0 and𝐷

𝐹
(𝜔) > 0,

𝑏 < 1,𝑁
𝐼
< 0,𝑁

𝐼
(𝑝 − 𝑐) = −𝑚(1 + 𝑏𝛽), 𝑒 > 𝜏, and 𝜆∗ = 0.

Proposition 16. For Strategy 3(d), (a) the local optimal adver-
tising effort as a function of 𝑝 is given by

𝑒
∗

𝐼.3(𝑑)
(𝑝) = 𝑒

∗

𝐼.3(𝑐)
(𝑝) =

𝛼 (1 − 𝑏) (𝑝 − 𝑐)

2ℎ (1 + 𝑏𝛽)

, (44)

and 𝑒∗
𝐼.3(𝑐)

(𝑝) is strictly increasing in 𝑝.
(b) the local optimal advertising and pricing policy exists

only if (i) 𝑁
𝐼
< 0, 𝐷

𝐿
(𝜔
∗

𝐼.3(𝑑)
) > 0, and 𝐷

𝐹
(𝜔
∗

𝐼.3(𝑑)
) > 0; (ii)

𝛼𝑚(𝑏 − 1) < 2ℎ𝑁
𝐼
𝜏. Moreover, if the local optimal advertising

and pricing policy for Strategy 3(d) exists, then it is unique and
is given by

𝜔
∗

𝐼.3(𝑑)
= {𝑒
∗

𝐼.3(𝑑)
=

𝛼𝑚 (𝑏 − 1)

(2ℎ𝑁
𝐼
)

, 𝜆
∗

𝐼.3(𝑑)
= 0,

𝑝
∗

𝐼.3(𝑑)
= 𝑐 −

𝑚 (1 + 𝑏𝛽)

𝑁
𝐼

} ,

(45)

𝜋
𝐿𝐿
(𝜔
∗

𝐼.3(𝑑)
) =

𝛼
2
𝑚
2
(1 − 𝑏)

2
− 4ℎ𝑚 [𝐺𝑚 (1 + 𝑏𝛽) + 𝐵𝑁

𝐼
]

4ℎ𝑁
2

𝐼

− 𝑚𝑇.

(46)

Proposition 16(a) asserts that, for Strategy 3(d), a high
retail price induces a high optimal advertising effort of the
brand. Proposition 16(b) provides the explicit formulas of the
local optimal advertising and pricing policy and the associ-
ated company’s profit for Strategy 3(d). Moreover, the neces-
sary conditions for having a finite 𝜔∗

𝐼.3(𝑑)
are shown in Propo-

sition 16(b). Specifically, conditions in Proposition 16(b)(i)
are the specific conditions of Strategy 3(d), whereas the
condition in Proposition 16(b)(ii) ensures 𝑒 > 𝜏, which is
also the specific condition for Strategy 3(d). As shown in
Proposition 16(b), 𝑒∗

𝐼.3(𝑑)
, 𝜆∗
𝐼.3(𝑑)

, and 𝑝∗
𝐼.3(𝑑)

are independent
of 𝜏, 𝑇, and 𝜇. On the other hand, 𝑒∗

𝐼.3(𝑑)
and 𝑝

∗

𝐼.3(𝑑)
are

increasing in𝑚.

3.4. Strategy 4. Basic conditions:𝐷
𝐿
(𝜔) > 0,𝐷

𝐹
(𝜔) > 0, 𝜆𝑒 <

𝑇, (1 − 𝜆)𝑒 < 𝜏 and 𝑒 < 𝑇 + 𝜏.
The company’s profit for Strategy 4 is

𝜋
𝐿𝐿
(𝜔) =

(𝑝 − 𝑐) [𝐵 + 𝛼 (1 − 𝑏) 𝑒 + 𝜆𝑁
𝐼
𝑒] − 𝐺(𝑝 − 𝑐)

2

1 + 𝑏𝛽

− ℎ𝑒
2
− 𝑚𝑇 − 𝜇𝜏 + (𝑚𝜆 + 𝜇 − 𝜇𝜆) 𝑒.

(47)

Proposition 17. (a) When𝑁
𝐼
(𝑝 − 𝑐) > (𝜇 − 𝑚)(1 + 𝑏𝛽) and

𝑇 ≤ 𝑒 < 𝑇 + 𝜏, Strategy 2 dominates Strategy 4. (b) When
𝑁
𝐼
(𝑝 − 𝑐) < (𝜇 − 𝑚)(1 + 𝑏𝛽) and 𝜏 ≤ 𝑒 < 𝑇 + 𝜏, Strategy 3

dominates Strategy 4. (c)When𝑁
𝐼
(𝑝−𝑐) = (𝜇−𝑚)(1+𝑏𝛽), at

least one of Strategies 2 and 3 dominates Strategy 4.

Proposition 17 states the three cases under which Strategy
4 will never be the global optimal advertising and pricing
strategy. Next, we focus on the remaining cases.
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Proposition 18. For Strategy 4, (a) if𝑁
𝐼
(𝑝 − 𝑐) > (𝜇 −𝑚)(1 +

𝑏𝛽) and 0 < 𝑒 < 𝑇, then 𝜆∗ = 1; (b) If𝑁
𝐼
(𝑝− 𝑐) < (𝜇−𝑚)(1+

𝑏𝛽) and 0 < 𝑒 < 𝜏, then 𝜆∗ = 0.

Proposition 17 shows that the value of 𝜆∗ differs under
different situations. Note that the value of 𝜆 can be ignored if
𝑒 = 0. If the company wants to assign advertising effort (i.e.,
𝑒 > 0), then the company should check the value of 𝑒 and
𝑁
𝐼
(𝑝 − 𝑐) + 𝑚(1 + 𝑏𝛽). If 𝑁

𝐼
(𝑝 − 𝑐) > (𝜇 − 𝑚)(1 + 𝑏𝛽) and

0 < 𝑒 < 𝑇, then the company should assign its advertising
effort to LG only. If𝑁

𝐼
(𝑝−𝑐) < (𝜇−𝑚)(1+𝑏𝛽) and 0 < 𝑒 < 𝜏,

then the company should assign its advertising effort to FG
only.

We further consider the following three substrategies of
Strategy 4:

Strategy 4(a): 𝑒∗ = 0;

Strategy 4(b):𝑁
𝐼
(𝑝 − 𝑐) > (𝜇 − 𝑚)(1 + 𝑏𝛽), 0 < 𝑒 < 𝑇

and 𝜆∗ = 1;

Strategy 4(c):𝑁
𝐼
(𝑝 − 𝑐) < (𝜇 − 𝑚)(1 + 𝑏𝛽), 0 < 𝑒 < 𝜏

and 𝜆∗ = 0.

The above-mentioned conditions are specific for the asso-
ciated substrategies. In particular, they satisfy the following
three basic conditions of Strategy 4, 𝜆𝑒 < 𝑇, (1 − 𝜆)𝑒 < 𝜏,
and 0 ≤ 𝑒 < 𝑇 + 𝜏. We proceed to check whether they also
fulfill the remaining basic conditions of Strategy 4, namely:
𝐷
𝐿
(𝜔) > 0 and𝐷

𝐹
(𝜔) > 0.

Denote by 𝜔
∗

𝐼.4(𝑖)
, for 𝑖 = 𝑎, 𝑏, 𝑐, the local optimal

advertising and price policy for Strategy 4(𝑖). In the following
we explore the local optimal advertising and pricing policies
for individual substrategies.

Strategy 4(a). Specific conditions: 𝑒∗ = 0.
By putting 𝑒∗ = 0 into (47), the profit of the company for

Strategy 4(a) becomes

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) 𝐵

1 + 𝑏𝛽

− ℎ𝑒
2
− 𝑚𝑇 − 𝜇𝜏. (48)

Proposition 19. For Strategy 4(a), the local optimal advertis-
ing and pricing policy exists only if (i) 𝐷

𝐿
(𝜔
∗

𝐼.4(𝑎)
) > 0 and

𝐷
𝐹
(𝜔
∗

𝐼.4(𝑎)
) > 0; (ii) 𝐺 > 0; and (iii) 𝐵 > 0. Moreover, if the

local optimal advertising and pricing policy exists, then it is
unique and is given by

𝜔
∗

𝐼.4(𝑎)
= {𝑒
∗

𝐼.4(𝑎)
= 0, 𝜆

∗

𝐼.4(𝑎)
= 0, 𝑝

∗

𝐼.4(𝑎)
=

𝐵

(2G)
+ c} , (49)

𝜋
𝐿𝐿
(𝜔
∗

𝐼.4(𝑎)
) =

𝐵
2

4𝐺 (1 + 𝑏𝛽)

− 𝑚𝑇 − 𝜇𝜏. (50)

Similar to the other strategies, the necessary conditions
for having a finite 𝜔∗

𝐼.4(𝑎)
are shown in Proposition 19.

Strategy 4(b). Specific conditions:𝑁
𝐼
(𝑝−𝑐) > (𝜇−𝑚)(1+𝑏𝛽),

0 < 𝑒 < 𝑇, and 𝜆∗ = 1.

By putting 𝜆∗ = 1 into (47), the profit of the company for
Strategy 4(b) becomes

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) [𝐵 + 𝑎 (1 + 𝛽) 𝑒]

1 + 𝑏𝛽

− ℎ𝑒
2
− 𝑚𝑇 − 𝜇𝜏 + 𝑚𝑒.

(51)

Proposition 20. For Strategy 4(b), (a) the local optimal adver-
tising effort as a function of retail price 𝑝 is given by

𝑒
∗

𝐼.4(𝑏)
(𝑝) =

𝑎 (1 + 𝛽)

2ℎ (1 + 𝑏𝛽)

(𝑝 − 𝑐) +

𝑚

2ℎ

= 𝑒
∗

𝐼.3(𝑏)
(𝑝) . (52)

Moreover, 𝑒∗
𝐼.4(𝑏)

(𝑝) is strictly increasing in 𝑝.
(b) The local optimal advertising and pricing policy exists

only if (i) 𝐷
𝐿
(𝜔
∗

𝐼.4(𝑏)
) > 0 and 𝐷

𝐹
(𝜔
∗

𝐼.4(𝑏)
) > 0; (ii) 𝑌 > 0; (iii)

𝐵 > −𝑎𝑚(1+𝛽)/(2ℎ) (condition for𝑝 > 𝑐); (iv)−2𝑚𝐺(1+𝑏𝛽)/
𝑎(1+𝛽) < 𝐵 < (𝑇𝑌−2𝑚𝐺(1+𝑏𝛽))/𝑎(1+𝛽); and (v) 2ℎ𝑁

𝐼
𝐵 >

𝜇𝑌−𝑚Θ. Moreover, if the local optimal advertising and pricing
policy for Strategy 4(b) exists, then it is unique and is given by

𝜔
∗

𝐼.4(𝑏)
= {𝑒
∗

𝐼.4(𝑏)
, 𝜆
∗

𝐼.4(𝑏)
, 𝑝
∗

𝐼.4(𝑏)
} , (53)

𝜋
𝐿𝐿
(𝜔
∗

𝐼.4(𝑏)
) =

ℎ𝐵
2
− 𝐵𝑎𝑚 (1 + 𝛽) + 𝑚

2
𝐺 (1 + 𝑏𝛽)

𝑌

− 𝑚𝑇 − 𝜇𝜏,

(54)

where 𝑒∗
𝐼.4(𝑏)

= (𝑎(1 + 𝛽)𝐵 + 2𝑚𝐺(1 + 𝑏𝛽))/𝑌, 𝜆∗
𝐼.4(𝑏)

= 1, and
𝑝
∗

𝐼.4(𝑏)
= [2ℎ𝐵 + 𝑎𝑚(1 + 𝛽)](1 + 𝑏𝛽)/𝑌 + 𝑐

Proposition 20(a) shows that for Strategy 4(b), a higher
retail price induces a higher advertising effort from the
company. The necessary conditions for having a finite 𝜔∗

𝐼.4(𝑏)

are shown in Proposition 20(b). In particular, conditions in
Proposition 20(b)(i) are the basic conditions for Strategy 4(b);
the condition in Proposition 20(b)(ii) ensures that the profit
function of the company for Strategy 4(b) is concave in 𝑝;
the one in Proposition 20(b)(iii) ensures 𝑝 > 𝑐; conditions
in Proposition 20(b)(iv) and (v) ensure that 0 < 𝑒 < 𝑇 and
𝑁
𝐼
(𝑝−𝑐) > (𝜇−𝑚)(1+𝑏𝛽), respectively, which are the specific

conditions for Strategy 4(b). Proposition 20(b) also shows the
explicit formulas of the local optimal advertising and pricing
policy and the associated company’s profit for Strategy 4(b).
Note that 𝑒∗

𝐼.4(𝑏)
, 𝜆∗
𝐼.4(𝑏)

, and 𝑝∗
𝐼.4(𝑏)

are independent of 𝑇 and
𝜏.

Strategy 4(c). Specific conditions:𝑁
𝐼
(𝑝−𝑐) < (𝜇−𝑚)(1+𝑏𝛽),

0 < 𝑒 < 𝜏, and 𝜆∗ = 0.
By putting 𝜆∗ = 0 into (47), the profit of the company for

Strategy 4(c) becomes

𝜋
𝐿𝐿
(𝜔) =

−𝐺(𝑝 − 𝑐)
2

+ (𝑝 − 𝑐) [𝐵 + 𝛼 (1 − 𝑏) 𝑒]

1 + 𝑏𝛽

− ℎ𝑒
2
− 𝑚𝑇 − 𝜇𝜏 + 𝜇𝑒.

(55)
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Proposition 21. For Strategy 4(c), the local optimal advertis-
ing effort as a function of retail price 𝑝 is given by

𝑒
∗

𝐼.4(𝑐)
(𝑝) =

𝛼 (1 − 𝑏) (𝑝 − 𝑐)

2ℎ (1 + 𝑏𝛽)

+

𝜇

2ℎ

. (56)

Note that 𝑒∗
𝐼.4(𝑐)

(𝑝) is strictly increasing in 𝑝 only if 𝑏 < 1;
if 𝑏 > 1, then 𝑒∗

𝐼.4(𝑐)
(𝑝) is strictly decreasing in 𝑝. Therefore,

Proposition 21 asserts that a higher retail pricemaynot induce
a greater advertising effort unless when 𝑏 < 1 for Strategy
4(c).

Proposition 22. For Strategy 4(c), the local optimal advertis-
ing and pricing policy exists only if (i) 𝐷

𝐿
(𝜔
∗

𝐼.4(𝑐)
) > 0 and

𝐷
𝐹
(𝜔
∗

𝐼.4(𝑐)
) > 0; (ii) 𝑍 > 0; (iii) 2ℎ𝐵 + 𝛼𝜇(1 − 𝑏) > 0; (iv)

0 < 2𝜇𝐺(1+𝑏𝛽)+𝛼(1−𝑏)𝐵 < 𝑍𝜏; and (v) 2ℎ𝐵𝑁
𝐼
< Θ𝜇−𝑍𝑚.

Moreover, if the local optimal advertising and pricing policy for
Strategy 4(c) exists, then it is unique and is given by

𝜔
∗

𝐼.4(𝑐)
= {𝑒
∗

𝐼.4(𝑐)
, 𝜆
∗

𝐼.4(𝑐)
, 𝑝
∗

𝐼.4(𝑐)
} ,

𝜋
𝐿𝐿
(𝜔
∗

𝐼.4(𝑐)
) =

ℎ𝐵
2

𝑍

− 𝑚𝑇,

(57)

where 𝑒∗
𝐼.4(𝑐)

= [2𝜇𝐺(1 + 𝑏𝛽) + 𝛼(1 − 𝑏)𝐵]/𝑍, 𝜆∗
𝐼.4(𝑐)

= 0, and
𝑝
∗

𝐼.4(𝑐)
= (1 + 𝑏𝛽)[2ℎ𝐵 + 𝛼𝜇(1 − 𝑏)]/𝑍 + 𝑐.

The necessary conditions for having a finite 𝜔∗
𝐼.4(𝑐)

are
shown in Proposition 22. Specifically, conditions in Propo-
sition 22(i) are the basic conditions for Strategy 4; the one
in Proposition 22(ii) ensures that the profit function of
the company for Strategy 4(c) is concave in 𝑝; the one in
Proposition 22(iii) ensures that 𝑝 > 𝑐; finally, the conditions
in Proposition 22(iv) and (v) ensure that 0 < 𝑒 < 𝜏 and𝑁

𝐼
(𝑝−

𝑐) < (𝜇 − 𝑚)(1 + 𝑏𝛽), which are the specific conditions for
Strategy 4(c). Moreover, Proposition 22 shows the explicit
formulas of the local optimal advertising and pricing policy
and the associated company’s profit for Strategy 4(c). Notice
that 𝑒∗
𝐼.4(𝑐)

, 𝜆∗
𝐼.4(𝑐)

, and 𝑝∗
𝐼.4(𝑐)

are all independent of 𝑇 and 𝜏.

4. Conclusions and Managerial Implication

In this study, we consider the double function of advertising
on (i) buying intention enhancement and (ii) long-term
brand equity building. We develop the model under which
a luxury fashion brand will suffer a loss when the advertising
effort to different customer groups is not up to a certain level.
We then derive the mechanism for the company to identify
the optimal strategies anddecisions in pricing and advertising
budget allocation.

We summarize the major findings related to the optimal
advertising strategies in the following. First, we find that
when there is no penalty for insufficient advertising, it is
optimal to allocate the advertising effort to a single customer
group only (i.e., either LG or FG). When there is a penalty
for insufficient advertising, it is more likely for the optimal
policy to have the advertising effort allocated to both LG and
FG. This implies that in light of the penalty for insufficient
advertising, the company should take a balance when allocat-
ing the advertising effort between the two groups and should

avoid being “polarized.” Second, we observe that the optimal
advertising effort is never decreasing in the optimal retail
price when there is no penalty for insufficient advertising.
However, this may not hold when there is penalty for insuf-
ficient advertising (for Strategy 2(d) with 𝑏 > 1 and Strategy
4(c) with 𝑏 > 1). Third, although there are 14 substrategies
in total, we observe that some of them can be screened out
by checking carefully their respective necessary conditions.
For example, substrategies 2(b), 2(c), 3(c), and 3(d) can be
screened out when 𝑁

𝐼
≥ 0, whilst substrategies 1(b), 2(b),

and 2(c) can be screened out when 𝑁
𝐼
< 0. Therefore, when

determining the global optimal advertising and pricing pol-
icy, the company should check the value of𝑁

𝐼
first and then

screen out substrategies that have no locally optimal and
feasible solutions. Such screening can significantly reduce the
computational effort required to solve the problem.

For future research, it will be important to expand the
scope to explore in a supply chain context with issues such as
supply chain coordination via incentive alignment schemes
(see [24–29]). It will also be interesting to explore how
computerized information systems support the development
of luxury fashion brands [30–32]. Last but not least, it is
promising to examine how the traditional logistical oper-
ational models, such as cross-docking [33] and inventory
planning [34], may be employed to enhance the operational
efficiency of luxury fashion brands.

Appendix

Proofs

Proof of Proposition 2. First of all, 𝑒 ≥ 𝑇 + 𝜏 holds under
Strategy 1. For 𝑒 = 𝑇 + 𝜏, 𝜆 = 𝑇/(𝑇 + 𝜏) is the only feasible
solution for Strategy 1.Therefore, 𝜆∗ = 𝑇/(𝑇+𝜏) for 𝑒 = 𝑇+𝜏
under Strategy 1. For 𝑒 > 𝑇+𝜏, by taking the first-order partial
derivative of (5) with respect to 𝜆, we have 𝜕𝜋

𝐿𝐿
(𝜔)/𝜕𝜆 =

𝑒𝑁
𝐼
(𝑝 − 𝑐)/(1 + 𝑏𝛽). Therefore, for any given 𝑝 > 𝑐 and

𝑒 > 𝑇 + 𝜏, if 𝑁
𝐼
≥ 0, then 𝜋

𝐿𝐿
(𝜔) is increasing in 𝜆. So

𝜆
∗
= Max{𝜆 : 𝜆𝑒 ≥ 𝑇 and (1 − 𝜆)𝑒 ≥ 𝜏}, or 𝜆∗ = Max{𝜆 :

𝜆 ≥ 𝑇/𝑒 and 𝜆 ≤ 1 − 𝜏/𝑒} = 1 − 𝜏/𝑒. In other words, we
have (1 − 𝜆∗)𝑒 = 𝜏 for𝑁

𝐼
> 0. On the other hand, if𝑁

𝐼
≤ 0,

then 𝜋
𝐿𝐿
(𝜔) is decreasing in 𝜆. So 𝜆

∗
= Min{𝜆 : 𝜆𝑒 ≥

𝑇 and (1 − 𝜆)𝑒 ≥ 𝜏}, or 𝜆∗ = Min{𝜆 : 𝜆 ≥ 𝑇/𝑒 and 𝜆 ≤

1 − 𝜏/𝑒} = 𝑇/𝑒. Hence we have 𝜆∗𝑒 = 𝑇 for 𝑁
𝐼
< 0. For

𝑁
𝐼
= 0, 𝜕𝜋

𝐿𝐿
(𝜔)/𝜕𝜆 = 0, so 𝜋

𝐿𝐿
(𝜔) is constant for all 𝜆. Thus

𝜆
∗ takes any value that satisfy (1−𝜆∗)𝑒 ≥ 𝜏 and 𝜆∗𝑒 ≤ 𝑇.

Proof of Proposition 3. As the feasible set of 𝜔 for Strategy
1(a) is an open set, the local optimum for Strategy 1(a) is an
interior point, if it exists. (i) Clearly, 𝐷

𝐿
(𝜔
∗

𝐼.1(𝑎)
) > 0 and

𝐷
𝐹
(𝜔
∗

𝐼.1(𝑎)
) > 0 are basic conditions for Strategy 1. (ii) By

taking the first- and second-order partial derivatives of (6)
with respect to 𝑝, we have 𝜕𝜋

𝐿𝐿
(𝜔)/𝜕𝑝 = (−2𝐺(𝑝 − 𝑐) + [𝐵 +

𝑎(1 + 𝛽)𝑇 + 𝛼(1 − 𝑏)𝜏])/(1 + 𝑏𝛽) and 𝜕2𝜋
𝐿𝐿
(𝜔)/𝜕𝑝

2

= −2𝐺,
where𝐺 = 𝐺/(1+ 𝑏𝛽). Therefore 𝜋

𝐿𝐿
(𝜔) is strictly concave in

𝑝 if and only if 𝐺 > 0. From the first-order optimal-
ity condition, 𝜋

𝐿𝐿
(𝜔) is uniquely maximized at 𝑝∗

𝐼,1(𝑎)
=

arg
𝑝
{𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑝 = 0} = [𝐵 + 𝑎(1 + 𝛽)𝑇 + 𝛼(1 − 𝑏)𝜏]/2𝐺 + 𝑐.
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Since 𝑝∗
𝐼.1(𝑎)

> 𝑐, we obtain 𝐵 + 𝑎(1 + 𝛽)𝑇 + 𝛼(1 − 𝑏)𝜏 > 0.
Finally, by putting 𝜔∗

𝐼.1(𝑎)
into (6), we obtain (8).

Proof of Proposition 4. For Strategy 1(b), by taking the first-
order and second-order partial derivatives of (9) with respect
to 𝑒, we obtain 𝜕𝜋

𝐿𝐿
(𝜔)/𝜕𝑒 = 𝑎(𝑝 − 𝑐)(1 + 𝛽)/(1 + 𝑏𝛽) − 2ℎ𝑒,

and 𝜕2𝜋
𝐿𝐿
(𝜔)/𝜕𝑒

2
= −2ℎ < 0.Therefore, 𝜕𝜋

𝐿𝐿
(𝜔) is a concave

function of 𝑒. Then by considering 𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑒 = 0, we

obtain (10). As 𝑎(1 + 𝛽)/[2ℎ(1 + 𝑏𝛽)] > 0, 𝑒∗
𝐼,1(𝑏)

(𝑝) is strictly
increasing in 𝑝.

Proof of Proposition 5. As the feasible set of 𝜔 for Strategy
1(b) is an open set, the local optimum for Strategy 1(b) is
an interior point solution, if it exists. 𝑁

𝐼
≥ 0, 𝐷

𝐿
(𝜔
∗

𝐼.𝑖(𝑏)
) >

0 and 𝐷
𝐹
(𝜔
∗

𝐼.𝑖(𝑏)
) > 0 are the basic conditions for Strat-

egy 1(b). By putting (10) into (9), we obtain 𝜋
𝐿𝐿
(𝜔) =

−𝑌(𝑝 − 𝑐)
2
/4ℎ(1 + 𝑏𝛽)

2
+ (𝐵 − 𝜏𝑁

𝐼
)(𝑝 − 𝑐)/(1 + 𝑏𝛽), and, for

Strategy 1(b), we have 𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑝 = −𝑌(𝑝−𝑐)/2ℎ(1 + 𝑏𝛽)

2
+

(𝐵 − 𝜏𝑁
𝐼
)/(1 + 𝑏𝛽), and 𝜕

2
𝜋
𝐿𝐿
(𝜔)/𝜕𝑝

2
= −𝑌/2ℎ(1 + 𝑏𝛽)

2.
Therefore, 𝜋

𝐿𝐿
(𝜔) is strictly concave in 𝑝 if and only if 𝑌 > 0.

From the first-order optimality condition, 𝜋
𝐿𝐿
(𝜔) is uniquely

maximized at 𝑝∗
𝐼.1(𝑏)

. Since 𝑝∗
𝐼.1(𝑏)

> 𝑐, we obtain 𝐵 > 𝑁
𝐼
𝜏.

Then by putting 𝑝∗
𝐼.1(𝑏)

into (10), we obtain 𝑒
∗

𝐼.1(𝑏)
. By con-

sidering 𝑒∗
𝐼.1(𝑏)

> 𝑇 + 𝜏 and 𝑌 > 0, we obtain item (iii) of
Proposition 5, which also covers 𝐵 > 𝑁

𝐼
𝜏. Lastly, by putting

𝜔
∗

𝐼.1(𝑏)
into (9), we obtain (12).

Proof of Proposition 6. By taking the first-order and second-
order partial derivatives of (13) with respect to 𝑒, we obtain
𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑒 = 𝛼(𝑝 − 𝑐)(1 − 𝑏)/(1 + 𝑏𝛽) − 2ℎ𝑒, and 𝜕2𝜋

𝐿𝐿
(𝜔)/

𝜕𝑒
2
= −2ℎ < 0. Therefore, for Strategy 1(c), 𝜋

𝐿𝐿
(𝜔) is a con-

cave function of 𝑒, and hence the optimal advertising efforts
as a function of retail price 𝑝 is given by (14). As 𝛼(1 −

𝑏)/[2ℎ(1 + 𝑏𝛽)] > 0, 𝑒∗
𝐼.1(𝑐)

(𝑝) is strictly increasing in 𝑝.
As the feasible set of 𝜔 for Strategy 1(c) is an open set, the

local optimum for Strategy 1(c) is an interior point solution,
if it exists.𝑁

𝐼
≤ 0,𝐷

𝐿
(𝜔
∗

𝐼.𝑖(𝑐)
) > 0 and𝐷

𝐹
(𝜔
∗

𝐼.𝑖(𝑐)
) > 0 are basic

conditions for Strategy 1(c). By putting (14) into (13), we
obtain 𝜋

𝐿𝐿
(𝜔) = −𝑍(𝑝 − 𝑐)

2
/4ℎ(1 + 𝑏𝛽)

2
+ (𝐵 + 𝑇𝑁

𝐼
)(𝑝 −

𝑐)/(1+𝑏𝛽), andwe have 𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑝 = −𝑍(𝑝−𝑐)/2ℎ(1+𝑏𝛽)

2
+

(𝐵 + 𝑇𝑁
𝐼
)/(1 + 𝑏𝛽), and 𝜕2𝜋

𝐿𝐿
(𝜔)/𝜕𝑝

2
= −𝑍/2ℎ(1 + 𝑏𝛽)

2.
Therefore 𝜋

𝐿𝐿
(𝜔) is strictly concave in 𝑝 if and only if

𝑍 > 0. By the first-order optimality condition, 𝜋
𝐿𝐿
(𝜔) is

uniquely maximized at 𝑝∗
𝐼.1(𝑐)

. Since 𝑝∗
𝐼.1(𝑐)

> 𝑐, as 𝑍 > 0, we
have 𝐵 > −𝑁

𝐼
𝑇. Then by putting 𝑝∗

𝐼.1(𝑐)
into (14), we obtain

𝑒
∗

𝐼.1(𝑐)
. By considering 𝑒∗

𝐼.1(𝑐)
> 𝑇 + 𝜏, we obtain item (iii)

of Proposition 6, which also covers 𝐵 > −𝑁
𝐼
𝑇. Finally, by

putting 𝜔∗
𝐼.1(𝑐)

into (13), we obtain (16).

Proof of Proposition 7. First of all, 𝑒 ≥ 𝑇 for Strategy 2. For 𝑒 =
𝑇, 𝜆 = 1 is the only feasible solution for Strategy 2.Therefore,
the optimal value of 𝜆 for Strategy 2 with 𝑒 = 𝑇 is 𝜆∗ = 1. For
𝑒 > 𝑇, by taking the first-order partial derivative of (17) with
respect to 𝜆, we have 𝜕𝜋

𝐿𝐿
(𝜔)/𝜕𝜆 = 𝑁

𝐼
𝑒(𝑝 − 𝑐)/(1 + 𝑏𝛽) − 𝜇𝑒

for Strategy 2. Therefore, for any given 𝑝 > 𝑐 and 𝑒 > 𝑇, if
𝑁
𝐼
(𝑝 − 𝑐) > 𝜇(1 + 𝑏𝛽), then 𝜋

𝐿𝐿
(𝜔) is increasing in 𝜆. As

𝜆 = 1 satisfies 𝜆𝑒 ≥ 𝑇 and (1−𝜆)𝑒 < 𝜏, 𝜆∗ = 1 for𝑁
𝐼
(𝑝− 𝑐) >

𝜇(1 + 𝑏𝛽). If𝑁
𝐼
(𝑝 − 𝑐) < 𝜇(1 + 𝑏𝛽), then 𝜋

𝐿𝐿
(𝜔) is decreasing

in 𝜆. Therefore, for 𝑇 < 𝑒 < 𝑇 + 𝜏 and𝑁
𝐼
(𝑝 − 𝑐) < 𝜇(1 + 𝑏𝛽),

the optimal 𝜆∗ for Strategy 2 satisfies 𝜆∗𝑒 = 𝑇. Next, let 𝜔󸀠 =
(𝑒, 𝜆
󸀠
, 𝑝) and 𝜔󸀠󸀠 = (𝑒, 𝜆󸀠󸀠, 𝑝), where 𝑒 ≥ 𝑇 + 𝜏, 𝑝 > 𝑐,𝑁

𝐼
(𝑝 −

𝑐) < 𝜇(1 + 𝑏𝛽), 0 ≤ 𝜆
󸀠󸀠
< 𝜆
󸀠
≤ 1, 𝐷

𝐿
(𝜔
󸀠
) > 0, 𝐷

𝐹
(𝜔
󸀠
) > 0,

𝐷
𝐿
(𝜔
󸀠󸀠
) > 0,𝐷

𝐹
(𝜔
󸀠󸀠
) > 0, 𝜆󸀠𝑒 ≥ 𝑇, 𝜆󸀠󸀠𝑒 ≥ 𝑇, (1−𝜆󸀠)𝑒 < 𝜏, and

(1−𝜆
󸀠󸀠
) = 𝜏. We have 𝜋

𝐿𝐿
(𝜔
󸀠
) < 𝜋
𝐿𝐿
(𝜔
󸀠󸀠
). Therefore, Strategy

1 dominates Strategy 2 for 𝑒 ≥ 𝑇+𝜏 and𝑁
𝐼
(𝑝−𝑐) < 𝜇(1+𝑏𝛽).

If 𝑁
𝐼
(𝑝 − 𝑐) = 𝜇(1 + 𝑏𝛽), then 𝜋

𝐿𝐿
(𝜔) remains constant for

all values of 𝜆. Therefore any 𝜆 that satisfies (1 − 𝜆)𝑒 < 𝜏 and
𝜆𝑒 ≥ 𝑇 is an optimal solution. As there exist multiple 𝜆which
satisfy (1−𝜆)𝑒 < 𝜏 and 𝜆𝑒 ≥ 𝑇, there exist multiple 𝜆∗ for the
case𝑁

𝐼
(𝑝 − 𝑐) = 𝜇(1 + 𝑏𝛽).

Proof of Proposition 8. The local optimum for Strategy 2(a)
is an interior point solution if it exists. 𝐷

𝐿
(𝜔
∗

𝐼.2(𝑎)
) > 0 and

𝐷
𝐹
(𝜔
∗

𝐼.2(𝑎)
) > 0 are the basic conditions for Strategy 2; in turn

they are necessary conditions for Strategy 2(a) too.By taking
the first- and second-order partial derivatives of (18) with
respect to 𝑝, we have 𝜕𝜋

𝐿𝐿
(𝜔)/𝜕𝑝 = (−2𝐺(𝑝 − 𝑐) + [𝐵 +

𝑎(1 + 𝛽)𝑇])/(1 + 𝑏𝛽) and 𝜕2𝜋
𝐿𝐿
(𝜔)/𝜕𝑝

2
= −2𝐺, where 𝐺 is

defined in the proof of Proposition 3. Therefore, 𝜋
𝐿𝐿
(𝜔) is

strictly concave in 𝑝 if and only if 𝐺 > 0. By the first-order
optimality condition, 𝜋

𝐿𝐿
(𝜔) is uniquely maximized at 𝑝∗

𝐼.2(𝑎)
.

Since 𝑝∗
𝐼.2(𝑎)

> 𝑐, we obtain item (iii) of Proposition 8. Lastly,
by putting 𝜔∗

𝐼.2(𝑎)
into (18), we obtain (20).

Proof of Proposition 9. By taking the first-order and second-
order partial derivatives of (21) with respect to 𝑒, we obtain
𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑒 = 𝑎(𝑝 − 𝑐)(1 + 𝛽)/(1 + 𝑏𝛽) − 2ℎ𝑒, and 𝜕2𝜋

𝐿𝐿
(𝜔)/

𝜕𝑒
2
= −2ℎ < 0.
Therefore, 𝜕𝜋

𝐿𝐿
(𝜔) is a concave function of 𝑒 for Strategy

2(b). Hence the optimal advertising effort as a function of
retail price 𝑝 is given by (22). Finally, by direct observation,
𝑒
∗

𝐼.2(𝑏)
(𝑝) is strictly increasing in 𝑝.

Similarly, the local optimum for Strategy 2(b) is an inte-
rior point, if it exists. Clearly, conditions𝑁

𝐼
> 0,𝐷

𝐿
(𝜔
∗

𝐼.2(𝑏)
) >

0, and 𝐷
𝐹
(𝜔
∗

𝐼.2(𝑏)
) > 0 are necessary for Strategy 2(b). By

putting (22) into (21), we obtain 𝜋
𝐿𝐿
(𝜔) = −𝑌(𝑝 − 𝑐)

2
/4ℎ(1 +

𝑏𝛽)
2
+ 𝐵(𝑝 − 𝑐)/(1 + 𝑏𝛽) − 𝜇𝜏, and we have 𝜕𝜋

𝐿𝐿
(𝜔)/𝜕𝑝 =

−𝑌(𝑝−𝑐)/2ℎ(1 + 𝑏𝛽)
2
+𝐵/(1+𝑏𝛽), and 𝜕2𝜋

𝐿𝐿
(𝜔)/𝜕𝑝

2
= −𝑌/

2ℎ(1 + 𝑏𝛽)
2.

Therefore,𝜋
𝐿𝐿
(𝜔) is strictly concave in𝑝 if and only if𝑌 >

0. By the first-order optimality condition, 𝜋
𝐿𝐿
(𝜔) is uniquely

maximized at 𝑝∗
𝐼.2(𝑏)

. As 𝑝 > 𝑐, we obtain 𝐵 > 0. By putting
𝑝
∗

𝐼.2(𝑏)
into (22), we obtain 𝑒∗

𝐼.2(𝑏)
. As 𝑒 > 𝑇 for Strategy 2(b),

we need 𝐵 > 𝑌𝑇/[𝑎(1 + 𝛽)] > 0, which covers the condition
for𝑝 > 𝑐. By considering𝑁

𝐼
(𝑝
∗

𝐼.2(𝑏)
−𝑐) > 𝜇(1+𝑏𝛽), we obtain

item (iv) of Proposition 9. Lastly, by putting 𝜔∗
𝐼.2(𝑏)

into (21),
we obtain (24).

Proof of Proposition 10. Similarly, the local optimum for
Strategy 1(c) is an interior point, if it exists. Conditions
𝑁
𝐼
> 0, 𝐷

𝐿
(𝜔
∗

𝐼.2(𝑐)
) > 0 and 𝐷

𝐹
(𝜔
∗

𝐼.2(𝑐)
) > 0 are necessary for

Strategy 2(c). As𝑁
𝐼
(𝑝 − 𝑐) = 𝜇(1 + 𝑏𝛽) for Strategy 2(c), we

obtain 𝑝∗
𝐼.2(𝑐)

= 𝑐 + 𝜇(1 + 𝑏𝛽)/𝑁
𝐼
> 𝑐. By putting 𝜔∗

𝐼.2(𝑐)
into

𝜋
𝐿𝐿
(𝜔), we obtain (27). Finally, by considering 𝑒∗

𝐼.2(𝑐)
> 𝑇, we

obtain item (ii) of Proposition 10.
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Proof of Proposition 11. By taking the first-order and second-
order partial derivatives of (28) with respect to 𝑒, we obtain
𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑒 = 𝛼(𝑝 − 𝑐)(1 − 𝑏)/(1 + 𝑏𝛽) − 2ℎ𝑒 + 𝜇, and

𝜕
2
𝜋
𝐿𝐿
(𝜔)/𝜕𝑒

2
= −2ℎ < 0. Therefore, 𝜕𝜋

𝐿𝐿
(𝜔) is a concave

function of 𝑒 for Strategy 2(d), and for any given 𝑝 > 𝑐, the
optimal advertising effort as a function of retail price 𝑝 is
given by (25).

The local optimum for Strategy 1(d) is an interior point,
if it exists. 𝐷

𝐿
(𝜔
∗

𝐼.2(𝑑)
) > 0 and 𝐷

𝐹
(𝜔
∗

𝐼.2(𝑑)
) > 0 are the basic

conditions of Strategy 2. By putting (29) into (28), we obtain
𝜋
𝐿𝐿
(𝜔) = −𝑍(𝑝 − 𝑐)

2
/4ℎ(1 + 𝑏𝛽)

2
+ [2ℎ(𝐵 + 𝑇𝑁

𝐼
) + 𝛼𝜇(1 −

𝑏)](𝑝−𝑐)/2ℎ(1+𝑏𝛽)−ℎ𝜇
2
−𝜇[𝑇+𝜏−𝜇], andwe have 𝜕𝜋

𝐿𝐿
(𝜔)/

𝜕𝑝 = −𝑍(𝑝−𝑐)/2ℎ(1 + 𝑏𝛽)
2
+(2ℎ(𝐵+𝑇𝑁

𝐼
)+𝛼𝜇(1−𝑏))/2ℎ(1+

𝑏𝛽) and 𝜕2𝜋
𝐿𝐿
(𝜔)/𝜕𝑝

2
= −𝑍/2ℎ(1 + 𝑏𝛽)

2.
Therefore, 𝜋

𝐿𝐿
(𝜔) is strictly concave in 𝑝 if and only if

𝑍 > 0. From the first-order optimality condition, 𝜋
𝐿𝐿
(𝜔) is

uniquely maximized at 𝑝∗
𝐼.2(𝑑)

. By considering 𝑇 < 𝑒
∗

𝐼.2(𝑑)
<

𝑇 + 𝜏, we obtain item (iii) of Proposition 11. By considering
𝑝
∗

𝐼.2(𝑑)
> 𝑐, we obtain item (iv) of Proposition 11. Then by

considering𝑁
𝐼
(𝑝
∗

𝐼.2(𝑑)
− 𝑐) < 𝜇(1 + 𝑏𝛽), we obtain item (v) of

Proposition 11. Furthermore, by putting 𝑝∗
𝐼.2(𝑑)

into (29), we
obtain 𝑒

∗

𝐼.2(𝑑)
. Finally, by putting 𝜔∗

𝐼.2(𝑑)
into (28), we obtain

(31).

Proof of Proposition 12. First of all, 𝑒 ≥ 𝜏 for Strategy 3. For
𝑒 = 𝜏, 𝜆 = 0 is the only feasible solution. Therefore, the
optimal value of 𝜆 for Strategy 3 when 𝑒 = 𝜏 is 𝜆∗ = 0. For
𝑒 > 𝜏, by taking the first-order partial derivative of (32) with
respect to 𝜆, we have 𝜕𝜋

𝐿𝐿
(𝜔)/𝜕𝜆 = 𝑁

𝐼
𝑒(𝑝− 𝑐)/(1+ 𝑏𝛽)+𝑚𝑒.

Therefore, for any given 𝑝 > 𝑐 and 𝑒 > 𝜏, if 𝑁
𝐼
(𝑝 − 𝑐) >

−𝑚(1 + 𝑏𝛽), then 𝜋
𝐿𝐿
(𝜔) is strictly increasing in 𝜆. For 𝜏 <

𝑒 < 𝑇+ 𝜏, 𝜆 = 1 − 𝜏/𝑒 is the biggest value that satisfies 𝜆𝑒 < 𝑇
and (1 − 𝜆)𝑒 ≥ 𝜏. Therefore, 𝜆∗ = 1 − 𝜏/𝑒 for Strategy 3 if
𝑁
𝐼
(𝑝 − 𝑐) > −𝑚(1 + 𝑏𝛽) and 𝜏 < 𝑒 < 𝑇 + 𝜏. Next, consider

𝜔
󸀠
= (𝑒, 𝜆

󸀠
, 𝑝) and 𝜔󸀠󸀠 = (𝑒, 𝜆

󸀠󸀠
, 𝑝), where 𝑒 ≥ 𝑇 + 𝜏, 𝑝 > 𝑐,

𝑁
𝐼
(𝑝 − 𝑐) > −𝑚(1 + 𝑏𝛽), 0 ≤ 𝜆

󸀠
< 𝜆
󸀠󸀠
≤ 1, 𝐷

𝐿
(𝜔
󸀠
) > 0,

𝐷
𝐹
(𝜔
󸀠
) > 0, 𝐷

𝐿
(𝜔
󸀠󸀠
) > 0, 𝐷

𝐹
(𝜔
󸀠󸀠
) > 0, 𝜆󸀠𝑒 < 𝑇, 𝜆󸀠󸀠𝑒 = 𝑇,

(1 − 𝜆
󸀠
)𝑒 ≥ 𝜏, and (1 − 𝜆󸀠󸀠) ≥ 𝜏. We have 𝜋

𝐿𝐿
(𝜔
󸀠
) < 𝜋
𝐿𝐿
(𝜔
󸀠󸀠
).

Therefore, Strategy 1 dominates Strategy 3 for 𝑒 ≥ 𝑇 + 𝜏 and
𝑁
𝐼
(𝑝 − 𝑐) > −𝑚(1 + 𝑏𝛽). If 𝑁

𝐼
(𝑝 − 𝑐) < −𝑚(1 + 𝑏𝛽), then

𝜋
𝐿𝐿
(𝜔) is strictly decreasing in𝜆. As𝜆 = 0 satisfies𝜆𝑒 < 𝑇 and

(1−𝜆)𝑒 ≥ 𝜏, 𝜆∗ = 0 for Strategy 3 if𝑁
𝐼
(𝑝−𝑐) < −𝑚(1+𝑏𝛽). If

𝑁
𝐼
(𝑝 − 𝑐) = −𝑚(1 + 𝑏𝛽), then 𝜋

𝐿𝐿
(𝜔) is independent of 𝜆 for

Strategy 3. As there are multiple 𝜆 which satisfy (1 − 𝜆∗)𝑒 < 𝜏
and 𝜆∗𝑒 ≥ 𝑇, there exist multiple 𝜆∗ for the case𝑁

𝐼
(𝑝 − 𝑐) =

−𝑚(1 + 𝑏𝛽).

Proof of Proposition 13. Similarly, the local optimum for
Strategy 3(a) is an interior point, if it exists. 𝐷

𝐿
(𝜔
∗

𝐼.3(𝑎)
) > 0

and 𝐷
𝐹
(𝜔
∗

𝐼.3(𝑎)
) > 0 are necessary for any substrategies of

Strategy 3. By taking the first- and second-order partial
derivatives of (33) with respect to 𝑝, we have
𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑝 = (−2𝐺(𝑝 − 𝑐) + [𝐵 + 𝛼(1 − 𝑏)𝜏])/(1 + 𝑏𝛽) and

𝜕
2
𝜋
𝐿𝐿
(𝜔)/𝜕𝑝

2

= −2𝐺, where 𝐺 is defined in the proof of
Proposition 3. Therefore, 𝜋

𝐿𝐿
(𝜔) is strictly concave in 𝑝 if

and only if 𝐺 > 0. From the first-order optimality condition,
𝜋
𝐿𝐿
(𝜔) is uniquely maximized at 𝑝∗

𝐼.3(𝑎)
. As 𝑝 > 𝑐, we obtain

item (iii) of Proposition 13. Finally, by putting 𝜔
∗

𝐼.3(𝑎)
into

(33), we obtain (34).

Proof of Proposition 14. By taking the first-order and second-
order partial derivatives of (36) with respect to 𝑒, we obtain
𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑒 = 𝑎(𝑝 − 𝑐)(1 + 𝛽)/(1 + 𝑏𝛽) − 2ℎ𝑒 + 𝑚, and

𝜕
2
𝜋
𝐿𝐿
(𝜔)/𝜕𝑒

2
= −2ℎ < 0. Therefore, 𝜕𝜋

𝐿𝐿
(𝜔) is a concave

function of 𝑒 for Strategy 3(b) and for any given 𝑝 > 𝑐. Hence,
the optimal advertising effort as a function of retail price 𝑝 is
given by (37). Next, as 𝑎(1 + 𝛽)/[2ℎ(1 + 𝑏𝛽)] > 0, 𝑒∗

𝐼.3(𝑏)
(𝑝) is

strictly increasing in 𝑝.
Similarly, the local optimum for Strategy 1(a) is an interior

point, if it exists. 𝐷
𝐿
(𝜔
∗

𝐼.3(𝑏)
) > 0 and 𝐷

𝐹
(𝜔
∗

𝐼.3(𝑏)
) > 0 are the

basic conditions of Strategy 3. By putting (37) into (36), we
obtain 𝜋

𝐿𝐿
(𝜔) = −𝑌(𝑝 − 𝑐)

2
/4ℎ(1 + 𝑏𝛽)

2
+ [2ℎ(𝐵 − 𝑁

𝐼
𝜏) +

𝑎𝑚(1 + 𝛽)](𝑝 − 𝑐)/2ℎ(1 + 𝑏𝛽) − 𝑚(𝑇 + 𝜏) + 𝑚
2
/4ℎ, and we

have 𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑝 = −𝑌(𝑝 − 𝑐)/2ℎ(1 + 𝑏𝛽)

2
+ [2ℎ(𝐵 − 𝑁

𝐼
𝜏) +

𝑎𝑚(1 + 𝛽)]/2ℎ(1 + 𝑏𝛽) and 𝜕2𝜋
𝐿𝐿
(𝜔)/𝜕𝑝

2

= −𝑌/2ℎ(1 + 𝑏𝛽)
2.

Therefore, 𝜋
𝐿𝐿
(𝜔) is strictly concave in 𝑝 if and only if 𝑌 > 0.

From the first-order optimality condition, 𝜋
𝐿𝐿
(𝜔) is uniquely

maximized at 𝑝∗
𝐼.3(𝑏)

. By considering 𝑝∗
𝐼.3(𝑏)

> 𝑐, we obtain
item (iii) of Proposition 14. Similarly, by considering 𝜏 <

𝑒
∗

𝐼.3(𝑏)
< 𝑇 + 𝜏 and 𝑁

𝐼
(𝑝
∗

𝐼.3(𝑏)
− 𝑐) > −𝑚(1 + 𝑏𝛽), we obtain

items (iv) and (v) of Proposition 14, respectively. By putting
𝑝
∗

𝐼.3(𝑏)
into (37), we obtain 𝑒∗

𝐼.3(𝑏)
. Finally, by putting (38) into

(36). we obtain (39).

Proof of Proposition 15. By taking the first-order and second-
order partial derivatives of (40) with respect to 𝑒, we obtain
𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑒 = 𝛼(1 − 𝑏)(𝑝 − 𝑐)/(1 + 𝑏𝛽) − 2ℎ𝑒, and 𝜕2𝜋

𝐿𝐿
(𝜔)/

𝜕𝑒
2
= −2ℎ < 0. Therefore, for any given 𝑝 > 𝑐, 𝜋

𝐿𝐿
(𝜔) is

a concave function of 𝑝 under Strategy 3(c). Therefore, the
optimal advertising effort as a function of retail price 𝑝 is
given by (41). As 𝛼(1−𝑏)/[2ℎ(1+𝑏𝛽)] > 0, 𝑒∗

𝐼.3(𝑐)
(𝑝) is strictly

increasing in 𝑝.
Similarly, the local optimum for Strategy 3(c) is an inte-

rior point, if it exists.𝑁
𝐼
< 0,𝐷

𝐿
(𝜔
∗

𝐼.3(𝑐)
) > 0 and𝐷

𝐹
(𝜔
∗

𝐼.3(𝑐)
) >

0 are the basic conditions for Strategy 3. By putting (41) into
(40), we obtain 𝜋

𝐿𝐿
(𝜔) = −𝑍(𝑝 − 𝑐)

2
/4ℎ(1 + 𝑏𝛽)

2
+ 𝐵(𝑝 −

𝑐)/(1 + 𝑏𝛽) − 𝑚𝑇, and we have 𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑝 = −𝑍(𝑝 −

𝑐)/2ℎ(1 + 𝑏𝛽)
2
+ 𝐵/(1 + 𝑏𝛽) and 𝜕2𝜋

𝐿𝐿
(𝜔)/𝜕𝑝

2
= −𝑍/2ℎ(1 +

𝑏𝛽)
2. Therefore, 𝜋

𝐿𝐿
(𝜔) is strictly concave in 𝑝 if and only if

𝑍 > 0. From the first-order optimality condition, 𝜋
𝐿𝐿
(𝜔) is

uniquely maximized at 𝑝∗
𝐼.3(𝑐)

. By considering 𝑝∗
𝐼.3(𝑐)

> 𝑐, we
obtain 𝐵 > 0. By considering 𝑒∗

𝐼.3(𝑐)
> 𝜏, we obtain item (iii) of

Proposition 15. By considering𝑁
𝐼
(𝑝
∗

𝐼.3(𝑐)
− 𝑐) < −𝑚(1 + 𝑏𝛽),

we obtain 𝐵 ≥ −𝑚𝑍/(2ℎ𝑁
𝐼
) > 0. Finally, by putting 𝜔∗

𝐼.3(𝑐)

into (40), we obtain (43).

Proof of Proposition 16. Similarly, the local optimum for
Strategy 3(d) is an interior point, if it exists. 𝑁

𝐼
< 0,

𝐷
𝐿
(𝜔
∗

𝐼.3(𝑑)
) > 0 and 𝐷

𝐹
(𝜔
∗

𝐼.3(𝑑)
) > 0 are specific conditions of

Strategy 3(d). As 𝑁
𝐼
(𝑝 − 𝑐) = −𝑚(1 + 𝑏𝛽) for Strategy 3(d),

we obtain 𝑝
∗

𝐼.3(𝑑)
. Notice that 𝑝∗

𝐼.3(𝑑)
> 0 as 𝑁

𝐼
< 0 for

Strategy 3(d). According to Proposition 23, we obtain
𝑒
∗

𝐼.3(𝑑)
= 𝑒
∗

𝐼.3(𝑑)
(𝑝
∗

𝐼.3(𝑑)
). By putting 𝜔∗

𝐼.3(𝑑)
into (17), we obtain

(46). Finally, by considering 𝑒∗
𝐼.3(𝑑)

> 𝜏, we obtain item (ii) of
Proposition 16.
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Proof of Proposition 17. Consider 𝜔󸀠 = (𝑒
󸀠
, 𝜆
󸀠
, 𝑝
󸀠
) and 𝜔󸀠󸀠 =

(𝑒
󸀠
, 𝜆
󸀠󸀠
, 𝑝
󸀠
), where 0 < 𝜆

󸀠
< 𝜆
󸀠󸀠
< 1, 𝑇 ≤ 𝑒

󸀠
< 𝑇 + 𝜏,𝑁

𝐼
(𝑝
󸀠
−

𝑐) > (𝜇 − 𝑚)(1 + 𝑏𝛽), 𝐷
𝐿
(𝜔
󸀠
) > 0, 𝐷

𝐿
(𝜔
󸀠󸀠
) > 0, 𝐷

𝐹
(𝜔
󸀠
) >

0, and 𝐷
𝐹
(𝜔
󸀠󸀠
) > 0. By following the proof of Proposition 12,

for any fixed 𝑝 > 𝑐 and 𝑇 ≤ 𝑒 < 𝑇 + 𝜏, 𝜋
𝐿𝐿
(𝜔) is strictly

increasing in 𝜆. Therefore, 𝜋
𝐿𝐿
(𝜔
󸀠󸀠
) > 𝜋

𝐿𝐿
(𝜔
󸀠
). However,

𝜔
󸀠󸀠
= (𝑒
󸀠
, 𝜆
󸀠󸀠
, 𝑝
󸀠
) is a solution of Strategy 2 instead of Strategy

4 for 𝜆󸀠󸀠 → 1. Hence, the optimal 𝜆∗ for Strategy 4 does not
exist (i.e., Strategy 2 dominates Strategy 4 for any fixed 𝑝 > 𝑐
and 𝑇 ≤ 𝑒 < 𝑇 + 𝜏). This completes the proof of part (a). The
proof of part (b) and part (c) are similar to the proof of part
(a).

Proof of Proposition 18. First of all, 𝑒 < 𝑇 + 𝜏 for Strategy 4. If
𝑒 = 0, then 𝜆 can be ignored. For 0 < 𝑒 < 𝑇 + 𝜏, by taking the
first-order partial derivative of (47) with respect to 𝜆, we have
𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝜆 = 𝑁

𝐼
𝑒(𝑝−𝑐)/(1+𝑏𝛽)+(𝑚−𝜇)𝑒.Therefore, for any

fixed 𝑝 > 𝑐 and 0 < 𝑒 < 𝑇, (a) if𝑁
𝐼
(𝑝 − 𝑐) > (𝜇 − 𝑚)(1 + 𝑏𝛽),

then 𝜋
𝐿𝐿
(𝜔) is increasing in 𝜆. Hence the optimal value of 𝜆

in this case is 𝜆∗ = 1 (please note that 𝜆∗ = 1 satisfies 𝜆𝑒 < 𝑇
and (1 − 𝜆)𝑒 < 𝜏 for 0 < 𝑒 < 𝑇); (b) if 𝑁

𝐼
(𝑝 − 𝑐) < (𝜇 −

𝑚)(1+𝑏𝛽), then 𝜋
𝐿𝐿
(𝜔) is decreasing in 𝜆. Hence the optimal

value of 𝜆 in this case is 𝜆∗ = 0 (please note that 𝜆∗ = 0

satisfies 𝜆𝑒 < 𝑇 and (1 − 𝜆)𝑒 < 𝜏 for 0 < 𝑒 < 𝜏); (c) if𝑁
𝐼
(𝑝 −

𝑐) = (𝜇−𝑚)(1+𝑏𝛽), then𝜋
𝐿𝐿
(𝜔) is independent of 𝜆. As there

are multiple 𝜆 which satisfy (1 − 𝜆∗)𝑒 < 𝜏 and 𝜆∗𝑒 < 𝑇, for
0 < 𝑒 < 𝑇+𝜏, there exists multiple 𝜆∗ for the case𝑁

𝐼
(𝑝−𝑐) =

(𝜇 − 𝑚)(1 + 𝑏𝛽).

Proof of Proposition 19. Similarly, the local optimum for
Strategy 4(a) is an interior point, if it exists. Conditions
𝐷
𝐿
(𝜔
∗

𝐼.4(𝑎)
) > 0 and 𝐷

𝐹
(𝜔
∗

𝐼.4(𝑎)
) > 0 are necessary for any

substrategies of Strategy 4. By taking the first- and second-
order partial derivatives of (48) with respect to 𝑝, we have
𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑝 = (−2𝐺(𝑝 − 𝑐) + 𝐵)/(1 + 𝑏𝛽) and 𝜕

2
𝜋
𝐿𝐿
(𝜔)/

𝜕𝑝
2
= −2𝐺. Therefore, 𝜋

𝐿𝐿
(𝜔) is strictly concave in 𝑝 if and

only if 𝐺 > 0. From the first-order optimality condition,
𝜋
𝐿𝐿
(𝜔) is uniquely maximized at 𝑝∗

𝐼.4(𝑎)
. By considering

𝑝
∗

𝐼.4(𝑎)
> 𝑐, we obtain 𝐵 > 0. By putting 𝜔∗

𝐼.4(𝑎)
into (48), we

obtain (50).

Proof of Proposition 20. By taking the first-order and second-
order partial derivatives of (51) with respect to 𝑒, we obtain
𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑒 = 𝑎(𝑝 − 𝑐)(1 + 𝛽)/(1 + 𝑏𝛽) − 2ℎ𝑒 + 𝑚, and

𝜕
2
𝜋
𝐿𝐿
(𝜔)/𝜕𝑒

2
= −2ℎ < 0. Therefore, 𝜕𝜋

𝐿𝐿
(𝜔) is a concave

function of 𝑒 for Strategy 4(b). Thus for any given 𝑝 > 𝑐,
the optimal advertising effort as a function of retail price
𝑝 is given by (52). According to Proposition 16, 𝑒∗

𝐼.3(𝑏)
(𝑝) is

strictly increasing in 𝑝. Therefore 𝑒∗
𝐼.4(𝑏)

(𝑝), which is equal to
𝑒
∗

𝐼.3(𝑏)
(𝑝), is also strictly increasing in 𝑝.

Similarly, the local optimum for Strategy 4(b) is an
interior point, if it exists. Conditions 𝐷

𝐿
(𝜔
∗

𝐼.4(𝑏)
) > 0 and

𝐷
𝐹
(𝜔
∗

𝐼.4(𝑏)
) > 0 are necessary conditions for Strategy 4(b).

By putting (52) into (51), we obtain 𝜋
𝐿𝐿
(𝜔) = −𝑌(𝑝 −

𝑐)
2
/4ℎ(1 + 𝑏𝛽)

2
+[2ℎ𝐵+𝑎𝑚(1+𝛽)](𝑝−𝑐)/2ℎ(1+𝑏𝛽)−𝑚𝑇−𝜇𝜏+

𝑚
2
/4ℎ, and we have 𝜕𝜋

𝐿𝐿
(𝜔)/𝜕𝑝 = −𝑌(𝑝 − 𝑐)/2ℎ(1 + 𝑏𝛽)

2
+

(2ℎ𝐵 + 𝑎𝑚(1 + 𝛽))/2ℎ(1 + 𝑏𝛽), and 𝜕
2
𝜋
𝐿𝐿
(𝜔)/𝜕𝑝

2
= −𝑌/

2ℎ(1 + 𝑏𝛽)
2.

Therefore, 𝜋
𝐿𝐿
(𝜔) is strictly concave in 𝑝 if and only if

𝑌 > 0. From the first-order optimality condition, 𝜋
𝐿𝐿
(𝜔) is

uniquely maximized at 𝑝∗
𝐼.4(𝑏)

. By considering 𝑝∗
𝐼.4(𝑏)

> 𝑐, we
obtain 2ℎ𝐵 + 𝑎𝑚(1 + 𝛽) > 0. Then by putting 𝑝∗

𝐼.4(𝑏)
into

(52), we obtain 𝑒∗
𝐼.4(𝑏)

. By considering 𝑁
𝐼
(𝑝
∗

𝐼.4(𝑏)
− 𝑐) > (𝜇 −

𝑚)(1 + 𝑏𝛽) and 0 < 𝑒
∗

𝐼.4(𝑏)
< 𝑇, we obtain item (iv) and item

(v) of Proposition 20, respectively. Finally, by putting 𝜔∗
𝐼.4(𝑏)

into (51), we obtain (54).

Proof of Proposition 21. By taking the first-order and second-
order partial derivatives of (55) with respect to 𝑒, we obtain
𝜕𝜋
𝐿𝐿
(𝜔)/𝜕𝑒 = 𝛼(1 − 𝑏)(𝑝 − 𝑐)/(1 + 𝑏𝛽) − 2ℎ𝑒 + 𝜇, and

𝜕
2
𝜋
𝐿𝐿
(𝜔)/𝜕𝑒

2
= −2ℎ < 0. Therefore, 𝜕𝜋

𝐿𝐿
(𝜔) is a concave

function of 𝑒 for Strategy 4(c) for any given 𝑝 > 𝑐. From
the first-order optimality condition, the optimal advertising
effort as a function of retail price 𝑝 is given by (50).

Proof of Proposition 22. Similarly, the local optimum for
Strategy 1(a) is an interior point, if it exists. Conditions
𝐷
𝐿
(𝜔
∗

𝐼.4(𝑐)
) > 0 and 𝐷

𝐹
(𝜔
∗

𝐼.4(𝑐)
) > 0 are necessary for

Strategy 4(c). By putting (56) into (55), we obtain 𝜋
𝐿𝐿
(𝜔) =

−𝑍(𝑝 − 𝑐)
2
/4ℎ(1 + 𝑏𝛽)

2
+[2ℎ𝐵+𝛼𝜇(1−𝑏)](𝑝−𝑐)/2ℎ(1+𝑏𝛽)−

𝑚𝑇 − 𝜇𝜏 + 𝜇
2
/4ℎ, and we have 𝜕𝜋

𝐿𝐿
(𝜔)/𝜕𝑝 = −𝑍(𝑝 − 𝑐)/

2ℎ(1 + 𝑏𝛽)
2
+(2ℎ𝐵+𝛼𝜇(1−𝑏))/2ℎ(1+𝑏𝛽) and 𝜕2𝜋

𝐿𝐿
(𝜔)/𝜕𝑝

2
=

−𝑍/2ℎ(1 + 𝑏𝛽)
2.

Therefore 𝜋
𝐿𝐿
(𝜔) is strictly concave in 𝑝 if and only if

𝑍 > 0. From the first-order optimality condition, 𝜋
𝐿𝐿
(𝜔) is

uniquely maximized at 𝑝∗
𝐼.4(𝑐)

. By considering 𝑝∗
𝐼.4(𝑐)

> 𝑐, we
obtain item (ii) of Proposition 22. By considering 0 < 𝑒∗

𝐼.4(𝑐)
<

𝜏 and 𝑁
𝐼
(𝑝
∗

𝐼.4(𝑐)
− 𝑐) < (𝜇 − 𝑚)(1 + 𝑏𝛽), we obtain item (iv)

and item (v) of Proposition 22, respectively. Finally, by putting
𝜔
∗

𝐼.4(𝑐)
into (55), we obtain (56).
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