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ABSTRACT Network communities, which are also known as network clusters, are typical latent structures
in network data. Vertices in each of these communities tend to interact more and share similar features
with each other. Community identification and feature summarization are significant tasks of network
analytics. To perform either of the two tasks, there have been several approaches proposed, taking into
the consideration of different categories of information carried by the network, e.g., edge structure, node
attributes, or both aforementioned. But few of them are able to discover communities and summarize their
features simultaneously. To address this challenge, we propose a novel latent factor model for community
identification and summarization (LFCIS). To perform the task, the LFCIS first formulates an objective
function that evaluating the overall clustering quality taking into the consideration of both edge topology
and node features in the network. In the objective function, the LFCIS also adopts an effective component
that ensures those vertices sharing with both similar local structures and features to be located into the same
clusters. To identify the optimal cluster membership for each vertex, a convergent algorithm for updating the
variables in the objective function is derived and used by LFCIS. The LFCIS has been tested with six sets of
network data, including synthetic and real networks, and compared with several state-of-the-art approaches.
The experimental results show that the LFCIS outperforms most of the prevalent approaches to community
discovery in social networks, and the LFCIS is able to identify the latent features that may characterize those
discovered communities.

INDEX TERMS Network analysis, social network, complex network, graph clustering, community
detection, Community summarization, latent factor analysis.

I. INTRODUCTION
Anetwork can be modeled as a graph containing a set of
vertices and edges, which represent data entities, and the
inter-relationship between them, respectively. Different from
random graphs, there are particular latent structures in the
real-world graphs that are worthy looking into. Among these
latent structures, communities, which are also known as clus-
ters are the most typical ones. How to identify such com-
munities and the features that may characterize them has
drawn much attention in recent years [1], [2]. The discovery
of such communities in the network is directly related to a
number of significant real-world applications, such as social
community detection in social networks [3], [14], [21], [38],
functional module detection in biological networks [14], [39],
and document segmentation [23]–[27], [29], etc.

The identification of communities is concerned by most
algorithms related to network analytics. To identify the

communities in the network data, there have been a number
of so-called graph clustering algorithms proposed. Most of
them are able to detect communities based on, not surpris-
ingly some pre-defined measures on edge structure. One of
the most widely used measures is modularity [3], which is
defined as a function of the differences in density within
communities and a null-graph in which vertices are randomly
connected. Based on this measure, three approaches [4]–[6]
are proposed to detect communities making use of modularity
maximization.

Besides these algorithms, there are also other approaches
proposed to detect network communities, utilizing other topo-
logical measures. For example, a clique-percolation based
method is proposed in [7]. In [8], a clustering method called
affinity propagation (AP) is proposed to detect clusters by
maximizing the similarities of edge structure between can-
didates of cluster centers and other vertices. By making use

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

30137

https://orcid.org/0000-0003-4839-681X
https://orcid.org/0000-0001-7962-6564
https://orcid.org/0000-0001-5974-7932


T. He et al.: Learning Latent Factors for Community Identification and Summarization

of a concept of link-graph facilitating the link density, link-
Com [9] is proposed to detect communities in such link
graphs. In [10], spectral clustering (SC) is proposed to detect
communities in graphs by making use of normalized cut [11]
which may reveal similar edge structures of vertices within
the same communities. In [12], another spectral clustering
based method, LM is proposed. LM is able to discover net-
work communities by analyzing the spectral features of the
transition matrix which is constructed based on the local con-
nectivity of the network. In [13], CoDa is proposed to detect
communities in complex networks by modeling community
membership of each vertex as posterior probabilities. Such
posterior probabilities can be optimized by assigning ver-
tices with similar edge structures with the same membership.
In [14], the Mixed Membership Stochastic Models (MMSB)
are proposed. MMSB models are able to discover network
communities by maximizing the posterior probability that
each pair of vertices are connected in the same blocks.

To reveal more meaningful communities in the network,
there are some approaches proposed taking into the consider-
ation both edge structure and attributes that may characterize
the vertices. In [15] and [16], SA-Cluster and inc-Cluster are
proposed to discover network community by making use a
neighborhood random walk model in which the transition
probability between each pair of vertices is evaluated by the
similarity of their local edge structure and attribute similarity.
In [17], EDCAR is proposed to detect sub-spaces as clusters,
taking into the consideration edge density and attribute simi-
larity between pairwise vertices.

Besides the above algorithms, some model-based
approaches are also proposed to identify network commu-
nities making use of both edge structure and node attributes.
For example, a Bayesian generative model (GBAGC) [18] for
clustering network data is proposed. The cluster membership
for each vertex in GBAGC can be revealed by estimating a
posterior probability measuring the similarity of edge struc-
ture and vertex attributes in the cluster. In [19], an algorithm
called CESNA is proposed to make use of a generative pro-
cess to model edge structure and attribute similarity between
pairwise nodes. In [20], Circles is proposed to model the
communities in social networks as social circles. The com-
munity membership for each vertex can be revealed by esti-
mating the posterior probability that measures the similarity
between the node attributes and that are commonly observed
on other ones in the same circle. In [21], a deep-learning
based method (DMNF) for detecting network communities
is proposed. DMNF is able to detect communities in the
network by performing spectral clustering in a fused network
that is learned by deep learning model.

Inspired by probabilistic topic models [22], there are sev-
eral topic-model based algorithms, including Link-PLSA-
LDA [23], Relational Topic Model [24], iTopicModel [25],
PL-DC [26] and Block-LDA [27], proposed to discover com-
munities in relational data. The community membership is
modeled as a posterior probability that vertices in the same
cluster are labeled with similar topics. As such topic model

basedmethods always require for a high computational effort,
they are not efficient algorithms for discovering communities
and summarizing their features in the network data [19].

There are some other approaches to discovering commu-
nities effectively. Different from those model-based ones,
such algorithms make use of different objective functions to
measure the overall quality of communities and the commu-
nity membership of each vertex is obtained by optimizing
the objective function. For examples, MISAGA [28], and
FSPGA [30] are two approaches to clustering in attributed
graphs, which are able to perform the task by maximiz-
ing the objective function measuring the overall edge den-
sity and attribute similarity in all the clusters. In [31], an
evolutionary algorithm for community detection in social net-
works (ECDA) is proposed. ECDA is able to discover com-
munities in network data by maximizing the intra-degrees
of attribute similarity between connecting vertices within
the clusters. The objective function used by ECDA can be
optimized by evolutionary computation.

Though effective in discovering communities in network
data, most of the above approaches cannot identify the
features that are able to characterize the discovered commu-
nities. To address this challenge, several algorithms for com-
munity summarization are proposed. Through maximizing
the similarity of node features within the same clusters, both
community features and community membership for each
vertex in the network can be obtained. For example, there
are some attempts making use of k-means algorithm [32] to
discover communities in the network in which vertices are
share higher similarity of attributes. In [33], an algorithm
called MAC, which is based on a probabilistic generative
model is proposed to discover graph clusters in which vertices
are labeled with Boolean attribute values. In [34], a graph
summarization algorithm called k-SNAP is proposed to detect
graph clusters by grouping vertices into the same cluster
according to a similarity measure of attribute values. Though
such algorithms may reveal the features that may characterize
the communities, they are not effective in discovering mean-
ingful community structures as thesemethods ignore the edge
structure of the network data.

Given the prevalent algorithms, we have the follow-
ing findings that may motivate us to develop a novel
approach. First, most algorithms are proposed to either dis-
cover communities, or summarize community features. There
are almost no effective algorithms that are able to complete
both two tasks simultaneously. For examples, algorithms like
MISAGA and FSPGA are very effective in clustering the
attributed network, but they cannot summarize community
features as they only consider node similarity when perform-
ing the task. Second, some approaches are able to simul-
taneously detect community and summarize their features,
e.g., those topic-models based ones, their high computational
requirement leads them to be infeasible for the analytics in
large network data. To address the mentioned challenges,
we propose a novel Latent Factor Model for Community
Identification and Summarization (LFCIS). By modeling the
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strength of affiliation between vertices and communities w.r.t.
edge structure, attribute similarity, and common latent fea-
tures as low-dimensional latent spaces, LFCIS formulates the
task of the identification of communities and their features
as an optimization problem which is related to the learning
of optimal factors in the mentioned latent spaces. To ensure
those vertices sharing similar edge structures and similar
attributes to be located into the same cluster, LFCIS adopts
an effective method to regulate the structure of latent spaces
w.r.t. edge structure and attribute similarity when performing
the task. The corresponding latent factors learned by LFCIS
may reveal the community membership for each vertex, tak-
ing into the consideration edge structure, attribute similarity
between vertices, and common features of the discovered
communities.

For performance testing, LFCIS is used with both synthetic
and real-world networks and compared with several prevalent
approaches to community identification or summarization.
Having evaluated the discovered communities using ground-
truth data, we find that LFCIS outperforms most of state-of-
the-art approaches. The communities discovered by LFCIS
match with the ground truth better than those done by other
baselines. It is said that LFCIS is a very promising approach
for community identification and community summarization.

To introduce the details of LFCIS and the corresponding
experiments for performance testing, the rest of this paper is
organized as the following. In Section II, the mathematical
preliminaries and notations used in this paper are introduced.
In Section III, how LFCIS models community identifica-
tion and summarization as an optimization problem, and
how LFCIS solves the formulated problem are introduced
in detail. In Section IV, we present the experiments that are
used to test the performance of LFCIS and other compared
baselines. In Section V, the contributions of this paper and
the proposals of the future works are summarized.

II. MATHEMATICAL PRELIMINARIES AND NOTATIONS
Given a set of network data containing n vertices, m node
attributes, and |E| edges, it can be represented as a graph
G= {V, E,3}, where V, E, and3 represent the vertex, edge,
and attribute set in the network, respectively. For the vertex
set, it is defined as V = {vi|1≤i≤n}. The edge set, is defined
as E = {eij=1| vi and vj are connected}. And the attribute set
is defined as 3 = {3i |1≤i≤m}. LFCIS makes use of two
matrices, M and F, to represent the edge structure and node
attributes in G.M is an n-by-n adjacency matrix each element
of which, sayMij, equals to 1 if vi and vj are connected in G,
and 0 if they are disconnected. F is an m-by-n matrix each
element of which say Fij, equals to 1 if vertex vj is associated
with attribute 3i, and vice versa.

For notations, we use a subscript, e.g., Mi, to repre-
sent the ith column of a given matrix, say M. We use
Mij, to represent the entry of M, in ith row, jth column.
tr(·) represents the matrix trace. |·|F and |·|1 represent the
matrix Frobenius norm, and l1 norm, respectively. All these
mentioned mathematical preliminaries and notations are used

by LFCIS to model the problem of community identification
and summarization.

III. LFCIS IN DETAIL
In this section, how LFCIS models the community identifica-
tion and summarization as an optimization problem, making
use of different latent spaces, and how the factors in these
latent spaces are fitted, are introduced in detail.

A. MODELING COMMUNITY IDENTIFICATION AND
SUMMARIZATION
As mentioned above, there are two sub-tasks, i.e., identify-
ing latent communities, and summarizing their features, that
LFCIS has to complete. For the identification of network
communities, LFCIS attempts to assign those vertices sharing
similar edge structure and node attributes into the same com-
munities. To project each vertex in G from a high dimension
into a lower one, LFCIS makes use of a k-by-n latent matrix,
S to represent the latent edge structure for each vertex. Each
column of S, say Si, represents the inter-relationship w.r.t.
edge structure between a vertex, say vi, and k latent structural
components. Obviously, a larger value of an element in S,
say Sij, means vj has a stronger relationship with ith latent
component. Using another k-by-n matrix, C to represent the
community membership that each vertex belongs to each
of the k communities, LFCIS makes use of the difference
between the original adjacency matrix of a graph, G and the
one that is jointly constructed by S and C, to measure the
structural loss after using S to project the edge structures of
n vertices into the k-dimensional latent space. It is apparent
that a minimum of such loss leads to a better projection. And
this structural loss function is defined as

minimize

O1 = |M− STC|2F (1)

Besides considering the edge structure of the vertices within
the same community, LFCIS also takes into the consideration
attribute similarity between each pair of vertices. As the
feature vectors for a pair of vertices vi and vj, Fi and Fj are
always with high dimensionality and are always different,
LFCIS makes use of the following kernel function to measure
the attribute similarity between a pair of vertices, vi and vj
in G

Xij = exp(−
|Fi − Fj|2

2σ
) (2)

(2) is a Gaussian kernel which can be used to measure the
overall similarity w.r.t. attributes associated with any pair of
vertices in G. A higher value of that means there are more
attributes commonly associated with both vi and vj, which in
other words, vi and vj are more similar w.r.t. node attributes.
After obtaining the attribute similarity between each pair
of vertices, LFCIS uses an n-by-n matrix, X to represent
the attribute similarity between each pair of vertices in G.
Similarly, LFCIS uses a k-by-n latent matrix, B to represent
the latent attribute similarity between each vertex and k latent
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attribute components. For an element in B, say Bij, its value
means the strength of attribute similarity between vj and ith
latent component. Similar to (1), LFCIS makes use of the
difference between X and the one jointly constructed by B,
and C, to measure the loss of attribute similarity. It is defined
as

minimize

O2 = |X− BTC|2F (3)

As LFCIS aims to find k communities in each of which
vertices are connecting more and sharing higher attribute
similarity with each other, it makes use of the following
function to regulate the latent spaces of S and B

minimize

O3 = |S− B|2F (4)

By making use of (4), the latent spaces, B and S are regulated
to be similar so that LFCIS is forced to assign those vertices
sharing higher similarity of both edge structure and attributes
into the same communities, when fitting themodel. The adop-
tion of (4) distinguishes LFCIS from most of the previous
approaches related to community discovery in the network,
as they do not consider to model the interrelationship between
latent spaces of edge structure and node attributes.

To summarize the features that are able to characterize the
communities, LFCIS assumes that, the community features
are hidden in those m attributes in G, and the features for
one community are always different from those for others’.
Based on this assumption, LFCIS utilizes a k-by-m latent
matrix, A to represent the inter-relationship between each of
m attributes and k communities. It is apparent that a higher
value of an entry in A, say Aij, means 3j is more possible
to become a feature characterizing community i. By making
use of C as the latent matrix representing the community
membership, LFCIS utilizing the following objective func-
tion to measure the overall difference between F and the one
constructed by A and C

minimize

O4 = |F− ATC|2F (5)

It is apparent that when (5) is minimized, the corresponding
latent spaces represented byAmay best interpret the features
characterizing the k found communities.
Having introduced the objective functions that LFCIS uses

to complete the sub-tasks, we may know that minimizing the
following function means LFCIS performs the identification
of communities and the summarization of community fea-
tures simultaneously

minimize

O = O1 + O2 + O3 + O4 (6)

Here we assume that the objectives O1, O2, and O4 share the
same latent space representing the community membership.
Based on (6), we know that those vertices sharing a higher

similarity of edge structure and attributes can be grouped
together, so that the community features can be summarized
based on the communitymembership, when (6) is minimized.
By ignoring the terms which are independent to the model
optimization, minimizing (6) is equivalent to

maximize

O = tr(MTSTC+ XTBTC)+ tr(FTATC)+ tr(STB)

−
1
2
(|STC|2F + |B

TC|2F + |A
TC|2F + |B|

2
F + |S|

2
F )

(7)

As all the entries inM,X, and F are non-negative, we propose
LFCIS uses the following objective function to perform the
tasks of community detection and summarization

maximize O = tr(MTSTC+ XTBTC)

+tr(FTATC)+ tr(STB)

−
1
2
[|STC|2F + |B

TC|2F + |A
TC|2F

+�(A,B,S,C)]×�(A,B,S,C)

= |A|2F + α|A|1 + |B|
2
F + |S|

2
F + |C|

2
F

subject to A, B, S, C≥0 (8)

where � contains the regularization terms preventing the
latent factors in the latent spaces from overfitting. If (8) can
be optimized, LFCIS is able to assign n vertices into k sub-
networks in each of which vertices are densely connected,
share relatively high attribute similarity with each other, and
the community features can be obtained from them attributes
in G. Such k sub-networks possessing the mentioned features
are the ones that LFCIS considers as best communities.

B. MODEL OPTIMIZATION
To identify the optimal latent spaces that are used to represent
the community structure and community features, LFCIS has
to optimize (8). Given the characteristics of (8), we find that
it is convex for variables in C, A, B, and S respectively,
when fixing all variables in other matrices. Given this feature,
we may derive a series of iterative rules for inferring the
optimal latent factors in C, A, B, and S.

1) INFERENCE OF C
Let βij be the Lagrange multiplier for Cij≥0, and the
Lagrange function for variables in Cij is shown as the
following

L(C, β) = O− tr(βTC) (9)

Based on the KKT conditions for constrained optimization,
we have the following element-wise equation system

∂L(C, β)
∂Cij

= [SM+ BX+ AF− SSTC− BBTC

−AATC− C− β]ij
βij · Cij = 0

βij ≥ 0 (10)
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Solving the equation system in (10), we may derive the
element-wise updating rule for inferring the latent factors
in C

Cij← Cij ·
[SM+ BX+ AF]ij

[SSTC+ BBTC+ AATC+ C]ij
(11)

2) INFERENCE OF S
Let γij be the Lagrange multiplier for Sij≥0, and the Lagrange
function for variables in S is shown as the following

L(S, γ ) = O− tr(γ TS) (12)

Based on the KKT conditions for constrained optimization,
we have the following element-wise equation system

∂L(S, γ )
∂Sij

= [CM+ B− CCTS− S− γ ]ij

γij · Sij = 0

γij ≥ 0 (13)

Solving the equation system in (13), we may derive the
element-wise updating rule for inferring the latent factors
in Sij

Sij← Sij ·
[CM+ B]ij
[CCTS+ S]ij

(14)

3) INFERENCE OF B
Let ηij be the Lagrangemultiplier forBij≥0, and the Lagrange
function for variables in B is shown as the following

L(B, η) = O− tr(ηTB) (15)

Based on the KKT conditions for constrained optimization,
we have the following element-wise equation system

∂L(B, η)
∂Bij

= [CX+ S− CCTB− B− η]ij

ηij · Bij = 0

ηij ≥ 0 (16)

Solving the equation system in (16), we may derive the
element-wise updating rule for inferring the latent factors
in B

Bij← Bij ·
[CX+ S]ij

[CCTB+ B]ij
(17)

4) INFERENCE OF A
Let µij be the Lagrange multiplier for Aij≥0, and the
Lagrange function for variables inA is shown as the following

L(A, µ) = O− tr(µTA) (18)

Based on the KKT conditions for constrained optimization,
we have the following element-wise equation system

∂L(A, µ)
∂Aij

= [CFT − CCTA− A− µ]ij − α

µij · Aij = 0

µij ≥ 0 (19)

Solving the equation system in (19), we may derive the
element-wise updating rule for inferring the latent factors
in A

Aij← Aij ·
[CFT ]ij

[CCTA+ A]ij + α
(20)

By iteratively updating latent factors in C, S, B, and A,
respectively, while fixing the others, LFCIS is able to find
the optimal latent factors that maximize (8).

C. CONVERGENCE ANALYSIS
To prove the convergence of the algorithm, we may make
use of one property of an auxiliary function that is also
used in the proof of the Expectation-Maximization algo-
rithm [35]. The property of the auxiliary function is
described as the following. If there exists an auxiliary
function satisfying the conditions that Q(x,x ′) ≤ F(x) and
Q(x,x) = F(x), then F is non-decreasing under the updating
rule that

x t+1 = argmax
x

Q(x, x t ) (21)

The equality F(x t+1) = F(x t ) holds only when x is a local
maximum of Q(x,x t ). By iteratively updating x according
to (21), F will converge to the local maximum xmax =
argmaxxF(x). By defining an appropriate auxiliary function
for O, we may show the convergence of (8).
First, we may prove the convergence of the updating

rule (11) for the inference of C. Let Cij be any element
in C, OCij be the partial of (8) that is related to Cij, OCij (C

′
ij)

be the partial objective value of (8) that is related to Cij
when Cij is equal to some value, say C′ij. Since the updat-
ing rule for C is element wise, it is sufficient to show
OCij is non-decreasing according to the updating rule (11).
To prove this, we define the following auxiliary function
for OCij :

Q(c,Ct
ij) = OCij (C

t
ij)+ O

′

Cij (c− Ct
ij)

−
[SSTC+ BBTC+ AATC+ C]ij

2Ct
ij

(c− Ct
ij)

2

(22)

where O′Cij is the first order partial derivative of (8) relevant
to Cij. Although the auxiliary function is defined in (22),
we need to prove it satisfies the aforementioned conditions.
Apparently, Q(c, c) = OCij (c). Hence, the left we need
to prove is Q(c,Ct

ij)≤OCij (c). To prove this, we compared
Q(c,Ct

ij) shown in (22) with the Taylor expansion ofOCij near
to Ct

ij

OCij (c) = OCij (C
t
ij)+ O

′

Cij (c− Ct
ij)+

1
2
O′′Cij (c− Ct

ij)
2

(23)
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where O′Cij and O′′Cij are the first and second order partial
derivatives relevant to Cij. Note that

O′Cij =
∂O
∂Cij

= [SM+ BX+ AF− SSTC−BBTC− AATC− C]ij

O′′Cij =
∂2 O
∂(Cij)2

= −[SST + BBT + AAT ]ii − 1 (24)

Using (24) to replace the relevant terms in (23), we can see
that if Q(c,Ct

ij)≤OCij (c), the following inequality must hold

−
[SSTC+ BBTC+ AATC+ C]ij

2Ct
ij

≤
1
2
O′′Cij

= −
1
2
[SST + BBT + AAT ]ii −

1
2

(25)

Therefore, to show Q(c,Ct
ij)≤OCij (c), it is equivalent to show

[SSTC+ BBTC+ AATC+ C]ij
≥ Ct

ij[SS
T
+ BBT + AAT ]ii + Ct

ij (26)

Since the elements inC,A,B and S are non-negative, we have

[SSTC+ BBTC+ AATC+ C]ij

=

∑
l

[SSTilC
t
lj + BBTilC

t
lj + AAT

ilC
t
lj]+ Ct

ij

≥ SSTiiC
t
ij + BBTiiC

t
ij + AAT

iiC
t
ij + Ct

ij (27)

Up to here, Q(c,Ct
ij)≤OCij (c) has been proved thus (22) is an

auxiliary function for OCij .
Next, we will define the auxiliary functions regarding to

the updating rules for the inference of S, B, and A, which are
shown in (14), (17), and (20). Similarly, let OSij , OBij , and
OAij be the partial of (8) relevant to Sij, Bij and Aij, OSij (S

′
ij),

OBij (B
′
ij), and OAij (A

′
ij) be the partial objective values when

Sij, Bij and Aij equal to S′ij, B
′
ij and A′ij, respectively. Since

the updating rules for the inferring S, B, and A are also
element wise, it is sufficient to show that OSij , OBij , and
OAij are non-decreasing according to the updating rules (14),
(17), and (20). Let the following be the auxiliary functions
regarding to OSij , OBij , and OAij

Q(s,Stij) = OSij (S
t
ij)+ O

′

Sij (s− Stij)

−
[CCTS+ S]ij

2Stij
(s− Stij)

2

Q(b,Btij) = OBij (B
t
ij)+ O

′

Bij (b− Btij)

−
[CCTB+ B]ij

2Btij
(b− Btij)

2

Q(a,At
ij) = OAij (A

t
ij)+ O

′

Aij (a− At
ij)

−
[CCTA+ A]ij + α

2At
ij

(a− At
ij)

2 (28)

Since the proof for the above functions to be auxiliary func-
tions for OSij , OBij , and OAij is similar to that for OCij ,
we don’t show the proof in detail due to the space limitation.

Having obtained the auxiliary functions forOCij ,OSij ,OBij ,
and OAij , now we can show the convergence of (8) using
the updating rules (11), (14), (17) and (20). Since (22) is an
auxiliary for OCij , according to (21), we have

Ct+1
ij = argmax

c
Q(c,Ct

ij)

= Ct
ij ·

[SM+ BX+ AF]ij
[SSTC+ BBTC+ AATC+ C]ij

(29)

The above result is the same to the updating rule (11).
Since (22) is an auxiliary function, OCij is non-decreasing
when Cij is updated according to (29) or (11). This is equiv-
alent to say that O is non-decreasing when Cij is updated
according to (11) as Cij is any element of C.
Since (28) are auxiliary functions for OSij , OBij , and OAij ,

according to (21), we have

St+1ij = argmax
s

Q(s,Stij) = Stij ·
[CM+ B]ij
[CCTS+ S]ij

Bt+1ij = argmax
b

Q(b,Btij) = Btij ·
[CX+ S]ij

[CCTB+ B]ij

At+1
ij = argmax

a
Q(a,At

ij) = Stij ·
[CFT ]ij

[CCTA+ A]ij + α
(30)

The above results are the same to the updating rules (14),
(17), and (20). Since (28) are auxiliary functions, OSij , OBij ,
andOAij are non-decreasing when Sij, Bij andAij are updated
according to (14), (17), and (20). This is equivalent to say
that O is non-decreasing when Sij, Bij and Aij are updated
according to (14), (17), and (20), respectively. The above
proof shows that O is non-decreasing when C, S, B and A
are iteratively updated according to (11), (14), (17) and (20).
Thus, we have

O(C0,S0,B0,A0) ≤ O(C1,S0,B0,A0)

≤ O(C1,S1,B0,A0) ≤ · · · ≤ O(Copt ,Sopt ,Bopt ,Aopt )

(31)

where O shows a non-decreasing trend in each iteration of
updating and it may finally achieve to the local optima.

D. THE TERMINATION OF OPTIMIZATION
As C, S, B and A are iteratively updated, the objective value
converges to the local optima asymptotically. Simultaneously,
the variation of the four matrices, becomes less evident as the
elements in each matrix are approximate to the magnitudes
which lead the objective value to the local optima. Thus,
we may use the following stopping criterion to determine
whether the optimization process should be terminated and
LFCIS may obtain optimal latent factors in matrices C, S, B
and A that lead O to converge

|Ct
− Ct−1

|F < τ (32)

where Ct stands for the latent space representing the com-
munity membership after the tth iteration of updating,
τ represents the predefined tolerance which the Frobe-
nius norm of the difference of C between two iterations
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should satisfy. When τ is set to be a relatively small value,
LFCIS may obtain a latent matrix C which is very approxi-
mate to the optimal.

E. SUMMARY REMARKS
Having obtained the updating rules for C, S, B and A and the
stopping criterion for the optimization process, now we may
describe the details of LFCIS. Based on the aforementioned
description, the proposed algorithm for learning the latent
factors in LFCIS can be summarized as the pseudo codes
shown inAlgorithm 1. As it is seen, there are notmany param-
eters that need to be input. After the parameters of maximum
number of iteration maxiter , tolerance for improvement τ ,
penalty factor α and the dimensionality of latent spaces,
k are determined, LFCIS will iteratively update the matrices
C, S, B andA, in which are the latent factors representing the
community membership and their features, till the variation
of C between two iterations is less than τ or the objective
function converges to the local maxima. After the optimiza-
tion process is terminated, LFCIS obtains the matrices for
community membership and features,C andAwhich contain
the optimal or approximately optimal membership between
each vertex and k communities and the community features
generated based on them attributes in G. GivenC, LFCIS can
directly identify the best community membership for each
vertex in the network.

For the model comlexity, we mainly analyze the compu-
tational cost when LFCIS is updating those variables in C,
S, B and A in each iteration. Based on (11), updating all the
factors in C follows the order of O(k2(2n2 + 3n + mn) +
k(2n2+mn+n)). Based on (14), updating all the latent factors
in S follows the order of O(k2(n2 + n)+ k(n2 + 2n)). Based
on (17), updating all the variables in B follows the order as
what updating S does. Based on (20), updating all the latent
factors in A follows the order of O((k2 + k)(nm + m)). It is
seen that the computational complexity of LFCIS is about
the order of O(n2). As M, X, and F are always very sparse,
the complexity of LFCIS should be much lower than the
analytical.

IV. EXPERIMENTS AND ANALYSIS
To evaluate the effectiveness of LFCIS, we performed a
number of experiments using both synthetic and real-world
datasets. In this section, we present the details of the datasets
we used, the criteria we used to evaluate the performance, and
how we performed the experiments.

A. EXPERIMENTAL SET-UP AND PERFORMANCE METRICS
1) DATASETS DESCRIPTIONS
We used both synthetic and real datasets with known ground
truth for performance evaluations. We used synthetic data to
test the effectiveness, efficiency of LFCIS and other com-
pared baselines, and parameter sensitivity of LFCIS. We used
real-world datasets to test the robustness of different algo-
rithms. The details of datasets we used are described below.

Algorithm 1 Inference of Latent Factors in LFCIS
Input: M, X, F, α, maxiter, τ , k
Output: C, S, B, A

Randomly initialize C, S, B, A;
for count = 1 : maxiter do
Fixing S, B, A
updating C according to (11);
Fixing C
updating A according to (20);
Fixing B
updating S according to (14);
Fixing S
updating B according to (17);
if |C i

− C i−1
|F < τ then

compute objective value according to (8);
break;

end if
end for
return C, S, B, A;

There are five real-world datasets used in our experiments,
including Caltech [36], Twitter [20], Ego-facebook [19],
Googleplus-1 [20], and Googleplus-2 [20], all of which are
collected from online-social networking sites and are widely
used as testing datasets for community identification.
Caltech is a set of network data which is constructed based

on the friendship of social network users from California
Institute of Technology. The social network users at Caltech
can be segmented into 10 large classes according to the
college’s dorm system [36]. There are 769 vertices represent-
ing 769 social network users, and 16656 edges representing
social ties between these users. A total of 53 attributes repre-
sent the user profiles.
Twitter dataset is constructed based on a number of social

circles extracted from twitter.com. For this dataset, there are
2511 vertices representing twitter users, 37154 edges rep-
resenting the friendship between them, and 9067 attributes
representing social topics they concern, and the locations
where the users post twits. There are 132 social circles that
have been verified as ground truth communities.
Ego-facebook is a set of social network data that are con-

structed based on a number of sub-networks extracted from
facebook.com. In this dataset, there are 4039 vertices that rep-
resent facebook users, 88234 edges representing online social
ties between these users, and 1283 attributes that represent
the user profiles. 191 social communities have been verified
as ground truth communities so that they can be used for
benchmarking the identified ones.
Googleplus-1 is a set of online social network data which

are collected from plus.google.com. There are 5630 vertices,
463537 edges, and 4229 attributes in the dataset. In this
dataset, vertices, edges, and attributes represent googleplus
users, friendships, and user profiles, respectively. There are
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58 social clusters that have been verified as ground truth
communities in Googleplus-1.
Googleplus-2 is another set of social network data

which are constructed based on the sub-networks from
plus.google.com. There are 7856 vertices, 321268 edges,
and 2024 attributes in the dataset. In this dataset, there are
91 social communities of ground truth that are able to be used
for benchmarking the identified ones.
Syn1k is a set of synthetic data which is generated based

on the rule that the probability of intra-community edges is
higher than that of inter-community edges and that vertices
in the same cluster are more related to each other than those
that are not. In Syn1k, there are 1000 vertices that are divided
into 4 disjoint ground truth communities, 9900 edges and
50 attributes that are possibly associated with each vertex.

The above data sets are used to test the effectiveness of
LFCIS and other algorithms. In addition, to test the scalability
of LFCIS, we have generated several additional synthetic
datasets ranging in the size from 5,000 to 100,000 for our
experiments.

2) EVALUATION METRICS
For performance evaluation, we are considering different
evaluation measures which are widely used for evaluating
network clustering algorithms. For measures used for vali-
dating graph clusters, we used the Normalized Mutual Infor-
mation (NMI ), and the Average Accuracy (Acc) [37].

The NMI measures the overall accuracy of the matches
between detected communities and those that are considered
as ‘‘ground truth’’. It is defined as

NMI =

∑
Ci,C∗j

Pr(Ci,C∗j )log
Pr(Ci,C∗j )

Pr(Ci)Pr(C∗j )

max(H (C),H (C∗))

H (C) = −
∑
i

Pr(Ci)logPr(Ci)

H (C∗) = −
∑
j

Pr(C∗j )logPr(C
∗
j ) (33)

where Pr(Ci, C∗j ) denotes the probability that vertices are in
both the detected community i and the true community j, and
Pr(Ci) denotes the probability that a vertex is found to exist in
community i. Based on this definition, if the NMI measure is
high, it means that the communities detected match well with
the ground-truth ones.

Contrary to the NMI, the Acc measure evaluates the
detected community individually. It is defined as

Acc =
∑
i

|Ci|
|C|

f (Ci,C∗) (34)

where |C| means the size of the detected communities, and
f(·) stands for a mapping function between cluster i and the
ground truth. For our purpose, we define f(·) to be the max-
imum overlap between detected community i and a ground-
truth community. Thus, Acc evaluates the best matching of
each cluster. A higher value of Acc, therefore means that

each detected community has a better match with the ground
truth. The higher the Acc of all communities detected by
an algorithm, therefore means that the algorithm is more
effective.

3) BASELINES FOR COMPARISON
To test the effectiveness of LFCIS, we selected a number of
approaches as compared baselines. These algorithms include
CNM [5] Affinity Propagation clustering (AP) [8], Spec-
tral clustering (SC) [10], k-means clustering [32], Relational
topic model (RTM) [24], CESNA [20], ECDA [19], and
MISAGA [28]. Selecting these algorithms as baselines is
because they are either the latest algorithms or classical ones
and have been used effectively to detect network commu-
nities in various networks. Specifically, CNM is an effec-
tive algorithm for community detection which is based on
modularity optimization. AP and SC may detect clusters that
take different topological properties of network data. For our
experiments, we used the SC thatmakes use of the normalized
cut [11] in graph clustering. k-means is able to detect graph
communities through grouping together those vertices with
similar attributes. Therefore, we used the information in3 as
the input that is used to compute the similarity between pair-
wise vertices for k-means. Algorithms like RTM, CESNA,
ECDA, and MISAGA are ones taking into consideration both
graph topologies and attributes. RTM has been shown to
be a very effective topic-model based approach to segment
relational data. CESNA is able to discover network commu-
nities by maximizing the logarithmic posterior probability of
structural and attribute similarity between pairwise vertices.
ECDA performs its tasks using an evolutionary graph cluster-
ing algorithm. MISAGA is a very effective algorithm which
is proposed recently. It can perform the task of community
detection in graphs taking into the consideration edge struc-
ture and attribute similarity between pairwise vertices.

For performance benchmarking, we used the source
code or executables made available by the authors. All the
experiments were conducted under the same environment
which is included into aworkstationwith 4-core 3.4GHzCPU
and 16GB RAM.

4) EXPERIMENTAL SET-UP
To ensure that the algorithms we used in the experiment
may obtain a robust performance, we tested them using the
parameters in such a way that either the default settings as
recommended by the authors are used or that they are tuned
by trials to find the best settings.

Specifically, we let CNM, AP, CESNA, and ECDA detect
network communities using the default settings as all of
them do not require input parameters. For algorithms, includ-
ing SC, k-means, MISAGA, and RTM, which require param-
eters to manually input into the system, we tried as many
different settings as we can, to obtain the best results for
performance benchmarking. For example, SC requires that
the parameter of σ to be set by the users before it can
run. To find a better set of parameters, we tried SC using

30144 VOLUME 6, 2018



T. He et al.: Learning Latent Factors for Community Identification and Summarization

different σ from 1 to 10. The settings that give the best perfor-
mance of SC are recorded and presented in our performance
analysis below. As for the number of clusters, k, we set it
for those algorithms that need k as a predefined parameter,
including, SC, k-means, MISAGA, and RTM, to be equal to
the number of ground truth communities in each dataset.

For LFCIS, we set α to 0.5 to control the sparsity of A.
As for the other parameters, we set the maximum number
of iterations to 500, and τ to 1e-6. As for k, it is set to
be the same as the other algorithms, which is equal to the
number of ground-truth communities in each of the datasets.
All the algorithms, including LFCIS, were executed 10 times
to obtain statistical averages for the performance measures.

B. EXPERIMENTAL RESULTS USING SYNTHETIC DATA
1) THE PERFORMANCE OF COMMUNITY DETECTION
For performance evaluation, we used a set of synthetic net-
work data containing 1000 vertices to test the effectiveness
of all algorithms. There are four disjoint ground truth clusters
in the synthetic dataset. As mentioned above, the synthetic
data are generated by assuming that the probability of vertices
within the same community to be connected with other ver-
tices to be higher than that of the probability between commu-
nities. For our experiment, the data set Syn1k was generated
by setting the probability of intra-community connections to
be 0.05 and the probability of inter-community connections
to be 0.01.

The performance of LFCIS and other algorithms in Syn1k
with respect to NMI, and Acc is given in Table 1. As the table
shows, LFCIS performs better than other algorithms. Nomat-
ter which of NMI, or Acc is considered, LFCIS may out-
perform all the compared baselines in dataset Syn1k. These
experimental results show that LFCIS can be very effective
in the discovering of communities in the synthetic network
data.

TABLE 1. NMI and Acc in Syn1k.

2) SENSITIVITY TEST OF α
As mentioned in Section III, there is only one parameter,
α, which is used to control the sparsity of A in LFCIS,
and it might take effect on the performance of the model.
To investigate how the parameter αmay take effect on the per-
formance of LFCIS, we performed the sensitivity test using
the dataset Syn1k. In our experiment, α was set to different

values from 0.1 to 2, with an increment of 0.1, and LFCIS
was used under these settings to fit the model for discovering
communities. The performance was measured with NMI, and
Acc and the results are shown in Fig. 1.

FIGURE 1. Sensitivity test of α.

As it is shown in the figure, LFCIS may obtain a worse
performance when α is set to be either near to 0, or near
to 2. LFCIS may perform steadily when α is set to a value
between 0.2 and 1.5. In our experiments, we set α to 0.5,
when LFCIS performs the tasks of community identification
and summarization in all the datasets. Using this setting may
guide LFCIS to exclude those attributes with relatively lower
possibility of being ones that may characterize the identified
communities, while preserve those that are more possible to
be community features.

3) SCALABILITY TEST
In order to find how LFCIS may scale up when the size
of the graph data increases, we used a series of synthetic
datasets ranging from 5,000 to 100,000, that are generated
using the same probabilities of 0.05 and 0.01 for intra- and
inter-community connections as is with Syn1k, to test the
scalability of LFCIS and compare it with MISAGA, SC,
and RTM. As all of these algorithms are based on iterative
optimization, the comparison is made based on the average
execution time per iteration. The experimental results of scal-
ability comparison are shown in Fig. 2.

As it is shown in the figure, LFCIS scales up well when
compared with MISAGA, RTM, and SC. Even when the data
size increases up to 100,000 vertices, LFCIS is able to com-
plete each iteration of parameter updating around 1 second.
This is slightly faster than MISAGA. When MISAGA and
LFCIS use the same setting of maximum number of iterations
for optimization, LFCIS is able to identify the community
membership and summarize the community features in a
shorter time. Given this fact, LFCIS is more efficient.

As for RTM and SC, the computational time used by them
was much more demanding than LFCIS. When the data size
is increased to 10,000, RTM and SC are already not able to
cope. The computational time required by RTM and SC is
intolerable.
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TABLE 2. Experimental results in real-world datasets.

FIGURE 2. Scalability comparison between LFCIS and other approaches.

C. EXPERIMENTAL RESULTS USING REAL-WORLD DATA
Community detection is one of the most significant tasks
of network analysis. To test the effectiveness of LFCIS and
other compared baselines, we use them to perform the task
of community detection in five sets of real-world social
network data, including Caltech, Twitter, Ego-facebook,
Googleplus-1, and Googleplus-2. These five sets of real-
world data are different from vertex size and the dimensional-
ity of attributes that are used to characterize the vertices. All
these datasets have known ground truth communities which
have been verified in the previous works. For this reason,
the performance of LFCIS and other baselines can be more
objectively compared.

The experimental results of NMI and Acc obtained with
these datasets are summarized in Table 2. As the tables
show, LFCIS performs more robustly, compared with other
baselines. When NMI is considered, LFCIS is better than any
other baselines in all the five datasets. LFCIS outperforms
the second-best methods by 23.17%, 4.56%, 9.28%, 5.91%,
and 39.38% inCaltech, Twitter,Ego-facebook,Googleplus-1,
and Googleplus-2, respectively. When Acc is considered,
LFCIS is better than any other baselines, except the case
in Twitter dataset. In Caltech, Ego-facebook, Googleplus-1,
and Googleplus-2, the improvement related to Acc, is 3.71%,

13.27%, 0.82%, and 30.3%, respectively, when LFCIS is
compared with the second-best algorithms. Given the robust
performance obtained by LFCIS in these real-world datasets,
it is said that LFCIS is a very effective model for identifying
latent communities in social network data, while ensuring the
community features also to be identified.

D. CASE STUDY-THE COMMUNITY FEATURES AND
MEMBER ATTRIBUTES
To investigate whether LFCIS is able to effectively
summarize the features which may be used to characterize a
particular community, we compared the community features
identified by LFCIS with those attributes shared by the
vertices in the same community. Here we make a detailed
analysis on a community identified by LFCIS to show the
effectiveness on the community summarization of LFCIS.
In Twitter dataset, one social community was identified by
LFCIS and its structure almost match one in the ground truth
database. The structure of this ground truth community is
shown in Fig. 3. In fact, only one vertex, 537550306 was
not successfully identified by LFCIS in our experiments.
Making use of A fitted by LFCIS, we also find that there are
14 attributes with higher probabilities that may characterize
this community. These attributes are shown Table 3. Given
them, we may conclude that this social community is about
the campaigns related to some sports, e.g., wrestling. And
attributes of the members in this community, should be
related to the community features, to some extent. In Table 3,
we also list the attributes shared by two members in this
community, 533426485 and 41284429. As it is shown in
the table, topics like ‘‘SmackDown!,‘‘ ‘‘SuperShow?,‘‘ and
‘‘SurvivorSeries‘‘ are all related to an American professional
wrestling event, i.e., WWE. And these topics have been
identified by LFCIS as features of this community. Similarly,
such overlap can also be found between the attributes of other
community members and the community features. Given
this fact, it is said that, LFCIS is able to summarize the
community features, while ensuring its robust performance
on community detection in network data.
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FIGURE 3. The structure of a ground truth community in Twitter dataset.
LFCIS identified all the vertices except of 537550306 .

TABLE 3. Community features and attributes shared by community
members.

V. CONCLUSION
In this paper, a novel latent factor model for community iden-
tification and summarization, LFCIS is proposed. Different
from most prevalent approaches that focus on either com-
munity identification or community summarization, LFCIS
is able to complete the two tasks simultaneously. Taking into
the consideration edge structure and vertex attributes in the
network, LFCIS formulates the identification of community
and summarization of community features as an optimization
problem. And the optimal community membership for each
vertex can be learned by LFCIS through a series of rules for
updating the model parameters. What distinguishes LFCIS
from other approaches is that LFCIS is considering to model
the interrelationship between the latent spaces w.r.t. structure
and attribute similarity so that those vertices sharing similar
latent structures w.r.t. topology and attributes are more prob-
ably assigned with similar community memberships. LFCIS
has been tested with both synthetic and real-world network
data and has been compared with several prevalent algo-
rithms for community discovery or community summariza-
tion. It outperforms most state-of-the-art approaches in the

experiments related to the test of effectiveness and efficiency.
It is concluded that LFCIS is a very promising approach to
identifying communities and summarizing their features in
the network data. In future, we will test LFCIS using more
comprehensive metrics to reveal its effectiveness. We will
attempt to improve the efficiency of LFCIS and develop the
parallel version of LFCIS. And we will also try to investigate
the feasibility of making use of LFCIS to detect overlapping
communities in network data.
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