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Abstract— Conventional supervised techniques for automated 

facial affect recognition rely on the availability of diverse, well-

annotated training data to build models that can accommodate 

inter-personal differences. However, this requires enormous 

manual annotation efforts, which involve expert labor and are 

expensive, and error-prone. This is a bottleneck that limits the use 

of facial affect recognition in daily applications. User-specific or 

personalized models alleviate some of the challenges caused by 

identity bias, but these approaches are similarly constrained by the 

amount of well-annotated individual data, which is time-

consuming and costly to collect.  

This paper proposes a novel user-adaptive model, which we 

have termed fast-PADMA (fast Personal Affect Detection with 

Minimal Annotation). Fast-PADMA integrates data from multiple 

source subjects with a small amount of data from the target 

subject. Collecting this target subject data is feasible since fast-

PADMA requires only one self-reported affect annotation per 

facial video segment. To alleviate overfitting in this context of 

limited individual training data, we propose an efficient 

bootstrapping technique, which strengthens the contribution of 

multiple similar source subjects. Specifically, we employ an 

ensemble classifier to construct pre-trained weak generic 

classifiers from data of multiple source subjects, which is weighted 

according to available data from the target user. The result is a 

model that does not require expensive computation, such as 

distribution dissimilarity calculation or model retraining. We 

evaluate our method with in-depth experimental evaluations on 

four publicly available facial datasets, with results that compare 

favorably with state-of-the-art performance on classifying pain, 

arousal and valence. Our findings show that fast-PADMA is 

effective at rapidly constructing a user-adaptive model that 

outperforms both its generic and user-specific counterparts. This 

efficient technique has the potential to significantly improve facial 

affect recognition in real-use cases and therefore enable 

comprehensive affect-aware applications. 

Index Terms—Affective computing, facial affect, rapid 

modeling, user-adaptive model. 

I. INTRODUCTION

UTOMATED spontaneous facial affect recognition

enables machines to be aware of users’ mental states and 

facilitates potential advancements in human computer 

interaction. It has been named as a promising technique in 

recent affective studies [1]. However, the affect model relying 

on one generic classifier ([2][3]) learnt on the source subjects’ 

data in the training set has acute problems when it comes to 

accommodating differences between individuals. This issue of 

model generalizability constrains the widespread application of 

facial affect recognition in real-use situations. Theoretically 

speaking, given sufficient data, a user-specific model (trained 

only on data from the target user) can achieve ideal recognition 

accuracy, for it can be well customized for the target user, 

accounting for the facial geometry and personal expression. 

One challenge of user-specific modeling is acquisition of 

annotated data. Given a video segment of a user’s facial 

expression, conventional methods require that every frame be 

annotated with the user’s affect at that moment [1]. Clearly, this 

manual annotation is expensive, tedious, error-prone, and rarely 

feasible in real-use situations where large amounts of data are 

needed for robust performance. Fortunately, most real world 

applications are more concerned about the overall human affect 

over a period, such as the level of engagement while reading an 

article, or the level of interest while watching an advertisement 

clip, rather than the momentary, frame-level affect. This makes 

multiple-instance learning (MIL) attractive. MIL mainly learns 

and classifies at the bag level. In the case of facial affect 

learning, each bag is a video segment which contains multiple 

frames/instances, and only the segment-level annotation is 

required for training. This means that frame-level annotation is 

no longer necessary, thus the annotation effort can be 

drastically reduced. 

Although MIL reduces the annotation effort, in most cases, 

the available target data, or data from the target user, is usually 

limited compared to the source data, which can be pre-

collected. Effective usage of this target data is therefore critical. 

There have been some attempts at using transfer learning for 

facial affect recognition with limited target data [1]. These 

techniques usually adopt the instance-transfer approach [3], 

which identifies instances that are similar to those of the target, 

and re-weighs and heightens the importance of those instances. 
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However, it is not wise to down-weigh all dissimilar instances 

as some dissimilar instances are necessary if a model is to be 

able to handle unseen data. Furthermore, instance-transfer is 

computationally expensive. Deploying the model also requires 

that the source data instances be available on the client side, 

which may not be desirable or even possible in certain contexts.   

To accelerate the construction of the target classifier, some 

efforts have focused on model personalization from multiple 

individual classifiers, each of them pre-trained on annotated 

data from one source subject [2][4]. However, there are three 

drawbacks. First, the amount of well-annotated data for each 

source subject is likely to be small, especially in facial affect 

recognition contexts involving spontaneous expressions, where 

obtaining the frame-level annotations mean laborious labeling. 

As a result, the individual classifiers, which are the foundation 

of the knowledge transfer, are likely to suffer from overfitting. 

Second, if knowledge adaptation only considers the distribution 

of the target data instances in the feature space, and does not 

consider the semantic meaning, or the label, behind the 

instances, it can be susceptible to user differences, which is also 

the problem commonly suffered by generic classifiers. Third, to 

allow for rapid parameter estimation based on distribution of 

data [2][4], each classifier needs to use the same mapping 

function. This limitation constrains the modeling capability of 

an otherwise sophisticated system.   

This paper proposes a novel and efficient approach to 

building a user-adaptive facial affect model, which bridges the 

gap between the limited individual data and a practical, well-

performing affect model. We assume that there is a certain 

degree of commonality between the target user and the source 

subjects in general. In other words, the target user shares certain 

individual characteristics with some of the source subjects. 

However, instead of building an ensemble of multiple 

individual classifiers, our approach is a radically different 

strategy that starts with weak generic classifiers, each of which 

is trained on data from a subset of multiple source subjects, and 

identifies groups of individuals who are similar to the target 

subject and accentuates their importance. To reduce the 

personal geometric bias in the weak generic classifier, we align 

the frame-level feature vectors into a new feature space, 

considering both the individuals’ expressionless state and their 

feature boundaries. We also propose a new feature 

representation to facilitate the knowledge transfer at the 

segment level. 

The contributions of this paper are as follows. We (1) 

propose an efficient bootstrapping-based technique to transfer 

the generic knowledge of facial affects; (2) devise an alignment 

technique to normalize data across diverse individuals for the 

weak generic classifiers; (3) develop a simple but effective 

method to aggregate the segment-level feature for multiple-

instance learning and (4) present state-of-the-art facial affect 

classification performances on four public datasets. In contrast 

to previous studies, our method rapidly builds an adaptive 

model for the target user, without storing the training instances 

or depending on computational optimization. We shall 

empirically show that it can effectively adapt to user 

individuality and outperform the generic and user-specific 

counterparts.  

The rest of this paper is organized as follows. In Section II 

we provide the summary of related work. Our system overview 

is presented in Section III. Section IV introduces the proposed 

techniques. The experiment setup and result are presented in 

Section V. Finally, we conclude this paper and discuss our 

future work in Section VI.  

II. RELATED WORK 

The goal of this paper is to rapidly build a user-adaptive 

facial affect model. Two pertinent essential issues are the 

utilization of the segment-level annotation and the adaptation 

of the source subjects’ data. This section reviews previous work 

addressing these two issues.   

A. Learning Facial Affect from Bag Annotation 

Multiple-instance learning refers to machine learning 

approaches in which a set, or “bag”, of instances shares a 

common overall label, or a “bag annotation”. In the context of 

facial affect learning from video, an instance is a frame from a 

video segment, a bag is the segment itself, and a label is the user 

affect. Recent studies generally follow three main approaches 

when learning from the segment annotation. The first approach 

assigns all the instances in a bag with the bag label. Viola et al. 

[5] developed a boosting variant called MILBoost, which 

initializes all the instances (e.g. individual frames) with the 

label of the bag and applies boosting for further learning. Sikka 

et al. [6] extracted facial gestures from a video segment and 

employed MILBoost for pain recognition from facial 

expression. These methods assume that a large proportion of the 

instances in a bag coincide with the annotated label of the bag. 

However, this assumption may not hold in real-use facial affect 

recognition systems, as it is not uncommon to have multiple 

affects occur within a given segment of time in natural contexts. 

Rather than use all the instances in a bag, the second 

approach adopts a subset of them as representation. For 

instance, Ashraf et al. [7] proposed to cluster the facial 

expressions in each segment and use the centroids to represent 

the segment for pain detection. However, the same problem 

occurs: when mixed emotions are present, and with some 

emotions that are more momentary in nature (e.g. surprise), the 

affects exhibited by some centroids may not be consistent with 

the segment annotation. 

The third approach devises a new feature space to 

characterize a bag. Chen et al. [8] determined bag similarity 

based on bag-to-instance distances. All instances are used to 

form the bag-level feature vector. However, this generates a 

high-dimensional space. Fu et al. [9] simplified the prototype 

vector by selecting only one instance per bag, which generates 

a vector with much lower dimension. Xiao et al. [10] explicitly 

measured the bag dissimilarity taking into consideration the 

instance similarity between the positive and negative bags. 

However, since the bag similarity is defined as the pairwise 

distance between the instances, the computation exponentially 

increases as the number of instances and bags. Cheplygina et al. 

[11] studied different forms of prototypes to measure the bag 

dissimilarity, including representations at instance-level and 
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bag-level. They then proposed a balanced method using random 

subspace as the prototype. Despite their success, using a few 

selected instance(s) for bag description may not be suitable for 

facial affect recognition, especially for lengthy segments with a 

diversity of instances, which may not all be representative of 

the affect depicted by the bag label.  

Other efforts focus on facial affect recognition in the MIL 

paradigm. Ruiz et al. [12] proposed to identify multiple 

prototypes through an optimization mechanism, which jointly 

learns the prototypes and the parameters for the bag classifier. 

However, their study has not suggested the way to determine 

the number of prototypes.  Additionally, since the prototypes 

and the classifier are jointly determined by the training set, this 

method may require a computationally expensive optimization 

for each model update with newly collected data. To reduce the 

computational cost, Huang et al. [13] encoded the segment 

characteristic by the probabilities of different emotional frames, 

but the identification of these emotional frames is still highly 

constrained by the proportion of positive instances in the 

training bags. Huang et al. [14] proposed a fast, association-

based multiple-instance learning (AMIL) technique to ascertain 

the indication of facial gestures from their distributions across 

segments with different annotations. This method can 

effectively extract useful information from the user-specific 

data; however, it does not attempt to explore the generic 

knowledge that might be obtained by considering the similarity 

between subjects. 

In this paper, we exploit AMIL to represent the user-specific 

facial affect implication. In addition, we introduce statistical 

pooling to extract the generic attributes of dispersion and 

distribution of the bag instances. This feature representation is 

effective for the proposed user-adaptive model. 

B. Adapting from Generic Source Data 

Much current research in affective computing focuses on 

model generalization for new users [15]. However, generic, or 

user-independent models have difficulty accommodating 

individual differences. Littlewort et al. [16] reported an 

accuracy drop from 95% to 60% when a model trained on one 

dataset is tested on another. Michel et al. [17] carried out similar 

experiments and the accuracy drops from 87.5% to 60.7%. 

Findings from the first facial expression recognition and 

analysis (FERA) challenge [18] also show that the user-specific 

model generally outperforms the user-independent model.   

There have been efforts in combining source and target data 

into the same model. Valstar et al. [18] showed that high 

performance could be achieved for emotion recognition when 

prior training data for the target user is available. However, 

obtaining enough well-labeled user-specific data is expensive 

for real-use systems. There is also a data skew issue if the data 

is aggregated directly: the contribution of the target data is 

likely to be overwhelmed by the much larger source data. 

In spite of the previous success of automated facial affect 

studies in lab scenarios, recognition of spontaneous expression 

in natural contexts is still challenging [14]. An ideal solution to 

distinguish subtle expression differences under inter-personal 

variations is to personalize a user-specific model. Transfer 

learning has recently become popular for knowledge adaptation 

and addressing the target data scarcity issue in different 

problems [21], including document, sentiment, and image 

classification. For example, Dai et al. [22] extended  Adaboost 

[23] for inductive transfer learning, which assumes some 

annotated target data is available. Other studies also 

investigated the transductive transfer learning, which assumes 

the target data is available but not labeled [20]. 

Despite the success of transfer learning, there has not been 

much effort into applying it for facial affect recognition, nor has 

there been much attention on addressing inter-personal 

differences. Chu et al. [3] showed the effectiveness of the 

transductive transfer learning approach, which re-weighs the 

source training samples most relevant to the target user. 

However, instance re-weighting and model adaptation require a 

computationally expensive optimization. Sangineto et al. [2] 

presented an alternative method that mitigates the 

computational cost of learning a personalized model, by using 

a regression function to identify the target model parameters 

based on the mapping from source subjects’ data distribution 

into their classifier parameters. Zen et al. [4] further simplified 

the mapping by using support vectors for parameter transfer. 

Additionally, it has also been found that compared to transfer 

learning from a single combined source [22] (i.e. a combined 

set of data of all source subjects), learning from multiple single-

sources [2][4] has a higher chance of identifying similar users, 

which should achieve a better transfer. It has also been shown 

that approaches that use the target data without considering the 

annotation may fail to achieve a correct adaptation. Chen et al. 

[20] compared transferring knowledge with and without using 

target data annotation. They demonstrated that inductive 

transfer learning with target data annotation outperformed its 

counterpart. 

Personalization of facial affect at the segment level can be 

even more challenging, due to the uncertain and subjective 

connection between the overall affect label and a video segment 

(usually thousands of frames), and the inadequacy of annotated 

target data (e.g. only dozens of annotations per subject). 

Therefore, transferring from a set of individual models 

[2][4][20] may not be a good choice in real-use situations. Since 

the amount of one subject’s training data is usually 

insufficiently small, each of these weak individual classifiers 

may suffer from overfitting. 

Table 1 further categorizes the related facial affect studies 

based on the granularity of their training set annotation (frame- 

vs segment- level) and user adaptation methodology. A large 

body of prior work has been done on the generic classifier [1]. 

TABLE 1 

SPOTTING THE RESEARCH GAP FOR FACIAL AFFECT. 

Adaptation 

Granularity 

Without user 

specificity 
With user specificity 

Frame-level 
Generic 

[1][19][7] 

Transfer from combined 

source [3] & multiple 
single-sources [2][4][20] 

Segment-level 
MIL 

[6][7][12][13] 

Transfer from multiple 

subsets of sources (ours) 
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Recent research suggests knowledge adaptation is effective to 

accommodate individual differences [2][3][4][20] and 

multiple-instance learning useful to reduce annotation effort 

[6][7][12][13].  

This paper proposes a framework to jointly solve these two 

issues. We use a variant of bootstrapping to transfer knowledge 

from groups of source subjects. While attempting to accentuate 

the weights of source data that is similar to the target user, we 

wish to maintain sufficient diverse data for each weak classifier. 

In contrast to learning from a set of individual classifiers, we 

coordinate a set of weak generic classifiers, each of which is 

learnt from data of a subset of the source subjects. 

III. SYSTEM OVERVIEW OF FAST-PADMA 

The objective of our approach, fast Personal Affect Detection 

with Minimal Annotation (fast-PADMA), is to rapidly learn a 

user-adaptive facial affect recognizer for practical use. 

Although the MIL techniques significantly reduce the 

annotation effort by requiring only one overall label per video 

segment, collecting sufficient individual data (multiple well-

annotated segments) is still time-consuming [14]. We therefore 

attempt to accelerate personal model learning by exploring 

source knowledge from other training subjects. In addition, to 

ensure the application feasibility in real use, we avoid the 

computationally expensive optimization that is prevalently used 

in knowledge transfer.  

The proposed affect recognizer is trained on video segments 

of different subjects. Only one segment-level annotation of self-

reported affect is required per segment. Fig. 1 shows the 

process. Geometric facial features are automatically extracted 

frame-by-frame from the video segments (Row 1). AMIL is 

then used to calculate the overall association between facial 

gestures and affects in a segment for each individual user [14]. 

The AMIL result is then combined with descriptive statistics, 

such as the standard deviation and kurtosis of the temporal 

sequence of each facial feature, as the final feature 

representation for a segment (Row 2). The final feature vector 

therefore encapsulates (1) the indicativeness of the important 

facial gestures in a segment and (2) the overall attributes of the 

facial actions in the entire segment.  

To alleviate the individual geometric bias, we introduce a 

personal data alignment technique that takes into account the 

“expressionless” states of the individual. We construct multiple 

weak generic classifiers, each of which is trained on a subset of 

the source subjects’ data. Fast-PADMA then adapts to a 

particular target user by using the available target data to 

evaluate and re-weight each of the weak generic classifiers. As 

illustrated in Fig. 1 (Row 3), the weighting (indicated by 

varying intensities of blue) of each weak generic classifier can 

be different, according to the actual data of the target user. The 

final classification result depends on the weighted results of all 

of the weak generic classifiers.  

IV. MODELING THE ADAPTIVE FACIAL AFFECT MODEL 

Fast-PADMA is designed for scenarios where limited data 

from the target user is available. The assumption is that we have 

a number of video segments of 𝑁  source subjects’ facial 

expressions, and a smaller number of segments of the target 

subject. Each video segment 𝑗 has a self-reported affect label 𝑦. 

The number of video segments available for subject 𝑢  is 

denoted as 𝑛(𝑢) , the number of instances (frames) in video 

segment 𝑗  from subject 𝑢  is denoted as 𝑛𝑗
(𝑢)

, and the self-

reported affect label for the segment is 𝑦𝑗
𝑢. 

From each frame in video segment 𝑗, a 20-dimension frame-

level facial feature vector 𝒙 is extracted. This gives us 𝑿𝑗
𝑢 =

{𝒙𝑖
𝑢}

𝑖=1

𝑛𝑗
(𝑢)

 as the resulting set of feature vectors, and 𝐷𝑢 =

{𝑿𝑗
𝑢 , 𝑦𝑗

𝑢}𝑗=1
𝑛(𝑢)

 as the data available from subject 𝑢. Taking this 

over 𝑁  source subjects then gives us the training set 𝐷𝑠 =
{𝐷𝑢

𝑠}𝑢=1
𝑁 . 

Likewise, for the target user 𝑡, we also have the target data 

𝐷𝑡 = {𝑿𝑗
𝑡 , 𝑦𝑗

𝑡}𝑗=1
𝑛𝑡

, where 𝑛𝑡 denotes the number of segments in 

𝐷𝑡 .  

Our objective is to build an adaptive classifier to identify the 

label for a set of unseen instance frames of the target user 𝑿𝑡 

based on 𝐷 = 𝐷𝑠 ∪ 𝐷𝑡 , i.e. 𝑓𝑇: 𝑿𝑡 ⟶ 𝑦𝑡. 

A. Extracting Frame-level Geometric Facial Features 

The first step in fast-PADMA is to extract the facial features 

from the video segments. Fast-PADMA follows previous work 

to use the Supervised Descent Method [24] and a 3D landmark 

model to extract 20 geometric facial features from each video 

frame (Table 2). This reduces each of the video segments to a 

 

Fig. 1. System overview for fast-PADMA. Geometric facial features are 
automatically extracted from video segments. Individual data alignment is used 

to mitigate the personal geometric bias. Segment-level feature representation is 

obtained by AMIL and pooling. The ensemble classifiers are then trained on 

resampled data consisting of different combinations of N-1 subjects. 
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sequence of 20-dimension facial feature vectors, {𝒙𝑖}𝑖=1
𝑛 , where 

n is the number of frames in the segment.   

 

B. Transforming Data from Individuals into a Normalized 

Feature Space  

Fast-PADMA is designed for scenarios in which there is a 

small amount of data from the target user. Our challenge is to 

utilize this labeled target data together with the source subjects’ 

data to identify the personal attributes, so as to transform and 

align each individual’s data to a normalized feature space.  

In contrast to posed or simulated expressions, or expressions 

of pain, many spontaneous expressions of emotions are subtle 

in nature. Visually, the difference that results from facial 

expression changes is usually marginal, compared with the 

difference resulting from personal appearances. This means that 

when it comes to learning spontaneous facial affect from 

different source subjects’ data, it is critical to perform 

individual data alignment to emphasize the emotion-induced 

facial deformation, and reduce identity bias. 

We make the assumption that a similar physical movement, 

as reflected in the direction and magnitude of deformation of 

the geometric facial features, is caused by a similar implication 

of affect across subjects. In other words, we assume, for 

example, the maximum observed degree of mouth openness of 

different subjects indicates the same affect to a similar degree, 

such as equal intensity of surprise. 

To achieve this, we need to align the feature boundaries 

(maximum and minimum) of different subjects to the same 

points in the normalized feature space. In addition, we also need 

to identify the default expressionless or neutral face from which 

all deformations are measured. 

1) Identifying a neutral facial expression 

Previous studies have shown that normalizing with respect to 

the expressionless or neutral frame is vital in removing subject-

dependent bias [6][27]. A conventional method is to calculate 

the landmark displacement relative to the neutral frame. For 

instance, displacement features are obtained by subtracting the 

x and y coordinates of the facial landmarks in each frame from 

the corresponding coordinates in the first frame (neutral frame) 

in CK+ [27]. The rationale for this normalization is to construct 

a displacement feature space, where features share similar 

indicativeness to affect.  

This feature normalization has two main drawbacks. First, 

without accounting for the individual feature boundaries, it 

assumes the displacement implication is identical across 

subjects. This assumption, however, is not valid due to the 

diversity of individualities. Second, it requires identifying the 

neutral frame. In datasets such as CK+, this is the first frame of 

each sequence. However, this is not always the case in real-use 

situations. A naïve assumption is that the neutral expression is 

the most frequent centroid in the centroid ID sequences. 

However, this is not true in most video-elicited datasets. For 

instance, a good number of amusing elicitation videos may lead 

to a majority of smile-containing frames in the dataset. Others 

may show obvious, emotional expressions towards the stimuli 

while the neutral expression does not show frequently. 

Furthermore, depending on the success of the emotion 

elicitation, the lengths of the stimuli also influence the 

expression distribution. 

We propose a novel approach that makes use of the 

association between facial expression frames and the affect 

labels to identify the neutral frame from the weakly annotated 

data. We assume that neutral is the expression that occurs most 

frequently across video clip-sets with different self-reported 

affect labels. It is not difficult to see that this accords with the 

indicativeness of a facial gestures, as defined through the 

RFIAF measure [14], which takes into account both the 

prevalence of a gesture and its rarity over all affects.  

Given the centroid ID sequences, we introduce the RFAF that 

measures the non-indicativeness of an expression. The RFAF 

of an expression 𝑐𝑗 is defined as: 

RFAF(𝑐𝑗, 𝑉) = ∑ RF(𝑐𝑗 , 𝑣𝑖) ∗ AF(𝑐𝑗 , 𝑉)

𝑣𝑖∈𝑉

               (10) 

RF is as previously defined, and AF measures the generality of 

𝑐𝑗 among different affects: 

AF(𝑐𝑗 , 𝑉) = 𝑙𝑜𝑔
|{𝑣 ∈ 𝑉: 𝑓(𝑐𝑗 , 𝑣) > 0}|

1 + |𝑉|
             (11) 

By selecting the facial centroid with the maximum RFAF value 

to represent the neutral frame 𝒙(𝑛): 

𝒙(𝑛) = argmax𝑐𝑗
RFAF(𝑐𝑗 , 𝑉)                     (11) 

we then have 𝒙(𝑛) = 〈𝑥1
(𝑛)

, … , 𝑥20
(𝑛)〉, where each 𝑥𝑖

(𝑛)
 denotes 

TABLE 2 

 GEOMETRIC FACIAL FEATURES USED IN OUR METHOD. 

Index of geometric features Implication Measurement 

1-4 Inner and outer brow movement Distance between eye brow corner and corresponding eye corners (left & right) 
5-6 Eye brow movement Distance between the eye center and the corresponding brow center 

7-8 Eye lid movement Sum distance between corresponding landmarks on the upper and lower lid 

9 Upper lip movement Distance between the nose tip landmark and upper lip center landmark 
10-11 Lip corner puller Distance between the mouth corner and the corresponding eye outer center landmark 

12 Eye brow gatherer Distance between inner eye brow corners 

13 Lower lip depressor Distance between the chin bottom landmark and lower lip center landmark 
14 Lip pucker Perimeter of the mouth outer contour 

15 Lip stretcher Distance between the mouth corners 

16 Lip thickness variation Sum distance between corresponding points on the outer and inner contours 
17 Lip tightener Sum distance of corresponding points on the upper and lower mouth outer contour 

18 Lip parted Sum distance of corresponding points on the upper and lower mouth inner contour 

19 Lip depressor Angle between mouth corners and lip upper center 
20 Cheek raiser Angle between nose wing and nose center 
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the value of a geometric facial feature in the neutral frame of a 

particular subject. 

2) Aligning data according to neutral and boundary values 

The next step is to align the data with respect to the neutral 

expression, and the boundary values. For each feature, we first 

use unity-based normalization [26] to align feature boundaries 

(minimum and maximum) of the data from all subjects to the 

same points in the normalized feature space. The result is that 

the data from all individuals are comparable and have the same 

scale.  

The next step normalizes with respect to the neutral frame. 

We define a mapping function to align the geometric features, 

𝒙 = 𝜙𝑎(𝒙)                                       (12) 

The function 𝜙𝑎  normalizes each feature from the individual 

data by a piecewise function, leaving the complex non-linear 

transformation to be learnt by the supervised classifier. For the 

i-th geometric facial feature 𝑥𝑖, we align it to 

𝑥𝑖′ =  𝑞0(𝑥𝑖)
𝜃𝑞1(𝑥𝑖)1−𝜃                         (13) 

where 𝜃 is a Heaviside step function:  

𝜃 =
1

2
(1 + sign(𝑥𝑖 − 𝑥𝑖

(𝑛)
))                    (14) 

𝑞0(∙) and 𝑞1(∙) are the scaling functions: 

𝑞0(𝑥𝑖) =
1

2
∙

𝑥𝑖 − 𝑥𝑖
(𝑛)

𝑥𝑖,𝑚𝑎𝑥 − 𝑥𝑖
(𝑛)

+
1

2

𝑞1(𝑥𝑖) =
1

2
∙

𝑥𝑖 − 𝑥𝑖,𝑚𝑖𝑛

𝑥𝑖

(𝑛)
− 𝑥𝑖,𝑚𝑖𝑛

                     (15) 

where 𝑥𝑖,𝑚𝑖𝑛 and 𝑥𝑖,𝑚𝑎𝑥 represent the minimum and maximum 

values of i-th geometric facial feature across all segments of a 

particular subject. 

Post individual data alignment, (8) and (9) can be rewritten 

as: 

𝒛̂𝑠 = 𝜙𝑠(𝜙𝑎(𝒙𝑗)|𝒙𝑗 ∈ 𝑿)                                (16) 

and  

𝒛 = 〈𝒛̂𝑎, 𝒛̂𝑠𝑖
|𝑠𝑖 ∈ 𝑆〉                                       (17) 

Fig. 2 illustrates the result of the alignment process. The 

purple axes in (a) and (f) indicate the 2D projection of two 

subjects’ data in the raw feature space before alignment. Each 

inner contour delineates a different level of data density. Red 

and yellow dots denote the boundary values and the neutral 

point, respectively. It can be seen from the figures that the 

neutral point is not necessarily the densest point in the 

distribution. Aligning each individual’s data independently 

according to (12) transforms the distributions to the normalized 

feature space as shown in Fig. 2 (b) and (d). The general shapes 

of the transformed data distribution remain highly consistent 

with the raw distributions, however, the boundaries are aligned 

to the same values across the two subjects. The two 

distributions fall into the same bounding box in Fig. 2 (c), and 

the neutral points of different subjects are aligned to the center 

of the normalized space. 

Unity-based normalization has been used by Soleymani et al. 

[26] to reduce the differences among participants. However, 

their method uses just two points for alignment (min & max), 

in essence assuming that the deformation is linear throughout. 

Our method utilizes one more fiducial point, i.e. the neutral 

point, to align the distributions of different individuals. In this 

sense, we explicitly account for the geometry of the neutral 

facial expression for our classifiers.  

C. Building the Segment-Level Data Instances 

Given the sequence of raw and normalized facial feature 

vectors, the next step in fast-PADMA is to construct the data 

instances that will be used in the training and testing process. 

Each data instance in fast-PADMA corresponds to one video 

segment. Our instances are designed to capture (1) the level of 

association of the segment with all possible affects, and (2) the 

statistical information describing the facial features from the 

video frames. 

Fast-PADMA follows a process from previous work [14], 

which first uses an iterative k-means clustering process to 

identify similar facial expressions from the frame-level feature 

vectors. The feature vectors are then replaced with their cluster 

labels, which represent the expression that is currently exhibited 

by the user. The sequence of cluster labels is then mined for 

facial gestures, using a frequent subsequence mining process in 

a temporal moving window [5][6][14].  

Once the frequently-occurring facial gestures have been 

extracted, Association-based Multiple Instance Learning 

(AMIL) is used to calculate the overall affect association of the 

extracted gestures. In contrast to the conventional MIL methods 

that select some instance(s) as prototype(s) to represent a bag, 

AMIL explores all potential indicative instances. It assumes 

that if an instance (e.g. a facial gestures) occurs frequently in 

segment(s) labeled with one particular class (e.g. a reported user 

 

Fig. 2. Illustration of data alignment from data of two subjects. The purple axes in (a) and (f) indicate the 2D projection of each subject’s data in the raw feature 

space before alignment. Each inner contour represents a different level of data density. Red and yellow dots denote the boundary values and the neutral point, 

respectively. (b) and (d) show the transformed distributions to the normalized feature space of (a) and (f), respectively. Putting (b) and (d) in the same axes (c) 

aligns the boundaries of the two subjects with the same values and their neutral points to the same point in the center of the normalized feature space.  
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affect), but not in others, this instance has a strong association 

with that class.  

Following the AMIL procedure [14], we calculate the RFIAF 

value to reflect the affect implication of a gesture 𝑔𝑗: 

RFIAF(𝑔𝑗, 𝑣𝑖 , 𝑉) = RF(𝑔𝑗 , 𝑣𝑖) ∗ IAF(𝑔𝑗 , 𝑉)               (3) 

The first half of the formula is the response frequency 

RF(𝑔𝑗 , 𝑣𝑖) =
𝑓(𝑔𝑗 , 𝑣𝑖)

𝑚𝑎𝑥 {𝑓(𝑔, 𝑣𝑖): 𝑔 ∈ 𝐺}
                  (4) 

which measures the prevalence of gesture 𝑔𝑗 over the clip-set 

𝑣𝑖. 𝑣𝑖 is defined as the set of video segments that have been self-

reported by the user to exhibit the affect annotation 𝑎𝑖 , and 

𝑓(𝑔𝑗 , 𝑣𝑖) denotes the occurrence frequency of gesture 𝑔𝑗 in 𝑣𝑖.  

 The second half of the formula represents the inverse affect 

frequency  

IAF(𝑔𝑗 , 𝑉) = 𝑙𝑜𝑔
1 + |𝑉|

|{𝑣 ∈ 𝑉: 𝑓(𝑔𝑗 , 𝑣) > 0}|
             (5) 

which quantifies the indicativeness of 𝑔𝑗 by measuring its 

“rarity”. 𝑉 is the set that contains all video clip-sets from the 

subject; |𝑉|  denotes the number of different self-reported 

affects, and |{𝑣 ∈ 𝑉: 𝑓(𝑔𝑗 , 𝑣) > 0}| represents the number of 

clip-sets that contain 𝑔𝑗.  

Given the RFIAF values between each gesture and affect, we 

can construct an instance vector 𝒛𝑎 to represent the segment-

affect association of a video segment by aggregating over all 

the gestures that are contained in a segment. Each element z𝑎𝑖 

in 𝒛𝑎 indicates the association of the segment with a particular 

affect,  

z𝑎𝑖 = ∑ ∑ RFIAF(𝑔𝑗 , 𝑣𝑖 , 𝑉)
𝑔𝑗∈𝐺𝑡

𝑛−𝑠/2

𝑡=𝑠/2
                     (6) 

𝐺𝑡 indicates the set of gestures occurring in the moving window 

spanning over s+1 frames with its center at the t-th frame of a 

segment; 𝑛 is the number of frames in a segment; 𝑣𝑖 is the clip-

set corresponding to affect 𝑎𝑖; and 𝑉 denotes all available clip-

sets from the subject . We then calculate the normalized 𝒛𝑎 , 

which gives us the association between the segment and all 

possible affects: 

𝒛̂𝑎 =  
𝒛𝑎

|𝒛𝑎  |
                                            (7) 

D. Pooling Frame-level Statistics at the Segment Level 

Although 𝒛̂𝑎 can capture the overall affect associations of the 

segment, it does not reflect characteristics such as instance 

dispersion and distribution. We believe that these 

characteristics are informative as they capture the structure of 

the segment. 

Similar to previous work  [6], we use pooling to aggregate 

frame-level features for segment-level representation. Denoting 

𝜙𝑠 as the pooling operation of different statistical descriptors, 

we define 

𝒛𝑠 = 𝜙𝑠(𝒙𝑗|𝒙𝑗 ∈ 𝑿)                                  (8) 

as the resulting feature vector of the statistical pooling 

operation. The suggested descriptors 𝜙𝑠 can include dispersion 

attributes such as mean, median, standard deviation, variance, 

minimum and maximum, and the distribution attributes such as 

skewness and kurtosis.  

Since the frame-level feature vectors are in a 20-dimension 

 
Fig. 3 Illustration of the data projections in the proposed method. (a) and (b) present the data distribution of the target user and source subjects, respectively. 

Positive and negative instances are indicated by the squares and circles. The solid lines in (a) and (b) denote the ideal hyperplanes of each user-specific model. 

(c) shows the projection of the source and target data in the same feature space. The orange shadow highlights the conflicting instances between 𝐷𝑡 and 𝐷2
𝑠, which 

will be misclassified by the generic classifier learnt directly from all the training instances. (d) demonstrates the weak classifiers learnt on the bootstrapped data, 

each of which excludes one different source subject. The dash lines indicate the hyperplanes of the weak generic classifiers. The background transparency denotes 

the corresponding weight of the weak generic classifier, which depends on the performance on the available target set. 
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space 𝓧 ∈ ℜ20, concatenating the segment statistics features 𝒛𝑠 

will increment the segment vector 𝒛  by 20 additional 

dimensions for each descriptor 𝜙𝑠. This suggests that we need 

to avoid using redundant descriptors as this will create a high 

dimensionality problem. In pilot experiments, we observe that 

the pooled features of mean and median have similar 

contribution with respect to the final recognition, as do those of 

standard deviation and variance. We therefore exclude the 

descriptors of median and variance to reduce vector 

dimensionality in the final model. 

Our final segment feature representation is therefore 

𝒛 = 〈𝒛̂𝑎, 𝒛𝑠𝑖
|𝑠𝑖 ∈ 𝑆〉                                  (9) 

where 𝑠𝑖 indicates a particular statistical descriptor in the set of 

descriptors 𝑆 , which include mean, standard deviation, 

minimum, maximum, skewness and kurtosis. In other words, it 

is a concatenation of the normalized segment-affect association 

vector 𝒛̂𝑎 and the pooled statistics vectors. 

E. Building an Ensemble Classifier 

The final step in fast-PADMA is to build an ensemble 

classifier for spontaneous facial affect recognition. Unlike the 

conventional generic classifier that is trained on all the source 

subjects’ data, 𝐷𝑠 , the fast-PADMA process learns a set of 

classifiers, each of which is trained on a subset of 𝐷𝑠 . More 

specifically, given 𝑁 source subjects, we train 𝑁 weak generic 

classifiers using a different subset of data from 𝑁 − 1 subjects 

for each classifier. Compared with the classical approach of 

building ensemble classifiers which combines classifiers, each 

of which are trained on data from one individual source subject, 

each classifier in our approach is trained from more data and 

less likely to suffer from overfitting. 

Our hypothesis is that there are some conflicting instances 

between the target and source subjects that are located closely 

in the feature space, but with contradictory annotation. Fig. 3 

(a) and (b) show an illustration of the 2D data projection of the 

target user and three source subjects. Although positive and 

negative instances of the target user appear to be nicely 

separable in (a), projecting all these data to one space (c) results 

in some of the target instances (in the orange region) having 

conflicting annotations with instances in 𝐷2
𝑠 , which makes it 

learning a hyperplane problematic. Fig. 3 (d) shows three 

classifiers trained on different data combinations of the source 

subject. It is clear that removing the source subject that contains 

the conflicting instances will lead to a clear discrimination of 

the target data.  

The difficulty with this approach is that the conflicting 

instances are generally spread out across different source 

subjects and it is impractical to identify all these instances in 

advance. Additionally, the presence of conflicting instances 

does not negate the contribution of other instances from the 

same source subject. Therefore, rather than completely discard 

a data subset, we retain all the weak generic classifiers and 

weigh them based on their performances on the available target 

data. This is illustrated in Fig. 3 (d) where the background 

intensity corresponds to the weight of the weak generic 

classifiers on the available target set. It is clear that the more 

separable datasets, which would presumably be easier to learn 

and therefore achieve better performances, are is given higher 

weights by the final ensemble classifier. 

Given a source set 𝐷𝑠 and a target set 𝐷𝑡 , we propose to learn 

an ensemble classifier for the target user and infer the label 𝑦𝑡 

for an unseen target set 𝑿𝑡 . The algorithm is summarized in 

Table 3. We extract 𝒛𝑡 as the segment representation of 𝑿𝑡 and 

predict the label 𝑦𝑡 according to a weighted voting mechanism: 

argmax𝑦𝑡 ∑ 𝑤𝑛𝐼(ℎ𝑛(𝒛𝑡) = 𝑦𝑡)
𝑁

𝑛=1
             (18) 

where 𝐼(∙) is an indicator function and 𝑤𝑛 is the weight for a 

weak generic classifier. In our experiments, we use a linear 

sequential minimal optimization (SMO) [28] to build the weak 

classifiers, whose cost parameter is set to 0.05.  

In addition to reducing the impacts from the conflicting 

instances and overfitting, fast-PADMA has advantage over the 

transfer technique for its simplicity and efficiency. To apply our 

method, we only need to evaluate the performance of the weak 

generic classifiers on the available target set, without any 

computational distribution fitting or similarity calculation. For 

the same reason, the source dataset, which is often huge or 

which contains personal information, need not be deployed, 

stored or used for retraining in the real-use situation. This is 

essential for the rapid building and feasibility of the target facial 

affect model. 

V. EXPERIMENTAL EVALUATION 

Given a new user, fast-PADMA (1) aligns the target user data 

with data from our source subjects using the neutral point and 

the boundary values; (2) extracts the segment-level feature 

representation; and (3) constructs an ensemble classifier from 

data of source subjects who are similar to the target user. Our 

evaluation therefore presents substantiated experimental results 

for these 3 aspects and shows the effectiveness of fast-PADMA 

by comparing against user-specific, generic and hybrid models. 

For fairness in evaluation, all models use the same machine 

learning classifier (SMO) and the features are kept constant. 

The only exception is the comparison against the generic 

model. Since AMIL relies on the availability of a bag label to 

obtain the associations between expressions and affects, but the 

TABLE 3 

LEARNING THE ENSEMBLE CLASSIFIER. 

Input:  source set 𝐷𝑠 and the training set of the target subject 𝐷𝑡 

Output: A set of weak generic classifiers  ℋ  for the target user and the 

corresponding weights 𝒘 

Phase-I Learning weak classifier set ℋ = {ℎ𝑖} from 𝐷𝑠 = 𝐷1
𝑠 , … , 𝐷𝑁

𝑠  

for  𝑛  = 1 to  𝑁 

Resample a subset of training data from source set, 𝐷𝑛 = 𝐷𝑠\𝐷𝑛
𝑠 

Learn a weak generic classifier ℎ𝑛 on 𝐷𝑛 

Update the weak classifier set ℋ ← ℋ ∪ ℎ𝑛 

end for 

Phase-II Learning an ensemble classifier on target training set 𝐷𝑡 

for  𝑛  = 1 to  𝑁 

    Evaluate ℎ𝑛 on 𝐷𝑡,  classification error 𝜀 = ∑ 𝑦𝑗
𝑡 ≠ ℎ𝑛

𝑛𝑡

𝑗=1 (𝒛𝑗
𝑡)/𝑛𝑡 

     Update weights 𝑤𝑛 = (1 − 𝜀) 𝜀⁄ ,  𝒘 ← 𝒘 ∪ 𝑤𝑛 

end for 

return {ℋ, 𝒘} 
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generic model does not have access to target user data, segment 

features extracted by AMIL from the target data were excluded 

from the ensemble model in this comparison.  

The protocol for evaluation is as follows: for models trained 

using target user data, performance is measured via leave-one-

segment-out cross-validation; for the generic classifier trained 

without target data, performance is evaluated via leave-one-

subject-out cross-validation. The reported result is the weighted 

average across segments and subjects. 

A.  Evaluation Data 

We evaluate fast-PADMA on the binary  pain/non-pain 

classification on the UNBC-McMaster Shoulder Pain 

Expression Archive Database (UNBC) [19], and 3-class arousal 

and valence classifications on three datasets: Denver Intensity 

of Spontaneous Facial Actions (DISFA) [29], Mobile 

Spontaneous Affect Response Video (MSARV) [14] and 

MAHNOB-HCI emotion recognition dataset (MAHNOB) [26]. 

These datasets cover a diverse range scenario. 

1) UNBC 

UNBC contains 200 segments of near frontal facial 

expressions from 25 subjects with potential shoulder pain. The 

length of each segment ranges from 58 to 518 frames. Expert 

coders used Observer Pain Intensity (OPI) rating to score the 

segments in 6-point scale (0: no pain; 5: strong pain). Following 

the protocol of previous studies [6][7][12], we re-define the 

binary segment-level label with OPI≥3 as “pain” and OPI=0 as 

“no pain” and omit the segments with intermediate intensity. 

Excluding subjects with only one resulting segment gives us 23 

subjects and 147 segments. 

2) DISFA 

The DISFA dataset consists of 27 subjects. Each subject has 

9 frontal spontaneous response segments to a set of emotional 

stimuli. The total length of the stimuli is around 4 minutes. The 

original annotation of DISFA is the frame-level activation level 

of the facial AUs. To acquire the segment-level affect 

annotation, we recruited 6 postgraduate students aged 21-31 (3 

female) to manually identify the affects appearing in each 

segment, including anger, disgust, fear, happiness, sadness, 

surprise and neutral if none of above appears. The annotated 

results across different observers show a high degree of 

agreement with an average Fleiss’ Kappa of 0.606 across all 

emotion categories. 

3) MSARV 

MSARV is composed of 11 subjects’ frontal facial response 

to emotion stimuli, which were collected with the front camera 

of a mobile phone. Compared to DISFA, each subject has a 

large amount of data (25 segments). The total length of the 

stimuli is around 41 minutes. The original segment annotation 

includes neutral, happiness, interest, boredom, sadness, disgust, 

fear and anger. As this work focuses on arousal and valence 

classification and there is no clear mapping from boredom and 

interest into arousal and valence, we therefore exclude 

segments that are labelled as one of these two affects. This gives 

us 11 subjects and 106 remaining segments. 

4) MAHNOB 

The experimentation of MAHNOB contains two distinct 

paradigms, the emotion experiment (affect classification) and 

the implicit tagging (agreement/disagreement classification). 

We evaluate on the former, as it is consistent with the other 

datasets in the sense of using video stimuli to elicit spontaneous 

responses. Their data collection uses multiple cameras for 

recording. We used the “close up from the bottom right” view 

since some subjects’ faces were frequently obscured in the 

frontal camera view. The self-reported emotion category 

includes neutral, anxiety, amusement, sadness, joy, disgust, 

anger, surprise and fear. Removing subjects with incomplete 

annotation gives us 27 subjects. Each subject has 20 segments, 

which in total last around 40 minutes.  

B. Mapping Emotions into Arousal and Valence 

The annotated emotional categories vary across the datasets. 

For the purpose of analysis and comparison, we follow previous 

work  [26][30] to convert the categorical emotions into arousal 

and valence (see Table 4). This defines two 3-class 

classification problems for DISFA, MSARV and MAHNOB, 

i.e. the classifications of low, medium, and high levels of 

arousal and valence, respectively. 

C. Experiment Results 

We first demonstrate the effectiveness of our feature 

representation by benchmarking fast-PADMA against the state-

of-the-art performances on UNBC and MAHNOB. We then 

compare different alignment techniques and specifically 

evaluate the ensemble mechanism across all 4 datasets. This is 

followed by a summary of different learning paradigms, which 

shows the advantage of the proposed user-adaptive model.  
1) External comparison on UNBC and MAHNOB 

Since most of the pertinent MIL techniques proposed for 

facial affect recognition were evaluated on UNBC, we first 

compare fast-PADMA against the state-of-the-art in the user-

independent learning paradigm. The AMIL related features are 

excluded in this evaluation paradigm, due to unavailability of 

the target data. The performance is measured by the accuracy at 

the equal error rate, following previous practice [12][31].  

Table 5 shows the results. Fast-PADMA, which learns from 

the pooled statistics features of the aligned data, achieves 

performance equivalent to the best reported state-of-the-art 

performance (85.7) on UNBC. This result implies that (1) in 

spite of their simplicity, well-designed geometric facial features 

can give a high classification performance for pain detection, 

which suggests that geometric features have yet not been fully 

TABLE 4 

MAPPING EMOTION INTO THREE CLASSES ON AROUSAL AND VALENCE [26] 

Arousal classes Emotion 

Calm/Low arousal Sadness, disgust, neutral 

Medium arousal Joy and happiness, amusement 

Excited/High arousal Surprise, fear, anger, anxiety 

  

Valence classes Emotion 

Unpleasant/Low  valence Fear, anger, disgust, sadness, anxiety 

Neutral/Medium valence Surprise, neutral 

Pleasant/High valence Joy and happiness, amusement 
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explored [1]; and (2) the proposed aggregation technique 𝜙
𝑠
, 

which extracts the segment attributes from frames by pooling 

descriptive statistics features, is simple, fast and effective.  
Compared with the UNBC dataset, few studies have been 

conducted on MAHNOB, probably due to its challenges – the 

spontaneous affects it contains are more subtle and complex. 

We therefore compare our result with the latest published 

results [13], which follows established protocol [26] to map the 

categorical emotions into three classes for arousal and valence. 

Table 6 shows our comparison results. As indicated by the 

bolded numbers, fast-PADMA outperforms the k-NN and SVM 

models [13] in both arousal and valence classifications on 

MAHNOB. This further validates our techniques of segment 

feature extraction and data alignment. 

2) Evaluating alignment and adaptation of data from multiple 

individuals 

To thoroughly evaluate fast-PADMA, this section provides 

in-depth comparisons across alignment techniques and learning 

paradigms. Fig. 4 presents the comparison across the 4 datasets. 

The performance of each alignment technique is denoted with 

a line of a different color. The vertical axis shows the correctly 

classified rate accuracy. The horizontal axis presents the 

composition of the training data. “Specific” indicates that the 

model is trained only on data from the target user. “+20%” to 

“+100%” indicates models trained on a mix of source subject 

and target data, with the percentage representing the percentage 

of source subject data in the entire training set. Selection of the 

source data is determined by random resampling. “Generic” 

means the generic classifier trained on source subjects’ data 

alone.  

TABLE 5 

PERFORMANCE AND COMPARISON TO STATE-OF-THE-ART MIL METHODS 

ON USER-INDEPENDENT LEARNING, UNBC DATASET  

(PERFORMANCE METRIC: ACCURACY AT EQUAL ERROR RATE) 

MIL-

Boost[5] 

MILIS 

[9] 

MILES 

[8] 

MS-MIL 

[31] 

AMIL 

[14] 

RMC-MIL 

[12] 

fast-PADMA 

(ours)* 

76.9 76.9 78.2 83.7  84.4 85.7  85.7 

*Segment feature representation in the experiment contains the pooled 

statistics features only. AMIL is not used due to the unavailability of 
target data. 

 

TABLE 6 

PERFORMANCE AND COMPARISON TO STATE-OF-THE-ART MIL METHODS 

ON USER-INDEPENDENT LEARNING, MAHNOB DATASET  

(PERFORMANCE METRIC: ACCURACY AT EQUAL ERROR RATE) 

Arousal  Valence 

EPFKNN 

[13] 

EPFSVM 

[13] 

fast-PADMA 

(ours)* 
 

EPFKNN 

[13] 

EPFSVM 

[13] 

fast-PADMA 

(ours)* 

46.4 53.6 58.4  44.1 50.6 53.9 

*Segment feature representation in the experiment contains the pooled 

statistics features only. AMIL is not used due to the unavailability of the 

target data. 

 
Fig. 4 Performance in correctly classified rate of pain/no pain classification on UNBC and three classes’ arousal and valence classifications on DISFA, MSARV 

and MAHNOB datasets. Lines with different colors represent the techniques for data alignment. The vertical axis denotes the performance and the horizontal axis 
the models learnt on different sets of data. “Specific” indicates the model learnt on the target data only. “+20%”, “+40%”, “+60%”, “+80%” and “+100%” denote 

the models trained on the available target data plus the particular percentage of the source data. “Generic” means the generic classifier built without the use of 

target data. The overall results show that the proposed data alignment technique (in red) generally performs well among the alignment techniques. In addition, 
although variations exist among datasets and classification problems, performance usually peaks at hybrid models learnt from target data plus a certain amount of 

source data. 
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For simplicity, we refer to the various modes of alignment as  

(a) 𝒩raw : raw representation (no normalization);  

(b) 𝒩unity: uses unity-based normalization to transform each 

feature of individual subject to [0,1];  

(c) 𝒩zeroMean: shifts the values of each feature with its mean 

aligned to zero;  

(d) 𝒩zeroNeutral: shifts each feature with its value at the neutral 

frame aligned to zero;  

(e) 𝒩neutralMinMax : our previously-presented alignment 

method, which simultaneously accounts for the neutral frame 

and the boundaries. 

Likewise, we use the following abbreviations for models:  

(a) ℳtarget+source
single

: a single classifier, trained on the available 

target data and all source subjects’ data;  

(b) ℳtarget+%source
single

: a single classifier, trained on the available 

target data and some of the source subjects’ data. For simplicity 

and efficiency (tractable running time), we select the portion of 

the source subjects’ data as the first 〈0, 20, 40, 60, 80, 100〉% 

of the available dataset;  

(c) ℳindividual
ensemble : an ensemble classifier consisting of 𝑁 

classifiers, each trained on data from one source subject;  

(d) ℳgeneric
ensemble : an ensemble classifier composed of 𝑁 

classifiers, each trained on data from 𝑁 − 1 source subjects. 

An overall comparison between alignment techniques shows 

that the 𝒩neutralMinMax  normalization (in red) generally 

outperforms the others, achieving the highest accuracies on 

arousal for DISFA (74.6%) and MAHNOB (58.5%) and 

valence for DISFA (72.6%) and MSARV (98.1%). This is 

especially true when compared with 𝒩raw , 𝒩zeroMean , and 

𝒩zeroNeutral, notably for the models which have access to an 

additional 80% of source data on DISFA-valence and MSARV-

arousal. Fig. 6 shows some examples of identified neutral 

frames from different datasets.  

Learning from the incremental data aligned by Nubn 

normally leads to a steady increase in accuracy. In other words, 

as we increase the training data from different subjects 

(observed from the first six data points), the performance of the 

data alignment with Nubn increases monotonically. This trend 

suggests that, given a good alignment, data from different 

source subjects can be used together in one generic classifier. 

In contrast, improper alignment of the data from different 

subjects may hurt the performance of a classifier due to inter-

personal differences. Examples can be seen at the performance 

fluctuation at “+80%” in MSARV-arousal and the decrease 

from “+20” to “+40%” in MSARV-valence classification. 

3) Evaluating the ensemble mechanism of fast-PADMA 

The aforementioned results validate our segment feature 

representation and individual data alignment. The results also 

suggest that good performance can be achieved by using a 

hybrid model learnt from both target and source data. It also 

appears that the method of combining data -- or the amount of 

source data used for training, is key. This section investigates 

using an ensemble of weak generic classifiers as an alternative. 

Fig. 5 compares performance across learning paradigms 

using the same data alignment technique ( 𝒩neutralMinMax ). 

Previous studies have explored knowledge transfer from single 

sources [2][4][20]. We use the ensemble of weak individual 

classifiers (ℳindividual
ensemble) as a comparatively similar method.  

It is encouraging that the method used by fast-PADMA, 

ℳgeneric
ensemble , surpasses ℳindividual

ensemble  by 8.2% on UNBC, over 

10% for arousal on DISFA (14.0%), MSARV (13.2%) and 

MAHNOB (10.8%), and 11.1%, 4.7%, 9.7% respectively for 

valence. Even better, ℳgeneric
ensemble can constantly outperform 

ℳtarget+%source
single

, the best hybrid model trained on both the 

target and source data, by 6.57% on average. 
For a more thorough analysis, we compare ℳgeneric

ensemblewith 

other ensemble learning methods from previous work. 

Common ensemble learning methods include bagging, 

boosting, random subspace, and stacking. Bagging, also known 

as bootstrap aggregation, trains multiple models on randomly 

drawn training subsets and aggregates them with equal weight. 

Boosting incrementally trains and reweighs the previous 

misclassified instances. Random subspace method combines 

classifiers learnt from the subspaces of the original feature 

space. Stacking mingles results from different types of 

classifiers. While Adaboost [23] is a classic boosting algorithm, 

random trees is a well-used random subspace method, and 

random forest [32] is the bagging version of random trees. We 

therefore compare ℳgeneric
ensemble with the following ensemble 

methods: (1) bagging and (2) Adaboost with SMO, (3) random 

tree and (4) random forest, and (5) stacking of SMO & random 

forest, (6) SMO & k-NN [33], and (7) random forest & k-NN. 

The SMO classifiers in bagging, Adaboost, and stacking are 

 

Fig. 6. Examples of the identified neutral frames from different datasets. 

 
Fig. 5 Performance comparison in correctly classified rate: performance of the 

ensemble classifier of 𝑁  weak individual classifiers ( ℳindividual
ensemble ), best 

possible performance trained on all target data and some percentage of source 

data (ℳtarget+%source
single

), performance of the ensemble classifier of 𝑁  weak 

generic classifiers ( ℳgeneric
ensemble ). Across different datasets, ℳgeneric

ensemble in 

general outperforms other counterparts, which indicates the effectiveness of 

the proposed ensemble technique. 
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configured with identical parameters as in the previous 

evaluation. 

Fig. 7 shows the performance of ℳgeneric
ensemble and the other 

ensemble learning methods on 4 datasets. Except for the 

random tree, which shows relatively poor performance, the 

performance of the different ensemble methods are similar. It is 

encouraging to observe that the performances achieved by 

ℳgeneric
ensemble are in general considerably higher than other 

ensemble methods: on average, ℳgeneric
ensemble outperforms the 

second-best classifiers by 5.5%. The only marginal match 

comes from the classification of MSARV-valence, where the 

baseline is originally very high. 

4) Summarizing the comparison across learning paradigms 

For a comprehensive understanding of the impact of different 

data compositions and training methods, Table 7 summarizes 

the performances of 4 highlighted models over the majority 

guess baseline. The comparison was conducted among the user-

specific classifiers, generic classifiers, the best performing 

hybrid model (ℳtarget+%source
single

) and the ensemble classifier of 

multiple weak generic classifiers (ℳgeneric
ensemble). As expected, all 

learning paradigms outperform the baseline.  
Interestingly, the generic classifiers generally reach 

considerably higher performances than the user-specific 

classifiers, except for a few close matches on MSARV (arousal: 

78.3% vs 76.4% and valence: 96.2% vs 94.2%). This may be 

because the amount of available target data is modest and our 

proposed data alignment helps the generic classifier to 

accommodate identity bias. As expected, performances of 

ℳtarget+%source
single

surpasses those of the user-specific and generic 

classifiers. This corroborates our idea that using both target and 

source data can facilitate affect modeling. The difficulty here 

would be to decide the amount of source data to incorporate into 

ℳtarget+%source
single

. 

The most encouraging result is that of the ensemble classifier 

ℳgeneric
ensemble . ℳgeneric

ensemble outperforms ℳtarget+%source
single

by a 

remarkable 10.2% on average. This verifies our assumption that 

bootstrapping multiple weak generic classifiers can establish a 

high-performing adaptive model in an efficient manner.  

In sum, the presented experimental results demonstrate the 

effectiveness of the fast-PADMA method in efficiently and 

effectively using the available data. The comparison with the 

state-of-the-art performances on the public datasets show the 

effectiveness of the geometric facial features and segment-level 

feature representation. The detailed investigation into 

target/source training data ratio demonstrates the improvement 

gain possible from fast-PADMA over the user-specific, generic, 

and their naïve hybrid counterparts. Finally, the comparison 

among models with different ensemble methods shows the 

effectiveness of the ensemble mechanism in fusing target and 

source data. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper presents fast-PADMA, which is designed to 

facilitate the rapid modeling of a user-adaptive facial affect 

model by learning from both the source and target users. fast-

PADMA includes an innovative segment-level feature 

representation, individual data alignment, and ensemble 

learning mechanism. 

 Compared to conventional transfer learning, fast-PADMA 

does not require the use of computational distribution 

estimation to measure the individual similarity. Instead, an 

ensemble of weak generic classifiers is used to learn the 

commonality from similar source data, while simultaneously 

accommodating individual differences. Experimental results 

show the effectiveness of the segment feature representation 

and the validity of the data alignment technique in supporting 

model aggregation for ensemble learning.  

Our finding conduces to the human-computer interaction by 

making it possible to rapidly model the facial affect in a 

practical fashion. Since our method relies on the AMIL 

technique [14], it requires no expertise for annotation. Judging 

from the evaluations on 4 public datasets, the proposed 

approach presents a promising potential in the real-use affect-

involved applications.  

In future work, we propose to further investigate the 

aggregation of weak generic classifiers. Since the source data is 

 

Fig. 7. Performance comparison of different ensemble learning classifiers. The 
vertical axis denotes the correctly classified rate. The horizontal axis shows 

the classification issues on different datasets, which are ranked according to 

the average performance. 

TABLE 7 
PERFORMANCE COMPARISON BETWEEN DIFFERENT LEARNING PARADIGMS: 

SPECIFIC, GENERIC AND HYBRID MODELS 

(PERFORMANCE METRIC: CORRECTLY CLASSIFIED RATE) 

Dataset 

Model 

UNBC DISFA MSARV MAHNOB 

Pain A V A V A V 

Baseline 62.8 45.3 35.8 39.2 69.5 44 39.3 

Specific 72.1 55.6 53.9 76.4 94.3 46.9 43.6 
Generic  85.7 74.5 72.4 78.3 96.2 58.4 53.9 

ℳtarget+%source
single

 86.5 74.6 72.6 78.3 98.1 58.5 55.0 

ℳgeneric
ensemble 92.5 83.5 79.0 88.7 99.1 63.6 63.4 

A: arousal; V: valence 

ℳ𝑡𝑎𝑟𝑔𝑒𝑡+%𝑠𝑜𝑢𝑟𝑐𝑒
𝑠𝑖𝑛𝑔𝑙𝑒

: the best performing model learnt from available target data 

with a certain percent of the generic data 

ℳ𝑔𝑒𝑛𝑒𝑟𝑖𝑐
𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒: the ensemble classifier of multiple weak generic classifiers 
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not distributed to the client side, and we also wish to minimize 

computational cost on the client side, fast-PADMA simply sets 

the number of weak generic classifiers as the number of source 

subjects. However, this is not the only way to build an ensemble 

of weak classifiers and we foresee there could be other 

interesting possibilities. It would also be interesting to 

investigate the relation between computational cost and 

performance improvement.  
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