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Mass conservative lattice Boltzmann scheme for a three-dimensional diffuse
interface model with Peng-Robinson equation of state
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Peng-Robinson (P-R) equation of state (EOS) has been widely used in the petroleum industry for hydrocarbon
fluids. In this work, a three-dimensional diffuse interface model with P-R EOS for two-phase fluid system is
solved by the lattice Boltzmann (LB) method. In this diffuse interface model, an Allen-Cahn (A-C) type phase
equation with strong nonlinear source term is derived. Using the multiscale Chapman-Enskog analysis, the A-C
type phase equation can be recovered from the proposed LB method. Besides, a Lagrange multiplier is introduced
based on the mesoscopic character of the LB scheme so that total mass of the hydrocarbon system is preserved.
Three-dimensional numerical simulations of realistic hydrocarbon components, such as isobutane and propane, are
implemented to illustrate the effectiveness of the proposed mass conservative LB scheme. Numerical results reach
a better agreement with laboratory data compared to previous results of two-dimensional numerical simulations.
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I. INTRODUCTION

Multiphase flow systems extensively exist in numerous
scientific and industrial applications, such as oil and gas
industries [1–3], environmental protection [4,5], and chemical
processing. Understanding and modeling multiphase fluid
systems play a very important role in solving these applied
science and industry problems. The most critical aspect in the
simulation of multiphase flow is to predict interfacial properties
accurately between different phases.

Generally, there are three approaches to capture the phase
interface: molecular simulation or molecular Monte Carlo
simulation [6,7], sharp interface method [8–10], and diffuse
interface method [11,12]. In this paper, we focus on the diffuse
interface modeling of multiphase flow systems. The basic
idea of the diffuse interface method is to treat the phase
interfaces as transitional regions with nonzero thickness, where
the fluid properties vary smoothly across the interfaces. Thus,
the interface curvature and the complex interfacial dynamics
can be resolved with higher accuracy. The diffuse interface
modeling has been received more and more attentions, see, e.g.,
Refs. [13–17] and references therein. However, among these
works, a simple double-well form of free-energy density is
usually used, which is inaccurate to simulate realistic hydrocar-
bon species in a binary fluid systems. Recently, there have been
several efforts devoted to diffuse interface models with realistic
Peng-Robinson (P-R) equation of state (EOS). In Ref. [18], a
diffuse interface model with P-R EOS was developed. By using
this model, the qualitative behavior of multiphase hydrocarbon
systems can be resolved. Whereafter, a semi-implicit energy
stable time marching scheme with a mixed finite element
space discretization was designed to solve this model. A
realistic hydrocarbon system with isobutane in two spatial
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dimension has been simulated in this work. Fan et al. [19]
extended the above work to multicomponents two-phase fluids
systems with Van der Waals and P-R equation of states. A
component-wise convex splitting semi-implicit scheme was
proposed to solve the multicomponent hydrocarbon systems.
In their numerical examples, a mixture consists of methane
and n-decane on a two dimensional disk domain has been
simulated. Hereafter, aimed at the fourth-order parabolic equa-
tion in the diffuse interface model with P-R EOS, Peng et al.
[20,21] used convex-splitting scheme and second order energy
stable scheme to solve it, respectively. Furthermore, based on
the recently developed invariant energy quadratization (IEQ)
approach [22], Li et al. [23] designed first and second order
schemes for temporal discretization of the diffuse interface
model with P-R EOS. Aforementioned works were focus on the
static behavior of two-phase fluid systems. In the work of Kou
and Sun [24], multicomponent two-phase flow problems with
partial miscibility based on P-R EOS were numerically studied
by a multiscale numerical method. Several two-dimensional
droplet deformation problems were simulated to verify the
effectiveness of the proposed multiscale method. From the
above, we can see that a variety of numerical schemes have
been designed to solve the diffuse interface model with P-R
EOS. However, the phase equation derived from P-R free-
energy model involves high nonlinearity, which brings great
challenges to design numerical schemes. And also based on
the fact that the transport process of hydrocarbon fluids in
subsurface is very complicated, it is highly desired to develop
effective and easy-to-implement numerical schemes for three
dimensional multiphase fluid systems with realistic EOS.

In recent years, the lattice Boltzmann method (LBM), which
is originated from lattice gas automata (LGA) and also could
be derived from the kinetic Boltzmann equation, has emerged
as an alternative powerful method for simulating complex fluid
dynamics problems [25–27]. The kinetic nature brings many
advantages to the LBM, including clear physical pictures,
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simple algorithm structure, easy implementation of boundary
conditions and natural parallelism. In addition, it is also very
easy to incorporate internal interactions between the fluid and
external environment at the mesoscopic level, which makes
the LBM very suitable for simulating multicomponent and
multiphase flows. Up to now, various types of lattice Boltz-
mann methods (LBMs) for multiphase and multicomponent
flows have been constructed from different viewpoints, such as
the color-fluid model [28], the pseudopotential model [29,30],
the free-energy model [31,32], the kinetic model based on
Enskog equation [33,34], and the phase field model (or diffuse
interface model or mean field theory model) [35–38]. Among
these, due to aforementioned attractive features, the phase-field
based LBM has become a popular and widely used method
for simulating multiphase flows with low and large density
ratios. Several improved LB models for the Navier-Stokes-
Cahn-Hilliard coupled system were also developed [39–44].
These marvelous multiphase LBMs have achieved remarkable
success in simulating various interfacial flows. However, most
of above-mentioned phase-field-based LBMs are developed
based on the double-well form of free-energy density, which
is hardly to simulate the multiphase system quantitatively.
Very recently, the entropic lattice Boltzmann method (ELBM)
[45–47] has been extended to simulate realistic multiphase
flows [48], where the entropy is introduced at each lattice
and increased for each time step. In this work, a modified
P-R EOS, with proven superior stability an performance for
dynamic simulations, is introduced. In the work by Mazloomi
[49,50] and Bösch et al. [51], the ELBM-based free-energy
multiphase model has been successfully applied to simulate
droplet dynamics. In addition, in the work by Qin et al.
[52], through coupling the entropic multiple-relaxation-time
(EMRT) LBM with a multirange pseudopotential model, the
complex fluid flow for a wide range of kinematic viscosity
and surface tension at a high density ratio in two- and three-
dimensional applications can be simulated.

In this work, to simulate realistic hydrocarbon species in a
binary fluid systems accurately, we will develop a mass conser-
vative LB scheme for three dimensional diffuse interface model
with P-R EOS. Phase separations at different temperatures in
3D space of two hydrocarbon species, including nC4 and C3,
will be simulated by using the proposed mass conservative
LBM. The computed interface tension will be compared with
laboratory data. The rest of this paper is organized as follows.
In Sec. II, we will present the general mathematical model for
multicomponent binary fluid systems based on a realistic EOS,
in which the Allen-Cahn–type phase equation with a Lagrange
multiplier is derived. In Sec. III, the mass conservative LB
scheme for this equation is developed and the definition of the
Lagrange multiplier is also discussed based on the framework
of LB scheme. Several 3D numerical examples, including
realistic species of isobutane and propane, are simulated in
Sec. IV. Finally, some conclusions are given in Sec. V.

II. DIFFUSE INTERFACE MODEL FOR MULTIPHASE
FLUID SYSTEMS

A. Thermodynamic relations revisit

The fluid mixture consisting of a fixed number of species
with a constant temperature T is considered in this study.

We denote the number of components in the fluid mixture
by M , the molar density vector is denoted by n with the
expression of

n = (n1, n2, · · · , nM )T = (N1, N2, · · · , NM )T

V
, (1)

where ni represents the molar density of the component i, Ni

is the mole of ith component, V is the overall volume, and
n = n1 + n2 + · · · + nM is the molar density of the fluid.

From fundamental law of thermodynamics, we have the
following equation:

U = T S − pV +
M∑
i=1

μiNi, (2)

where U is the internal energy, T is the temperature, S is the
entropy, p is the pressure, and μi is the chemical potential of
component i.

The Helmholtz free energy has the form F = U − T S.
Based on it, we define Helmholtz free-energy density as f =
F/V , and then we can get

f = −p +
M∑
i=1

μini. (3)

Since we consider a constant temperature system, the following
formula can be obtained by the Gibbs-Duhem equation,

dp =
M∑
i=1

nidμi, (4)

and then, substituting Eq. (4) into Eq. (3), one can get

df =
M∑
i=1

μidni. (5)

From the above thermodynamic relations, we can see that
f is a function of n under a constant temperature. Once f (n)
is given, the chemical potential μi and pressure p can be
computed as

μi =
(

δf (n)

δni

)
n �=i

, i = 1, · · · ,M, (6)

p =
M∑
i=1

μini − f (n), (7)

where δ/δni represents the variational derivative and n�=i is
denoted by the vector

(n1, · · · , ni−1, ni+1, · · · , nM ).

B. Formation of the Helmholtz free energy with P-R EOS

In the realistic inhomogeneous fluid system, the diffuse
interfaces always exist between different phases. To describe
this phenomenon, the local density gradient contribution is
introduced into the Helmholtz free-energy density f . Then
f can be expressed as the sum of two contributions, one is
the Helmholtz free-energy density of bulk homogeneous fluid
(denoted by f0) and the other is the contribution of the local
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density gradient (denoted by f∇):

f (n) = f0(n) + f∇(n). (8)

The definition of f0(n) is based on the selected EOS. In this
work, the realistic P-R EOS [53], which is widely used in the
oil industries and petroleum engineering, is considered. Then,
f0(n) is expressed as summation of two terms, ideal part and
excess one [18,19],

f0(n) = f ideal
0 (n) + f excess

0 (n), (9)

f ideal
0 (n) = RT

M∑
i=1

ni (ln ni − 1), (10)

f excess
0 (n) = −nRT ln(1 − bn)

+ an

2
√

2b
ln

(
1 + (1 − √

2)bn

1 + (1 + √
2)bn

)
, (11)

where R denotes the universal gas constant with the value of
8.31432 JK−1 mol−1. The parameters a = a(T ) and b are the
energy parameter and the covolume parameter, respectively.
The definition of these two parameters can be found in the
Appendix.

The gradient free energy f∇(n) is described by a simple
quadratic relation,

f∇(n) = 1

2

M∑
i,j=1

cij∇ni · ∇nj , (12)

where cij is the cross influence parameter, which is given in
the Appendix.

The pressure of homogeneous fluids p0 is related to the
Helmholtz free energy f0(n) in the following way:

p0 = p0(n, T ) =
M∑
i=1

ni

(
∂f0

∂ni

)
− f0 =

M∑
i=1

niμ0,i − f0.

(13)

Replacing f0 and μ0,i , we have the following P-R EOS:

p0 = nRT

1 − bn
− n2a(T )

1 + 2bn − b2n2
. (14)

In addition, from the free-energy density of P-R EOS, the
total chemical potential consists of two contributions, one from
homogeneous fluid theory and the other from the gradient
theory, which can be computed by

μi =
(

δf (n)

δni

)
n �=i

= μ0,i (n) −
M∑

j=1

∇ · (cij∇nj ),

i = 1, 2, · · · ,M, (15)

where μ0,i = (∂f0(n)/∂ni )n �=i
.

C. Derivation of the Allen-Cahn–type phase equation

In this work, following the same assumption in Ref. [18],
we present the Allen-Cahn–type equation for the single-

component two-phase system as follows:

∂n(x, t )

∂t
− κ∇2n(x, t ) = ζ (t ) − μ0(x, t ), x ∈ �, (16)∫

�

n(x, t )dx = N, (17)

where κ is the influence parameter, and ζ (t ) is the Lagrange
multiplier to enforce the mass conservation. From the homo-
geneous free-energy density of P-R EOS, the homogeneous
chemical potential μ0 can be expressed as the following
nonlinear form:

μ0 = RT ln
n

1 − bn
+ RT

bn

1 − bn
+ a

2
√

2b

× ln

(
1 + (1 − √

2)bn

1 + (1 + √
2)bn

)
− an

1 + bn + bn(1 − bn)
.

(18)

Through selecting proper initial conditions and boundary
conditions, together with a specified bulk chemical potential
μ0, the above system has a unique solution [18].

The strong nonlinearity in the source term of Eq. (16) and
the quite small values of κ give rise to a great challenge of the
numerical simulation. In the following section, we will develop
an efficient LB method for the above nonlinear A-C type phase
equation, and the definition of ζ (t ) will also be discussed in
detail. Our method can be extended to the multicomponent
case, as in Ref. [19].

III. LB METHOD FOR THE A-C–TYPE PHASE EQUATION
WITH P-R EOS

In fact, the LB method can be viewed as a special finite
difference (FD) scheme for the following continuous Boltz-
mann equations with discrete velocity space ei (i = 1, 2, ..., N )
[27]:

∂gi (x, t )

∂t
+ ci · ∇gi (x, t ) = − 1

τ0

[
gi (x, t ) − g

eq
i (x, t )

]
,

(19)

where N is the number of different velocities in this model,
gi (x, t ) is the discrete distribution function at site x and
time t moving with speed c along the direction ei and ci =
cei . g

eq
i (x, t ) is the local equilibrium distribution function

depending on the macroscopic variables, and τ0 represents the
relaxation time toward the equilibrium distribution. This model
reflects that the distribution function relaxes to the equilibrium
state with collisions.

If we use the first-order forward difference scheme to
discretize the time derivative term, use the up-wind scheme
for the spatial gradient term, and use a downwind collision
term, we can get the following FD scheme for Eq. (19):

gi (x, t + δt ) = gi (x, t ) − α[gi (x, t ) − gi (x − Di , t )]

− 1

τ

[
gi (x − Di , t ) − g

eq
i (x − Di , t )

]
, (20)

where Di is the spatial displacement of the ith discrete velocity,
α = δt |ci |/|Di |, and τ = τ0/δt is the dimensionless relaxation
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time. If α = 1, i.e., Di = ciδt , the following standard LB
equation can be obtained:

gi (x + ciδt, t + δt ) = gi (x, t ) − 1

τ

[
gi (x, t ) − g

eq
i (x, t )

]
.

(21)

The key element in applying LBM for different prob-
lems is the equilibrium distribution function. The general
form of the equilibrium distribution function can be written
as [54]

g
eq
i = ωi

{
φ + ci · B

c2
s

+
[
C + c2

s (D − φI)
]

:
(
cici − c2

s I
)

2c4
s

}
,

(22)

where I is the unit tensor, φ stands for scalar parameter, such
as density ρ, temperature, or species concentration, B and
D are differential functions of φ, and C is a tensor function
of φ, which is used to remove some additional terms in the
recovered macroscopic equation. Besides, ωi are weights and
cs is the so-called sound speed, being related to the particle
speed c and ωi by

∑
i ωicici = c2

s I, and they all depend on
the lattice model used, where c = δx/δt and δx is the lattice
spacing.

By means of the multiscale Chapman-Enskog analysis [54],
the above LB method can recover the following convection-
diffusion equation:

∂tφ + ∇ · B = ∇ · (α∇ · D), (23)

where α is the diffusion coefficient.
Following the above idea, we can get the LB method for

Eq. (16) as follows:

gi (x + ciδt, t + δt ) = gi (x, t ) − 1

τ

[
gi (x, t ) − g

eq
i (x, t )

]
+ δtRi (x, t ), (24)

where the local equilibrium distribution function g
eq
i (x, t ) and

the distribution function for source term Ri (x, t ) are defined
as

g
eq
i (x, t ) = ωin(x, t ),

Ri (x, t ) = ωi[ζ (t ) − μ0(x, t )].

By the definition of the above distribution functions, moment
conditions can be computed explicitly providing the following
lattice symmetries:

N∑
i=1

ωi = 1,

N∑
i=1

ωicici = c2
s I = c2

s δij ,

N∑
i=1

ωici = 0,

N∑
i=1

ωicicici = 0,

N∑
i=1

ωicicicicici = 0,

N∑
i=1

ωicicicici = c4
s � = c4

s (δij δkl + δikδjl + δilδjk ). (25)

TABLE I. Parameters of some DnQm models.

Model Lattice vector ei Weight ωi c2
s

D1Q3 0, ±1 2/3, 1/6 1/3
D2Q9 (0, 0), (±1, 0), (0, ±1), (±1, ±1) 4/9, 1/9, 1/36 1/3

(0,0,0) 1/3
D3Q15 (±1, 0, 0), (0, ±1, 0), (0, 0, ±1) 1/18 1/3

(±1, ±1, 0), (±1, 0, ±1), (0,±1, ±1) 1/36

Therefore, the following moment conditions can be derived:

N∑
i=1

g
eq
i (x, t ) =

∑
gi (x, t ) = n(x, t ),

N∑
i=1

cig
eq
i (x, t ) = 0,

N∑
i=1

cicig
eq
i (x, t ) = c2

s n(x, t )I,

N∑
i=1

Ri (x, t ) = ζ (t ) − μ0(x, t ),
N∑

i=1

ciRi (x, t ) = 0,

N∑
i=1

ciciRi (x, t ) = c2
s [ζ (t ) − μ0(x, t )]I. (26)

In general, the DnQm lattice model (n dimensional m

velocity), which is proposed by Qian et al [55], is widely used
in the LB method. In Table I, several popular DnQm models
are presented.

A. Chapman-Enskog analysis of the present LB method

The basic idea of Chapman-Enskog expansion is to separate
the physical time and space as well as distribution function into
multiple scales with respect to a small parameter ε (its value is
proportional to Knudsen number Kn). Physical properties of
the macroscopic variables are automatically separated into the
corresponding different scales.

The distribution function can be expanded in terms of
ε as

gi = g
(0)
i + εg

(1)
i + ε2g

(2)
i + · · · , (27)

where g
(0)
i is distribution function at the equilibrium condi-

tions, equal tog
eq
i . By summing the above equation with respect

to i,

N∑
i=1

gi =
N∑

i=1

[
g

(0)
i + εg

(1)
i + ε2g

(2)
i + · · · ]. (28)

From Eq. (26), the other expanded term in the above equation
should be zero, i.e.,

N∑
i=1

g
(k)
i = 0, k � 1. (29)

Generally, the time t and space x are scaled in the following
way:

x = ε−1x1, t1 = εt, t2 = ε2t. (30)

In this representation, x1, t1 describe the linear regime, or the
fast convective scale, whereas t2 is in charge of the long term
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dynamics, or slow diffusive scale. Notice that Eq. (16) is a
diffusion equation with source term, to keep both sides of the
equation at the same order of magnitude, the time t should be
scaled by 1/ε2, i.e., t = ε−2t2. Thus, the source term ζ − μ0

can be expanded as follows:

ζ − μ0 = ε2(ζ − μ0)(2). (31)

The above multiscale representation induces a correspond-
ing representation of the differential operators:

∂

∂t
= ε2 ∂

∂t2
,∇ = ε∇1. (32)

Using the above multiscale Chapman-Enskog expansions,
by applying Taylor expansion to the evolution Eq. (24),
and analyze it in different scales, we can get the following
equations:

O(ε) : ci · ∇1g
eq
i = − 1

τδt
g

(1)
i , (33)

O(ε2) : ∂t2g
eq
i +

(
1 − 1

2τ

)
ci · ∇1g

(1)
i = − 1

τδt
g

(2)
i + R

(2)
i ,

(34)

where R
(2)
i = ωi (ζ − μ0)(2).

With the aid of Eq. (26), Eqs. (33) and (34) can be integrated
as

O(ε2) : ∂t2n +
(

1 − 1

2τ

)
∇1 ·

∑
i

cig
(1)
i = (ζ − μ0)(2).

(35)

Using Eqs. (26) and (33), we can get∑
i

cig
(1)
i = −τδt∇1 ·

∑
i

cicig
eq
i = −τδt

(∇1 · c2
s nI

)
. (36)

And then, substituting Eq. (36) into Eq. (35) and combining the
equation on ε2 scale, the following equation can be recovered:

∂n(x, t )

∂t
= κ∇2n(x, t ) + ζ (t ) − μ0(n(x, t )),

where we enforce c2
s (τ − 1/2)δt = κ .

B. The definition of Lagrange multiplier

To guarantee the mass conservation of the proposed LB
scheme, the Lagrange multiplier ζ (t ) must be defined in a
right way. To explore the relationship between ζ (t ) and the
proposed LB scheme, we expand Eq. (24) at (x, y, z) ∈ � and
time t + δt under the most used D3Q15 model as follows:

g0(x, y, z, t + δt ) =
(

1 − 1

τ

)
g0(x, y, z, t ) + 1

τ
ω0n(x, y, z, t ) + δtω0[ζ (t ) − μ0(x, y, z, t )],

g1(x, y, z, t + δt ) =
(

1 − 1

τ

)
g1(x − δx, y, z, t ) + 1

τ
ω1n(x − δx, y, z, t ) + δtω1[ζ (t ) − μ0(x − δx, y, z, t )],

· · ·
g14(x, y, z, t + δt ) =

(
1 − 1

τ

)
g14(x − δx, y + δy, z + δz, t ) + 1

τ
ω14n(x − δx, y + δy, z + δz, t )

+ δtω14[ζ (t ) − μ0(x − δx, y + δy, z + δz, t )]. (37)

From the above expansions, if we sum all the nodes in �,
the following equation can be obtained:

M∑
x,y,z=0

n(x, y, z, t + δt ) =
M∑

x,y,z=0

n(x, y, z, t )

+ δt

M∑
x,y,z=0

[ζ (t ) − μ0(x, y, z, t )],

(38)

where M is the grid number. To satisfy the mass conservation,
ζ (t ) must be defined in the following way:

ζ (t ) = 1

(M + 1)3

M∑
x,y,z=0

μ0(x, y, z, t ). (39)

It is worth mentioning that the above derivation is based
on the periodic boundary condition. However, it can also be
applied to the standard bounce-back boundary condition.

IV. NUMERICAL EXPERIMENTS

In this section, several numerical experiments, including the
test of thermodynamic consistency with coexistence curves,
the simulation of realistic hydrocarbon species, and the vali-
dation of Young-Laplace equation, are carried out to verify the
effectiveness of the presented LB method.

A. The two-phase coexistence densities

The two-phase coexistence densities solved by the Maxwell
equal-area construction are used as the benchmark to verify
the thermodynamic consistency of the presented LB method.
In this work, the P-R EOS, which is widely used in the oil
industries and petroleum engineering, is investigated. With
horizontal phase interfaces, the middle part of the domain
is initialized as liquid, and the remaining part is set as
gas. The computational domain is a 127 × 127 square with
periodical boundary condition. The value of κ is set to be
0.01. The reduced variables Tr = T/Tc and ρr = ρ/ρc, where
Tc and ρc are the critical temperature and the critical den-
sity, respectively. The parameters are set as a(T ) = 2

49 [1 +
(0.37464 + 1.54226ω − 0.26992ω2) × (1 − √

T/Tc )]2, with
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FIG. 1. Two-phase coexistence curve.

the acentric factor ω = 0.344, b = 2/21, and R = 1. Thus,
the critical temperature and density are Tc = 0.072919 and
ρc = 2.657304, respectively. As shown in Fig. 1, the resulted
coexistence densities of P-R EOS agree well with the bench-
mark solutions by Maxwell equal-area construction. These
results numerically confirm that the present LB method is
thermodynamically consistent.

B. Numerical simulations of realistic hydrocarbon species

In this subsection, we will consider the two-phase sep-
aration of isobutane (nC4) and propane (C3) separately at
different temperatures, where the D3Q15 lattice model will
be used. In the numerical simulations, to simplify the com-
putational process, the original domain � = (0, L)3, where
L = 2 × 10−8 meters, is projected to its normalized map
�̂ = [0, L̂]3, where L̂ = L × 108. The whole discrete domain
� has 200 × 200 × 200 uniform cube grids. The time step
δt = δx/c, and 1 � c � 2 is related to lattice sound speed.
The critical properties and the normal boiling point of nC4

and C3 are given in Table II. Thus, following the definition
of P-R parameters a, b and the acentric factor ω, which can
be found in Ref. [1], the values of these parameters can be
calculated. The detailed values of the influence parameter κ, a

and the initial values of nC4 and C3 at different temperatures
are provided in Tables III and IV, respectively.

In simulations, the initial condition is to impose the liquid
density of hydrocarbons (nl) under saturated pressure condi-
tion at 333.28 K in the region of (0.3L, 0.7L)3, and the rest
of the domain is filled with saturate gas of hydrocarbons (ng)
under the same temperature. The periodic boundary condition
is imposed as in Refs. [20,21]. The spatial distributions of

TABLE II. Relevant data of nC4 and C3.

Symbol Tc (K) Pc (MPa) Tb (K) ω b

nC4 425.18 3.797 272.64 0.2055 7.2433 × 10−5

C3 369.82 4.250 231.05 0.1579 5.6287 × 10−5

TABLE III. Values of κ, a, and initial molar densities of nC4.

T a κ ng nl

255.02K 2.0020 1.9285 × 10−3 22.082 1.1274 × 104

270.90K 1.9463 1.9582 × 10−3 43.757 1.0939 × 104

285.43K 1.8974 1.9834 × 10−3 71.480 1.0639 × 104

299.48K 1.8519 2.0060 × 10−3 109.81 1.0321 × 104

315.82K 1.8010 2.0302 × 10−3 173.08 0.9912 × 104

333.28 K 1.7487 2.0536 × 10−3 270.37 0.9419 × 104

molar densities for nC4 at different moments have been
depicted in Fig. 2. Initially, a cubic droplet is given, after 200
time steps, we can see in Fig. 2(a) that the shape of the droplet
is still in cube-shape. After 500 time steps, four corners of the
droplet being rounded [see Fig. 2(b)]. At last, the droplet shape
appears to be a perfect sphere in Fig. 2(c).

Furthermore, the coalescence of the separated droplets con-
sisting of C3 at at T = 329.79 K is also numerically simulated.
Different from the simulation of nC4, four separated cubic
droplets are given as the initial state. When the gaps between
the droplets are less than twice of the interface thickness, the
merging of the separated droplets will occur due to surface
tension. Figure 3 shows the evolution of the interfacial shapes
of the separated droplets merged under capillary force. The
quantitative comparison with laboratory data will be listed in
the next section.

In the diffuse interface model, the homogeneous chemical
potential density μ0, the surface tension contributed to the
Helmholtz free-energy density fintfTens and the thermodynamic
pressure p0 at the steady state are the most concerned variables.
Among them, μ0 and p0 are defined in Eqs. (13) and (14), and
fintfTens has the same expression as that presented in the work
by Qiao and Sun [18],

fintfTens = 2f∇(n) = κ∇n · ∇n. (40)

The following relationship can be given:

F (n) − F0(ninit ) =
∫

�

[f0(n) − f0(ninit )]dx +
∫

�

f∇(n)dx

∼=
∫

�

fintfTensdx. (41)

Without loss of generality, we will take nC4 as an example.
Numerical results of the above variables after convergence are
depicted in Fig. 4. It can be found that all these variables
experience a sharp variation at the interface at the steady
state. In particular, the homogeneous contribution of chemical

TABLE IV. Values of κ, a, and initial molar densities of C3.

T a κ ng nl

253.08K 1.2434 1.1926 × 10−3 1.2357 × 102 1.3412 × 104

267.09K 1.2125 1.2095 × 10−3 1.9407 × 102 1.2921 × 104

279.39K 1.1864 1.2235 × 10−3 2.7939 × 102 1.2445 × 104

295.73K 1.1530 1.2406 × 10−3 4.3805 × 102 1.1732 × 104

315.71K 1.1140 1.2596 × 10−3 7.3396 × 102 1.0697 × 104

329.79K 1.0876 1.2717 × 10−3 1.1462 × 103 9.5705 × 103
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FIG. 2. Numerical results of nC4 at different time points: (a) t = 200, (b) t = 500, (c) t = 1000.

potential μ0 changes dramatically across the interface even
though it must have the same value in the liquid and gas bulk
regions.

To illustrate the energy stability of the corresponding LB
method, the time varying total Helmholtz free energy is
depicted in Fig. 5(a). It can be clearly seen that the free energy
has a dissipative trend during the whole evolution history, and
it decays rapidly initially and slows down in the rest of time.

This illustrates that the solution approaches its steady state. In
addition, from Fig. 5(b), we can see that the mass conservation
property has been maintained strictly.

In addition, spurious current emerging in the vicinity of
phase interface is a well-known undesirable feature of the
LBM for two-phase flows. In this study, to observe how the
velocity field is altered by the spurious currents, the velocity
field of the nC4 droplet at T = 333.28 K in two dimensions

FIG. 3. Numerical results of C3 at different time points: (a) t = 100, (b) t = 500, (c) t = 1500, (d) t = 4000.
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FIG. 4. 3D profile along Z = L/2 after convergence (nC4 at
T=333.28 K): (a) surface tension contribution of Helmholtz free-
energy density, (b) cross profile of (a); (c) homogeneous contribution
of chemical potential, (d) cross profile of (c); (e) thermal pressure, (f)
cross profile of (e).

is shown in Fig. 6(a). It can be seen that eight eddies are
formed near the droplet interface. The magnitude of the
spurious currents is evaluated by the average kinetic energy
E = ∫

1
2 |u|2dx. As seen from the time histories of the average

kinetic energy shown in Fig. 6(b), the magnitude of the spurious
currents decreases as time evolves and reaches a steady-state
value.

C. Calculation of interface tension

To verify our numerical results of nC4 and C3 quantitatively,
the interface tension σ has been computed and compared with
previous numerical results and laboratory data.

Traditionally, the surface tension is defined as the net
contractive force per unit length of interface with a unit of
N/m or the work for creating a unit area of interface with a
unit of J/m2:

σ = F (n) − F0(ninit )

A
∼=

∫
�

fintfTensdx

A
, (42)

with the assumption that σ is spatially constant within the
interface for the given system and A is the surface area of
the droplet.

In the previous work by Qiao and Sun [18], which considers
the problem in two dimension, the radius of the droplet is
determined based on the assumption that the area of the
droplet does not change with time, which has the following
form

r2D =
(

1

π
A

) 1
2

. (43)

Similarly, in the work by Li et al. [23], which considers
the problem in three dimensions, the radius is calculated
under the same assumption. The radius in their work has the
form

r3D =
(

3

4π
V

) 1
3

, (44)

where V is the volume of the droplet. It should be noted
that these assumptions are developed from the sharp interface
theory, which are unsuitable for simulations based on the
diffuse interface theory [18,23]. Hence, the width of the two-
phase interface should be considered while calculating the
radius of the droplet. Following the definition of interfacial

0 1000 2000 3000 4000

1.17

1.175

1.18

1.185x 10
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F
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FIG. 5. Energy dissipation and mass conservation of 3D numerical simulation of nC4: (a) energy dissipation, (b) total mass variation with
time.
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FIG. 6. (a) velocity field of the nC4 droplet at T=333.28 K, (b) time history of the average kinetic energy.

thickness in Ref. [56], the estimation of the width of the diffuse
interface Ls is illustrated in Fig. 7. We take the tangent to
the interface curve; the distance between the two-intersection
points is the width of the diffuse interface. Taking nC4 as an
example, at temperature T = 333.28 K, F (n) − F0(ninit ) ∼=
2.7306 × 10−18J. Here, in our numerical experiment, the
volume of the drop V is (0.4 × L)3. Along with the radius
r3D , we can get the surface area of the droplet Ã = 4π ×
(r3D + Ls/2)2 based on the diffuse interface theory. Then,
the surface tension is calculated as σ = 2.7306 × 10−18/Ã =
6.543 × 10−3J/m2 = 6.543 mN/m. In the same way, the sur-
face tensions of nC4 and C3 at other temperatures can also be
calculated. The comparisons of the numerical results with the
experimental data [57] are depicted in Fig. 8. It can be seen that
the differences between the predicted values and the laboratory
data in reference [57] are totally less than 5%. However,
the predicted values in Ref. [18], which are computed from
simulations in two-dimensional space and without considering
the width of the two-phase interface, are much larger than the
predicted values from the three-dimensional simulations in this
paper.
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FIG. 7. The width of the diffuse interface.

Next, we will compare our numerical results with the
Young-Laplace equation. For the three-dimensional simula-
tion, if we assume that the gas bubble has a spherical shape of
radius r ,

dA = 8πrdr, dV = 4πr2dr. (45)

Combining the above equations, the capillary Pc related to
the surface tension σ , can be written in the following well
known Young-Laplace equation [1],

Pl − Pg = Pc = σdA/dV = 2σ/r, (46)

where Pl is the pressure in the center of liquid drop [picked
from element (100,100,100)], while Pg is the pressure in the
bulk gas region [picked from element (50,50,50)]. Here, the
thermodynamic pressure of the P-R EOS for the liquid Pl and
gas Pg is defined as follows:

P(l or g) = nRT

1 − bn
− n2a(T )

1 + 2bn − b2n
, (47)

where the values of parameters a(T ) and b could be found
in Tables II–IV. Similarly, we take nC4 as an example. At
T = 333.28 K, the surface tension σ = 6.543 × 10−3 N/m.
The initial droplet radius r is 4.9628 × 10−9 m, while the final
droplet radius r∗ is about 5.7128 × 10−9 m, and thus, σ/r∗ =
1.1453 Mpa. In our numerical results, Pl = 2.8525 Mpa and
Pg = 0.5317 Mpa. The difference between them is the cap-
illary pressure Pc = 2.3208 Mpa. Clearly, the pressure differ-
ences computed from LBM agree well with the results from the
Young-Laplace equation. The results of nC4 and C3 at other
temperatures are shown in Fig. 9, where we can see a linear
relationship between pressure difference and temperature.

Remark. Compared with the three-dimensional simulation
results of Li et al. [23], the surface tension computed by
our scheme is closer to the laboratory data because of the
involved width of the diffuse interface Ls . In addition, the
results calculated by the Young-Laplace equation in Ref. [23]
do not match the numerical results because they use the
two-dimensional Young-Laplace equation while the numerical
experiments are in the three-dimensional case. However, in our
work, the correct Young-Laplace formula is used, therefore the
capillary pressures predicted by the present simulation agree
well with those by Young-Laplace equation.
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FIG. 8. Comparison of surface tension between numerical predictions and laboratory data; (a) nC4, (b) C3.

V. CONCLUSION

In this paper, based on the diffuse interface model with
P-R EOS, we have proposed a mass conservative LB scheme
to simulate realistic two-phase fluid system in three spatial
dimensions. Different from the conventional phase field model,
a P-R expression of free-energy density rather than double-well
form is introduced. Thus, the quantitative modeling of the
interface details between different phases can be implemented.
The multiscale Chapman-Enskog analysis illustrates that the
A-C–type phase equation can be recovered with second order
accuracy from the proposed LB scheme. In the mass conser-
vative LB scheme, the Lagrange multiplier is defined based on
the mesoscopic character of LBM. It is worth mentioning that
this definition way of Lagrange multiplier can be applied to
not only periodic boundary conditions but also bounce-back
boundaries.

Finally, three-dimensional numerical experiments for real
hydrocarbon species, including nC4 and C3, are implemented
to test the effectiveness of our proposed LB scheme. Numerical
results show that our predictions of surface tension are more
accurate than the existing numerical results after considering
the width of the two-phase interface.
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APPENDIX

The definition of parameters a(T ) and b are given by the
following mixing rules [18,19]:

a(T ) =
M∑
i=1

M∑
j=1

yiyj (aiaj )1/2(1 − kij ), b =
M∑
i=1

yibi,

where yi = ni/n is the mole fraction of component i, kij is
the binary interaction coefficient of P-R EOS, which is usually
computed from experimental correlation. The P-R parameters
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FIG. 9. Comparison with Laplace law: (a) nC4, (b) C3.
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ai and bi for pure-substance component i can be derived from
the critical properties of the particular species as follows:

ai (T ) = 0.45724
R2T 2

ci

Pci

(
1 + mi

(
1 −

√
T

Tci

))2

,

bi = 0.07780
RTci

Pci

.

Here, Tci
and Pci

represent the critical temperature and the crit-
ical pressure of a pure substance, respectively. The parameter
mi has the following relations with the acentric parameter ωi :

mi = 0.37464 + 1.54226ωi − 0.26992ω2
i , ωi � 0.49,

mi = 0.379642 + 1.485030ωi − 0.164423ω2
i

+ 0.016666ω3
i , ωi > 0.49.

The acentric parameter ωi can be computed by using critical
temperature Tci

, critical pressure Pci
, and the normal boiling

point Tbi
:

ωi = 3

7

[
log10

( Pci

14.695PSI

)
Tci

Tbi

− 1

]
− 1.

The cross influence parameter cij can be obtained by using
the modified geometric mean rule,

cij = (1 − βij )
√

cicj ,

where βij represents the binary interaction coefficient for the
influence parameter. Its value is usually assumed to be zero in
most engineering practice. ci is the pure component influence
parameter, which is related to the P-R parameters ai and bi by
[58]

ci = aib
2/3
i

(
mc

1,i

(
1 − T

Tci

)
+ mc

2,i

)
,

here, mc
1,i and mc

2,i denote the coefficients which can be related
to the acentric factor ωi by

mc
1,i = − 10−16

1.2326 + 1.3757ωi

, mc
2,i = 10−16

0.9051 + 1.5410ωi

.
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