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Abstract: The advancement in structural health monitoring (SHM) technology has been evolving from monitoring-based diagnosis to
monitoring-based prognosis. The structural stress response derived by the measured strain data is increasingly used for structural condition
diagnosis and prognosis because it can be directly used to indicate the safety reserve of a structural component or provide information
regarding the load-carrying capacity of the whole structure. Therefore, accurate forecasting of structural stress responses is an essential
step for the reliable diagnosis and prognosis of structural condition. For a large-scale, complex structure subjected to multisource effects
such as live loads and environmental loads, its stress evolution is a typically nonlinear dynamic process. Moreover, the online monitoring-
derived stress data extracted from an SHM system are extremely massive. This arouses a strong demand for developing a computationally
efficient and accurate method for forecasting structural stress responses. In this work, we propose the use of a Bayesian modeling approach
with Gaussian processes (GPs), which allows for probabilistic forecasts of structural stress responses and has great capability of modeling the
underlying nonlinear dynamic process. Although powerful for characterizing dynamic nonlinearity of structural stress responses, the conven-
tional GP-based Bayesian modeling approach remains computationally intensive because of the massive stress data increasingly gathered by
the monitoring system. We propose a moving window strategy to substantially shrink the size of training data, thus leading to a reduced-order
GP model and effectively alleviating the high computational cost. The feasibility of the reduced-order GP-based Bayesian modeling approach
is illustrated by using the real-time monitoring-derived stress data acquired from a supertall structure. Its performance is compared with
the full GP-based Bayesian approach, and the comparison results indicate that the proposed approach holds higher computational accuracy
and efficiency for stress response forecasts than the traditional method. DOI: 10.1061/(ASCE)ST.1943-541X.0002085. This work is made
available under the terms of the Creative Commons Attribution 4.0 International license, http://creativecommons.org/licenses/by/4.0/.

Author keywords: Stress forecast; Bayesian modeling; Gaussian processes; Moving window; Structural health monitoring; Supertall
structure.

Introduction

Civil infrastructure systems such as tunnels, pipelines, railways,
buildings, and bridges, among many others, play a vital role in
maintaining the well-being of people, protecting significant capital
investments, and promoting the regional and national prosperity.
These infrastructures are designed to provide many years of safe
functionality not only under normal operational conditions but
also during extreme events (such as typhoons and earthquakes).
Structural health monitoring (SHM) has attracted increasing atten-
tion in both academic and industrial communities in the interest of
ensuring the safe and reliable operation of infrastructure systems
and issuing early warnings on damage or deterioration prior to
costly repair or even catastrophic failure. The past decades have
witnessed a surge of research dedicated to SHM (Doebling
et al. 1998; Catbas and Aktan 2002; Sohn et al. 2003; Spencer
et al. 2004; Ko and Ni 2005; Brownjohn 2007; Farrar and
Lieven 2007; Lynch 2007; Song et al. 2009; Ou and Li 2010;

Wang and Yim 2010; Yang et al. 2015) and its applications to a
variety of infrastructure systems such as bridges (Pines and
Aktan 2002; Wong 2004; Chan et al. 2006; Peeters et al. 2009;
Ni et al. 2011; Li et al. 2014), buildings (Lin et al. 2005;
Kijewski-Correa et al. 2006; Brownjohn and Pan 2008; Ni et al.
2009), and tunnels (Glisic et al. 2000; Mohamad et al. 2012;
Zheng and Lei 2017). The deployment of online SHM systems
on infrastructures allows structural operators and asset managers
to rate the structural performance in real time and conduct main-
tenance and rehabilitation in a timely manner according to the
monitored structural condition.

The real-time monitoring data are highly valuable because they
reflect the authentic behavior of the monitored structure under
operational conditions. Forecasting of the future states and perfor-
mance from the measured structural responses is becoming crucial
for condition prognosis and control of an engineered structure. It is
also central to sensor fault diagnosis, signal outlier detection, and
reconstruction of incomplete data (Abdelghani and Friswell 2007;
Hernandez-Garcia and Masri 2008; Kullaa 2011). Without much
effort, the real-time data can be gradually accumulated from a
monitoring system over time. The fast-varying acceleration data
and the slow-varying strain/stress data are two main measurands
from the instrumentation systems. The former has been extensively
used in structural health diagnosis by the traditional vibration-
based methods (Doebling et al. 1998; Sohn et al. 2003; Jaishi and
Ren 2005; Ni et al. 2008; Hua et al. 2009; Moaveni et al. 2009) or in
combination with Bayesian approaches (Papadimitriou et al.
2001; Christodoulou et al. 2008; Beck 2010; Yuen 2010; Simoen
et al. 2013; Behmanesh and Moaveni 2015; Wan and Ren 2016;
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Wang et al. 2018) because it can be used to reliably extract the
modal properties (i.e., frequencies, mode shapes, and their deriv-
atives such as modal flexibility), which the vibration-based meth-
ods rely on. In recent years, the strain response, as a localized
structural response, has gained growing interest for structural con-
dition diagnosis and prognosis. In particular, online monitoring of
strain can offer a way to derive the stresses experienced by the
monitored structure during its service. Stress data can be directly
used to indicate the safety reserve of a structural component or pro-
vide information about the load capacity of the whole structure;
they would be better suited to characterize local damage of a struc-
ture than the vibration (acceleration) data. On the other hand, the
emergence of innovative optical fiber sensors has made it possible
to conduct densely distributed monitoring of strain for SHM appli-
cations. A lot of research activities have been focused on structural
health assessment using successively accumulated strain data
(DeWolf et al. 2002; Chen et al. 2004; Chakraborty and DeWolf
2006; Wu et al. 2008; Ni et al. 2012). To take into account the un-
certainty in stress responses, a variety of procedures have been pro-
posed for SHM-based structural reliability assessment (Catbas et al.
2008; Liu et al. 2009; Xia et al. 2012; Zhu and Frangopol 2013).
Apparently, the accuracy in the stress data–based structural condi-
tion prognosis relies largely on the validity and reliability of the
forecasted stresses, which highlights the importance of accurate
forecasting of the structural stress responses.

Predicting the evolution of time-varying structural stress behav-
ior using monitoring-derived stress data poses certain challenges.
First, for an in-service structure experiencing various types of load
effects such as live loads and environmental loads, its stress evo-
lution is a typically nonlinear dynamic process, and the underlying
mechanism may not be well defined. Second, the monitoring-
derived stress data continuously collected by a monitoring system
are tremendously massive by nature. As a result, modeling ap-
proaches that bear adequate performance in both computational
accuracy and computational efficiency are favored to forecast
structural stress responses from the massive monitoring data. In
the literature, the autoregressive (AR) model has been widely in-
vestigated for SHM applications (Fugate et al. 2001; Gul and
Catbas 2009; Magalhães et al. 2012; Harmanci et al. 2016). Spe-
cifically, the AR model defines a linear parametric structure to map
the relationship between the current output and the previous out-
puts, and the AR coefficient can be efficiently obtained by the
classical least-squares estimator. As a nonparametric one, the Gaus-
sian process model (GPM) has been increasingly considered as a
highly promising modeling technique for a wide range of engineer-
ing problems such as model updating (Khodaparast et al. 2011;
Erdogan et al. 2014), uncertainty quantification (Fricker et al.
2011; Wan et al. 2014, 2017a), sensitivity analysis (Rohmer and
Foerster 2011; Wan and Ren 2015; Wan et al. 2017b), and
time-series modeling (Dervilis et al. 2016; Worden and Cross
2018). The wide applications of the GPM to different research
topics can be attributed to its two admirable merits. First, the
GPM, which is a probabilistic model elicited within a Bayesian
framework, allows modelers to estimate the uncertainty in predic-
tion. Second, the GPM has a data-driven feature that makes it not be
restricted to a certain algebraic structure and thus ensures a high
modeling flexibility and great expressive power (the AR model
is in reality a special case of the GPM when using specific covari-
ance functions). These two desirable features render the Gaussian
process (GP)–based Bayesian method suitable for forecasting the
stress responses of an in-service structure with monitoring data.
The first feature allows for estimating the uncertainty in structural
stress forecasts, whereas the second one guarantees the capability

of characterizing the nonlinear pattern inherent in the stress
responses.

Although the GP-based Bayesian modeling approach is
powerful for modeling nonlinear dynamic systems, its practical
applications in forecasting stress responses from the massive meas-
urement data are inevitably hindered by the prohibitive cost of the
required computations. In the current way, the currently available
data are used to construct the GPM for ahead forecasts; when
new data are available, the GPM is reconstructed for further ahead
forecasts. This iterative forecasting procedure indicates that with
more and more data available over time, the size of the training
data set becomes bigger and bigger, making the forecasts further
ahead in the future more computationally expensive. The increas-
ing size of the training data set is a large barrier, which limits the
application of the GP-based Bayesian modeling approach for
forecasts, because the construction of GPM requires a number of
computations in the order of Oðn3Þ (Rasmussen and Williams
2006), where n is the training data set size. To address this issue,
we propose a moving window strategy to reduce the size of
the training data set, thus leading to a considerable relief in the
computational burden associated with the reconstruction of the
GPM. The proposed reduced-order GP-based Bayesian modeling
approach is applied for forecasting the structural stress responses
of the 600-m-high Canton Tower based on the online monitoring-
derived stress data. Performance comparisons with the full
GP-based method constructed using the full set of available data
are provided to investigate the feasibility of the proposed reduced-
order GP-based approach. The comparison results show that the
reduced-order GP-based approach greatly outperforms the full
GP-based method in terms of both prediction accuracy and com-
putational speed.

Forecasting Using Bayesian Modeling Approach
with Gaussian Processes

Bayesian Modeling with Gaussian Processes

Gaussian processes offer a powerful method to perform Bayesian
modeling of the underlying functions. A GP is a collection of ran-
dom variables, any finite number of which has a joint Gaussian
distribution (Rasmussen and Williams 2006). A multivariate
Gaussian distribution of finite dimension is fully specified by
its mean function and covariance function. The GPM is formulated
within a Bayesian framework. Specifically, GP modeling begins
with a Gaussian prior over the model outputs, specified through
a prior mean function and a covariance function. Then, the obser-
vations of the model outputs are assumed to be under a Gaussian
likelihood. Finally, through the maximum likelihood estimate
given the training data set, a Gaussian prior combined with a
Gaussian likelihood gives rise to a posterior GP over the unob-
served model output. As the prior mean represents whatever we
expect for the target function before seeing any data, it is generally
set to be zero in the absence of prior knowledge about the mean
variation (Neal 1999). It is easy to generalize into an arbitrary
mean function, such as linear and polynomial functions. In the
present study, the squared exponential (SE) covariance function,
which is most commonly used in engineering literature, is selected
for defining a GPM. The SE covariance function has the following
form:

Cðx;x 0Þ ¼ η2 exp

�
− 1

2

Xd
k¼1

�
xk − x 0

k

lk

�
2
�

ð1Þ
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where η2 = signal variance; lk = characteristic length scale; and
d = input dimensionality. In addition to the SE function, the
Martérn class (MC) function and periodic (PE) function are
also typical covariance functions used in GPs (Ko 2011). The
MC function is suitable for modeling significantly rough varia-
tions, whereas the PE function is appropriate for cyclical
variations.

Consider a set of observed data D ¼ fðxi; yiÞjni¼1g consisting
of n pairs of vector input x and noisy scalar output y. For notational
convenience, we denote the input and output components as
X ¼ fxigjni¼1 and Y ¼ fyigjni¼1, respectively. With the assumption
of Gaussian noise, the observation model can be expressed as

y ¼ fðxÞ þ εnoise; εnoise ∼N ð0;σ2
noiseÞ ð2Þ

where fðxÞ = latent function; and σ2
noise = variance of noise. Note

that in modeling deterministic systems, which always produce the
same outputs with the identical inputs, one just needs to remove
the noise item εnoise or set the variance σ2

noise to be zero. Interested
readers may refer to Wan and Ren (2015) andWan et al. (2017a) for
the deterministic case. With Gaussian prior, the joint distribution
of the latent function realizations becomes

pðfÞ ¼ N ð0;CÞ ð3Þ

where f ¼ fðXÞ; and covariance matrix C ¼ CðX;XÞ, which is
the covariance function encoding the correlations between pairs
of inputs.

Let f� denote the latent function realization to be predicted
at an unobserved point x�. Again, under the assumption of
Gaussian prior, one can obtain the following joint Gaussian
distribution:

pðf; f�Þ ¼ N
��

0

0

�
;

�
C C�
C⊤� ~C

��
ð4Þ

where C� ¼ Cðx�;XÞ; and ~C ¼ Cðx�;x�Þ.
By applying Bayes’ theorem, the joint posterior distribution

of f and f� conditioned on observations is obtained as

pðf; f�jYÞ ¼
pðf; f�ÞpðYjfÞ

pðYÞ ð5Þ

where, by using the observation model defined in Eq. (2), pðYjfÞ
can be expressed as

pðYjfÞ ¼ N ðf; σ2
noiseIÞ ð6Þ

where I = identity matrix of size n × n.
To evaluate the posterior distribution of f� given the observed

outputs Y, we marginalize the joint posterior expressed in Eq. (5)
such that

pðf�jYÞ ¼
Z

pðf; f�jYÞdf ¼
1

pðYÞ
Z

pðf; f�ÞpðYjfÞdf ð7Þ

where denominator pðYÞ = normalizing factor (also known as the
marginal likelihood) ensuring pðf�jYÞ is a valid posterior distribu-
tion such that ∫ pðf�jYÞdf� ¼ 1. Fortunately, calculating pðf�jYÞ
is extremely simple because both pðf; f�Þ and pðYjfÞ are of the
Gaussian form. Finally, one can obtain its expression in a
closed-form Gaussian distribution as

pðf�jYÞ ¼ N ðμf� ; σ
2
f� Þ ð8Þ

with the mean and the variance given by

μf� ¼ C�K−1Y ð9Þ

σ2
f� ¼ ~C −C⊤� K−1C� ð10Þ

where K ¼ Cþ σ2
noiseI.

For the noisy case, the hyperparameters to be determined in-
clude the covariance function parameters and the noise parameter,
denoted as Θ ¼ fl1; : : : ;ld; η2; σ2

noiseg. In the Bayesian context, it
is common practice to infer an optimal set of the hyperparameters
that maximize the marginal likelihood of the training data. In so
doing, the estimation of the hyperparameters is converted to the
solution of an optimization problem of minimizing the negative
logarithmic marginal likelihood (NLML). That is

Θ̂ ¼ argmin
Θ

LðΘÞ ð11Þ

With a Gaussian likelihood, the NLML LðΘÞ has an analytical
expression as

LðΘÞ ¼ 1

2
Y⊤K−1Y þ 1

2
log jKj þ n

2
logð2πÞ ð12Þ

The partial derivatives with respect to the hyperparameters are also
analytically tractable, expressed by

∂LðΘÞ
∂Θi

¼ 1

2
tr

�
K−1 ∂K

∂Θi

�
− 1

2
Y⊤K−1 ∂K

∂Θi
K−1Y ð13Þ

where j · j, trð·Þ, and ð·Þ⊤ = determinant, trace, and transpose
operators, respectively.

Moving Window Strategy for Forecasting

Forecasting time series refers to learning dynamical systems (also
known as time series modeling), which aim at characterizing the
behavior of system responses over time. The model to be con-
structed from the obtained time series data is dynamic; that is, it
is continuously updated when more and more data are available
over time. As aforementioned, the GP-based Bayesian modeling
approach requires a number of computations that scales Oðn3Þ,
with n as the number of data in the training data set. As a result,
the GP-based method is computationally demanding when the
training data size is huge. Moreover, even though the size of the
training data set is not prohibitively large, the total time consumed
in continuous forecasting by repeatedly building the GPM likely
becomes unaffordable. To overcome the limitation of high compu-
tational cost, a moving window strategy is proposed in this study
in an effort to significantly reduce the size of the training data set,
thus resulting in a computationally efficient, reduced-order GPM.
The principle behind the moving window is well known. As the
window slides along the data, a new process model is generated
by including the newest sample and excluding the oldest one.
With the moving window strategy, a small set of training data,
which is closest to the prediction point and has a fixed size, is used
to build a reduced-order GPM. In line with the idea of moving
window and the theory of GPM described previously, the reduced-
order GP-based Bayesian modeling approach for time series
forecasts is detailed in Algorithm 1. Note that the full GP-based
approach is also given for comparison.
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Algorithm 1. Forecasting using Bayesian modeling approach with
Gaussian process
Input: Initial training data D ¼ fX;Yg with X ¼ ftigjni¼1 and

Y ¼ fyigjni¼1.
Output: Forecasts of ynþ1; : : : ;N at the times tnþ1; : : : ;N in term

of mean vector μ and variance vector Σ.
1. Initialize μ and Σ such as μ←∅, Σ←∅.
2. Compute the NLML LðΘÞ and its partial derivatives using the

following expressions:

LðΘÞ ¼ 1

2
Y⊤K−1Y þ 1

2
log jKj þ n

2
logð2πÞ

∂LðΘÞ
∂Θi

¼ 1

2
tr

�
K−1 ∂K

∂Θi

�
− 1

2
Y⊤K−1 ∂K

∂Θi
K−1Y

3. Use the multistarting point strategy-aided conjugate gradient routine to
solve the optimization problem defined as Θ̂ ¼ argmin

Θ
LðΘÞ to infer

the optimal set of hyperparameters.

4. Evaluate the prediction mean and variance from

μynþ1
¼ C�K−1Y

σ2
ynþ1

¼ ~C − C⊤� K−1C�

5. Merge μ and Σ such as μ←μ ∪ μynþ1
, Σ←Σ ∪ σ2

ynþ1
.

6. Update the training data D as follows:
a. With moving windows: D ¼ fX;Yg with X←½X−1; tnþ1� and

Y←½Y−1; ynþ1�, in which X−1 denotes a collection of inputs X
excluding the element t1, and similarly for Y−1.

b. Without moving windows: D ¼ fX;Yg with X←½X; tnþ1�
and Y←½Y; ynþ1�.

7. Repeat Steps 2–6 to iteratively forecast the stress responses at other
time instances.

8. Return the forecasting results μ and Σ.

Canton Tower and Structural Health Monitoring
System

Description of Canton Tower

The Canton Tower is located in the city of Guangzhou, China. This
supertall structure, being a landmark in Guangzhou, consists of a
454-m-high main tower and a 146-m-high antennary mast, result-
ing in a total height of 600 m. The shape of the Canton Tower is
generated by two ellipses: one at foundation level of the main tower
and the other at the top. These two ellipses are rotated relative to
each another. The tightening caused by the rotation between the
two ellipses forms a “waist” halfway up the tower. More specifi-
cally, the ellipse decreases from 50 × 80 m at the ground to the
minimum of 20.65 × 27.5 m at 280 m high, and then increases
to 41 × 55 m at 454 m high (the top of the main tower). As shown
in Fig. 1, the main tower is a tube-in-tube structure that comprises a
core tube inside and a usual tube outside. The core tube is con-
structed by using reinforced concrete; whereas the usual tube is
composed of 24 concrete-filled-tube (CFT) columns, uniformly
spaced in an ellipse while inclined in the vertical direction. The
CFT columns are interconnected transversely by steel ring beams
and bracings. The inner tube is also ellipses-shaped but with a con-
stant cross section of 14 × 17 m, and its centroid differs from that
of the outer tube. The inner and outer tubes are connected through
37 functional floors, which hold services such as utilities, tour,
catering, and TV and radio signal transmission facilities. The an-
tennary mast on the top of the main tower is a steel spatial structure
with an octagonal cross section, with a maximum diagonal of
14 m long.

Structural Health Monitoring System

To ensure the safety of the Canton Tower in both in-construction
and in-service stages, a sophisticated long-term SHM system has
been designed and implemented by The Hong Kong Polytechnic
University for online monitoring of this landmark building
(Ni et al. 2009). The construction of the Canton Tower has been
completed at the end of May 2009. Since then, the integrated SHM
system embracing more than 800 sensors of 16 types (including
anemometers, accelerometers, strain gauges, GPS, and digital video
camera) has continuously operated for 8 years (Ni et al. 2017).

The focus of the present work is on forecasts of structural stress
responses, so we are more concerned with the deployment of strain
sensors. The main tower is equipped with a total of 412 vibrating-
wire strain gauges, 148 of which are the embedded-type strain sen-
sors and the rest are the surface-type strain sensors. In particular,
each of the 12 cross sections at different heights is installed with
12 strain sensors: each of the first five rings corresponding to Cross
Sections 1–5 is installed with 20 strain sensors, and each of the last
seven rings associated with Cross Sections 6–12 is installed with
24 strain sensors. The cross sections selected for sensor deployment
correspond to the concrete inner core wall at the elevations of 32.8,
100.4, 121.2, 173.2, 204.4, 230.4, 272.0, 303.2, 334.4, 255.2,
286.4, and 438.4 m. The corresponding ring numbers are 3, 9,
11, 17, 21, 24, 28, 32, 35, 38, 40, and 45 at the outer tubular struc-
ture. The arrangement of the strain sensors on the inner and outer
tubes of the Canton Tower is illustrated in Fig. 2. Each section is
equipped with one substation to collect data from all its sensors,
and then the data stored in these substations are transmitted to
the central data warehouse.

Fig. 3 shows a typical floor planwith the numberedCFT columns
and the layout of the sensors in Cross Section 6 around halfway
up the main body. In the inner tube, four positions [1–4 in Fig. 3(b)]
at each critical section are selected for strain and temperature

Fig. 1. Canton Tower: bird’s-eye view, outer tube, and inner tube.
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Vibrating wire strain gage (12)
Section 12

Vibrating wire strain gage (12)
Section 11

Vibrating wire strain gage (12)
Section 10

Vibrating wire strain gage (12)
Section 9

Vibrating wire strain gage (12)
Section 8

Vibrating wire strain gage (12)
Section 7

Vibrating wire strain gage (12)
Section 6

Vibrating wire strain gage (12)
Section 5

Vibrating wire strain gage (12)
Section 4

Vibrating wire strain gage (12)
Section 3

Vibrating wire strain gage (12)
Section 2

Vibrating wire strain gage (12)
Section 1

Inner Tube Outer Tube

Vibrating wire strain gage (24)

Vibrating wire strain gage (24)

Vibrating wire strain gage (24)

Vibrating wire strain gage (24)

Vibrating wire strain gage (24)

Vibrating wire strain gage (24)

Vibrating wire strain gage (24)

Ring 3 Vibrating wire strain gage (20)

Ring 9 Vibrating wire strain gage (20)

Ring 11 Vibrating wire strain gage (20)

Ring 17 Vibrating wire strain gage (20)

Ring 21 Vibrating wire strain gage (20)

Ring 24

Ring 28

Ring 35

Ring 32

Ring 38

Ring 40

Ring 45
438.4 m

386.4 m

355.2 m

334.4 m

303.2 m

272.0 m

230.4 m

204.4 m

173.2 m

121.2 m

100.4 m

32.8 m

Fig. 2. Deployment of strain gauges on the Canton Tower.

(a) (b) (c)

Fig. 3. Layout of sensors in a typical section: (a) floor plan; (b) layout of sensors on the core tube; and (c) layout of sensors on the concrete-filled tube.
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measurement, each equipped with a 45° strain rosette. The strain ro-
sette is composed of three Geokon 4200 (Geokon, Lebanon, New
Hampshire) vibrating-wire strain gauges. In the outer tube, two lo-
cations at each critical section are installed with five Geokon 4000
(Geokon, Lebanon, New Hampshire) vibrating-wire strain gauges
[1–5 in Fig. 3(c)] and two PT100 (ZIEHL, Schwäbisch Hall,
Germany) temperature sensors [6 and 7 in Fig. 3(c)]. Because the
vibrating-wire strain gauges are unable tomeasure transient dynamic
strain, the present system collects the strain data once per minute;
that is, the sampling frequency of strain sensors is equal to 1=60 Hz.

Forecast of Stress Response of Canton Tower

Forecasting Results

Without loss of generality, two strain gauges at Cross Section 6
shown in Fig. 3 are chosen to illustrate the proposed GP-based
Bayesian modeling approach: one is Sensor 1 of the strain rosette
corresponding to Point 1 of the core tube [Fig. 3(b)], and the other
is located at Point 4 of CFT columns [Fig. 3(c)]. For the sake of
brevity, the first selected gauge is denoted CT 1, and the second is
denoted CFT 1. The method discussed in the preceding section can
also be applied to forecast the stress responses at any other mon-
itoring points. First, the measured strain should be converted to the
stress for the subsequent forecasting. For the strain gauge mounted
on the steel surface, the conversion of the measured strain to stress
is conducted by σs ¼ Esεm, where Es is the elastic modulus of the
steel, and εm is the measured total strain. For the strain gauge em-
bedded inside the concrete, because temperature-induced expan-
sions and contractions can give rise to changes of stress in the
concrete, the conversion from the measured strain to stress is made
by σc ¼ Ecðεm þ αsΔTÞ, where Ec is the elastic modulus of the
concrete, αs is the coefficient expansion of the strain gauge
material, andΔT is the temperature change relative to the reference
temperature predefined for the gauge. The aforementioned strain-
to-stress conversion formulas are suitable for indeterminate (con-
strained) structural components. For determinate (unconstrained)
structural components, however, one needs to further exclude
the temperature-induced strain from the measured total strain so
as to extract the strain that indeed induces stress and then converts
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Fig. 5. Reduced-order GP-based forecasts of structural stresses (dotted line represents 95% confidence interval): (a) one-step ahead forecast;
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© ASCE 04018130-6 J. Struct. Eng.

 J. Struct. Eng., 2018, 144(9): 04018130 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
on

g 
K

on
g 

Po
ly

te
ch

ni
c 

U
ni

ve
rs

ity
 o

n 
06

/0
9/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



the extracted strain to stress. More details on the strain-to-stress
conversion can be found in Su et al. (2017). In this study, the
real-time monitoring-derived stress data extracted during a 3-month
period (January 1 to March 31, 2012) are of concern. To decrease
the uncertainty arising from the measurement facilities, the average
stresses of every hour are used as the target quantities. After deduct-
ing a small number of missing data mainly caused by the shutdown
of the acquisition system, a total of 2,161 sets of stress data are
collected. Fig. 4 shows the averaged stresses of inner and outer
tubes.

Following the implementation procedures summarized in
Algorithm 1, the reduced-order and full GPMs are formulated
separately for stress response forecasts. The moving window length
is set as 10. The reason for this window size is discussed sub-
sequently. In the statistical community, in addition to one-step
ahead forecasting cases, multistep ahead forecasting situations
are also widely explored. To comprehensively assess the perfor-
mance of the GP-based Bayesian approach, the scenarios of multi-
step ahead forecasting are also presented in this study. More
specifically, three scenarios, namely, one-, three-, and five-step
ahead forecasts, are considered. The forecasting results produced
by the reduced-order and full GPMs are shown in Figs. 5 and 6,
respectively. In addition, the results of forecasting variances are
provided in Fig. 7.

Comparison of Computational Accuracy

By comparing the results in each scenario, it can be found that the
forecasting performance of the reduced-order GP-based method is

better than that of the full GP-based method, especially for the
multistep ahead forecasting cases. Specifically, the performance
is evaluated by comparing the forecasting stress responses with
the measured counterparts and quantifying the forecasting uncer-
tainty. As the visual discrimination is more or less subjective,
performance metrics that allow for evaluating the forecasting capa-
bilities quantitatively are desired. This study adopts two measure
criteria: root-mean-square error (RMSE) and mean likelihood
(ML), defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðyi − μyiÞ2
s

ð14Þ

ML ¼ 1

n

Xn
i¼1

N ðyijμyi ;σ
2
yiÞ ð15Þ

where μyi and σ2
yi = predictive mean and variance of stress, respec-

tively; and yi = measured stress. The RMSE metric measures the
overall accuracy of the forecasts, whereas the ML metric quantifies
how likely the measurements are reproduced by the forecasts,
which takes into account the effect of predictive variance. As a
consequence, the smaller the value of RMSE and the greater the
magnitude of ML, the more accurate the GPM. The results of
the RMSE and ML metrics for different step ahead forecasts
are demonstrated in Fig. 8. Again, it can be concluded that the
reduced-order GP-based method outperforms the full GP-based
method. It is evident from Fig. 7 that the forecasting error and un-
certainty become larger with the increasing step of the ahead
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Fig. 6. Full GP-based forecasts of structural stresses (dotted line represents 95% confidence interval): (a) one-step ahead forecast; (b) three-step ahead
forecast; and (c) five-step ahead forecast.
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forecasting. More specifically, the RMSE value of the five-step ahead
forecast is biggest, followed by that of the three-step ahead forecast
and then that of the one-step ahead forecast; so are the forecasting
uncertainty bounds. This phenomenon can be explained by the fact
that the bigger the forecasting step, the larger the forecasting period; in
other words, we are more uncertain about the future behavior of the
underlying system, which leads to higher forecasting error and uncer-
tainty (variance). Another important observation is that the reduced-
order GPM is more suitable for characterizing the nonlinear dynamic
process of the stress responses than the full GPM because the former
fits the shape of the stress curves well (see, e.g., the region around
mid-January in Figs. 5 and 6).

Comparison of Computational Efficiency

Apart from the forecasting accuracy of the reduced-order and
full GP-based Bayesian approaches, their computational efficiency
is also our concern. The implementations are all performed on a
Dell PowerEdge T420 (Dell, Round Rock, Texas) desktop with
Dual Intel Xeon E5-2403V2 processor (IBM, Armonk, New York)

and 16 GB of memory. The comparison of CPU time consumed by
these two approaches is presented in Fig. 9. Specifically, for the
one-, three-, and five-step ahead forecasting scenarios, the
reduced-order GP-based approach takes 1,366 s (0.38 h), 435 s
(0.12 h), and 263 s (0.07 h), respectively; the full GP-based method
takes 121,141 s (33.65 h), 40,184 s (11.16 h), and 24,397 s (6.78 h),
respectively. Apparently, the full GP-based method consumes
tremendously longer CPU time for the forecasts of the stress re-
sponses. The comparison of CPU time consumed indicates that
the reduced-order GP-based forecasting method exhibits over-
whelming superiority over the full GP-based forecasting method
in terms of computational time. The appealing advantage of high
computational efficiency of the reduced-order GP-based method is
attributed to a small set of training data used for learning the GPM
with the moving window strategy. By contrast, the size of training
data associated with the full GPM becomes bigger and bigger with
the increase in the number of forecasting executions, resulting in
consuming more and more CPU time. To have a clear picture of
the evolution of CPU time consumed during the forecasting pro-
cess, the CPU time consumption versus the number of forecasting
executions is shown in Fig. 10. Obviously, for the reduced-order
GPM, the CPU time of each forecasting run is small and quite
stable; whereas for the full GPM, the CPU time gradually rises
as the number of forecasting executions increases. However, the
relationship between the CPU time consumption and the number
of forecasting executions is not strictly monotonic because the con-
vergence rates of optimization for hyperparameter estimation can
be different. In summary, our investigations verify that the pro-
posed reduced-order GP-based Bayesian modeling approach using
the moving window strategy is more accurate and more computa-
tionally efficient than the full GP-based method that uses all avail-
able measurements as the training data set.

Investigation of Moving Window Size

A crucial issue of the reduced-order GPM using moving window
strategy is the choice of a proper window length. The window
length affects the time consumption in GPM construction; that
is, the smaller the window, the smaller the training data set, and
the less the time consumed in building the GPM. The total time
consumption for continuous forecasting depends on not only the
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time cost for each GPM construction but also the number of GPMs.
In this respect, the smaller size of the window does not necessarily
result in a reduction in computational expense. To explore the effect
of the window size, the forecasting is pursued by using different
window lengths. To be specific, we increase the window length
from 1 to 30 with an interval of 1 and then check their computa-
tional accuracy and efficiency. Also, the multistep ahead forecasts
are of interest. The performance results obtained using different
window sizes are demonstrated in Fig. 11. From this figure, several
observations can be obtained: (1) the computational cost in the case

of a small window size (e.g., 3) is not necessarily lower than that in
the case of big window size because the number of GPMs of the
former is greater than that of the latter; (2) with the same window
size, the forecasting accuracy for a small forecast horizon (one-step
ahead) is higher than that for a big forecast horizon (three-step
ahead); and (3) the RMSE, ML, and time consumption do not
change much when the moving window size is larger than 6.
Ideally, the optimal window size is determined when both computa-
tional accuracy and efficiency are highest. Although the ideal case
does not exist, we may still select a good window size. Considering
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RMSE, ML, and time consumption, the “optimal” window length
can be set as 10 because RMSE is not big, ML is not small, and
time assumption is low.

Discussion

The aforementioned observations can be summarized as follows:
• The forecasting error and uncertainty become larger as the fore-

casting horizon (step) increases, which can be confirmed by the
resulting magnitudes of RMSE and ML. This trend is easy to
understand. The ahead forecasts are out-of-sample predictions,
so typically the further in the future we attempt to forecast, the
larger the error and uncertainty are because of increasing lack of
confidence regarding the long-term behavior.

• The reduced-order GP-based method achieves better accuracy
in stress response forecasts than the full GP-based approach.
The reason is that the former, using a small set of measurements
closest to the prediction point as the neighboring training data,
is more capable in capturing the local nonlinearity around the
prediction point; the latter, being global, sacrifices its ability
of modeling local nonlinearity to be more representative of
the overall trend of all available measurements. Therefore, the
proposed reduced-order GP-based method is more apt to char-
acterize the evolution of the structural stress responses, which is
a highly nonlinear dynamic process.

• In addition to high forecasting accuracy, the reduced-order
GP-based method bears competitive advantage over the full
GP-based approach in terms of computational efficiency.
This overwhelming advantage is attributed to the fact that the
training data size of the former is small and fixed, whereas that

of the latter becomes larger and larger with more and more
observations available. The different strategies of selecting
training data give rise to totally different CPU time consump-
tion. Specifically, during the forecasting process, the former
takes small and stable computational time, whereas the latter
consumes exponentially increasing computational time.

Conclusions

In this work, the Bayesian modeling approach with GP prior
is adopted for forecasts of structural stress responses. The present
methodology allows us to quantify the uncertainty in stress predic-
tion through offering not only the predictive mean but also the
associated predictive variance. Within the GP framework, the
calculations of predictive mean and variance are both analytically
tractable, and thus the complex and time-consuming integration
procedure is eschewed. In this respect, the GP-based forecasting
itself is computationally efficient because the probabilistic predic-
tions can be analytically evaluated. In practice, the monitoring-
derived stress data are tremendously massive by nature and their
size experiences a steady increase over time. Unfortunately, the
construction of the GPM becomes computationally prohibitive
when the size of the training data set is huge. In this sense, when
the size of the training data set is quite large, the standard GP would
be computationally expensive. Moreover, even though one-time
GPM construction does not consume much time, the total time con-
sumption in continuous forecasting by repeatedly building the
GPM likely becomes unaffordable. Both the big size of the training
data and the continuous forecasting scenario are realities we
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Fig. 11. Performance of reduced-order GP-based Bayesian modeling approach with different moving window sizes: (a) one-step ahead forecast;
(b) three-step ahead forecast; and (c) five-step ahead forecast.
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encounter in monitoring-based structural condition prognosis. To
ease the high computational burden involved in GPM construction,
the moving window strategy is proposed in this work to shrink the
training data size, which results in a computationally efficient
reduced-order GPM. The real-time monitoring-derived stress data
from a supertall structure is provided to demonstrate the feasibility
of the proposed reduced-order GP-based approach. Three forecast-
ing scenarios, namely, one-, three-, and five-step ahead forecasts,
are considered. The performance of the reduced-order GP-based
method is compared with the full GP-based method in terms of both
computational accuracy and efficiency. Specifically, two measure
criteria, namely, RMSE and ML, are introduced to evaluate the fore-
casting performance in a quantitative manner. We also investigate
the total CPU time consumption and the evolution of CPU time
consumption with the increasing size of the data set used for stress
response forecasts. Our studies indicate that with the increasing
number of the forecasting executions, the time consumption of the
full GP-based approach exponentially rises, whereas that of the
reduced-order GP-based method is small and quite stable.
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