
New Lower Bound and Exact Method for the
Continuous Berth Allocation Problem

Zhou Xu
Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, lgtzx@polyu.edu.hk

Chung-Yee Lee
Department of Industrial Engineering and Logistics Management, The Hong Kong University of Science and Technology,

cylee@ust.hk

We study a continuous berth allocation problem, where incoming vessels need to be assigned a mooring

time as well as a berth location on a quay. It is a crucial element in port planning to achieve quick

turnaround time for vessels. To solve this problem, many solution methods have been developed in the

literature. However, gaps between the best known lower and upper bounds on its optimal solutions are

far from close. In this paper, we propose new and more effective solution methods for this important

problem. By introducing a novel relaxation of the problem, we have derived a new lower bound that

can be computed efficiently in quadratic time. By incorporating this new lower bound with some new

heuristic and pruning techniques, we have developed a new exact method, based on a branch and bound

approach. To demonstrate general applicability of the proposed methods, we have extended them to a

more complicated problem, where decisions on berth allocations are restricted by a quay crane constraint.

Extensive computational results have shown that, compared with previous state-of-the-art methods, our

new methods have significantly reduced gaps between the lower and upper bounds, and have solved more

and larger instances to optimality in significantly less time. We have also performed sensitivity tests to

demonstrate how robust the new solutions are against uncertainties in particular input parameters.

Key words : continuous berth allocation; lower bound; branch and bound; exact method.

Subject classifications : Transportation: scheduling; Programming: integer: algorithms; Industries:

transportation/shipping.

Area of review : Transportation.

1. Introduction

Today, 65.5% of the delays in ocean transportation occur at ports (Notteboom 2006). Port oper-

ators are struggling to enhance efficiency through better utilization of resources, such as berths,

yards, cranes, vehicles and workers. Among these resources, berths are by far the most impor-

tant. By allocating berths to incoming vessels efficiently, the port can reduce the turnaround

time of vessels, and can thus increase port throughput as well as improve customer satisfaction.

An efficient berth planner is also a critical component in port decision support systems that

integrate the planning of various port resources and operations (Bierwirth and Meisel 2010).

This paper studies a berth allocation problem for ports with a continuous quay, known as the

Continuous Berth Allocation Problem (CBAP), where incoming vessels can berth at arbitrary

locations within the boundaries of the quay (Bierwirth and Meisel 2010, Lee et al. 2010). In the

CBAP, we are given a quay of length B, as well as a set V = {1,2, ..., n} of n incoming vessels of

importance weight wv, size lv, arrival time av, and handling time tv for each v ∈ V . For some of

these input parameters, their values are often assigned in practice by estimation. For example,

importance weights wv are often estimated based on vessel delays and cargo values, arrival

times av are often estimated by shipping companies, and handling times tv are often estimated

1

This is the Pre-Published Version.
This is the accepted manuscript of the following article: Xu, Z., & Lee, C. Y. (2018). New lower bound and exact method for the continuous berth
allocation problem. Operations Research, 66(3), 778-798, which has been published in final form at https://doi.org/10.1287/opre.2017.1687

2

based on vessel cargo volume and pre-assigned quay cranes (Bierwirth and Meisel 2010, 2015).

The CBAP consists of assigning a mooring time xv and a starting berth location yv to each

vessel v, such that vessels are berthed no earlier than arrival times, vessels occupy only space

within the quay, and that no two vessels occupy the same quay space at the same time. Since

quick turnaround time at a port is a major concern for seaborne transportation (Imai et al.

2003), the CBAP aims to minimize the total weighted turnaround time
∑

v∈V wv(xv + tv −av),

which is a key issue considered by most studies in the literature (Bierwirth and Meisel 2015).

The CBAP is important because it models a vital objective term, as well as a number of

common decisions and constraints faced by port operators. Its solution methods have been

widely applied as key components in solving many other port planning problems, including berth

allocation problems with a hybrid layout (Moorthy and Teo 2006), berth allocation problems

with multiple objectives (Cheong et al. 2010), berth allocation problems with uncertainties

(Zhen 2015), simultaneous berth and quay crane allocation problems (Park and Kim 2003,

Giallombardo et al. 2010, Li et al. 2015), as well as berth allocation problems with other

objective terms (Bierwirth and Meisel 2010, 2015), such as the total cost of tardiness of the

vessels (Meisel and Bierwirth 2009), and the total cost of transporting cargo from berths to

the yard (Park and Kim 2003). Therefore, as we will demonstrate later in this paper and its

appendices, although our study focuses on the CBAP, the newly developed solution methods

and analytical results have a large potential for being applied and extended to solve other more

complicated port planning problems. Moreover, compared to the berth allocation problem with

a discrete layout (or DBAP for short), where the quay is partitioned into segments, with each

segment being assigned to at most one vessel (Buhrkal et al. 2011, de Oliveira et al. 2012, Imai

et al. 2001, Monaco and Sammarra 2007), although the CBAP is more complicated, solutions

to the CBAP can lead to much better utilization of the quay space.

The CBAP is computationally challenging, as it is known to be strongly NP-hard. It can

be transformed to a two-dimensional rectangle packing problem in a space-time diagram (Lee

et al. 2010), where the horizontal axis with an open right end represents the time units, and

the vertical axis with a height of B represents the berth locations. As shown in Figure 1, each

vessel v ∈ V can be viewed as a rectangle with a height of lv and a width of tv. The mooring

time xv and the starting berth location yv correspond to the position of the left-bottom corner

of the rectangle in the diagram. Thus, finding a feasible solution to the CBAP is equivalent to

determining the position (xv, yv) for the rectangle of each vessel v, with xv being no less than

av, and yv + lv being no larger than B, such that no two rectangles overlap. For each vessel v,

its weighted turnaround time wv(xv + tv − av) represents the cost for packing the rectangle of

v at position (xv, yv). Thus, finding an optimal solution to the CBAP is equivalent to finding

a packing that minimizes the total packing cost. This is unlike the classic rectangle packing

problems that often aim to optimize a min-max objective, e.g., to minimize the highest position

occupied by given rectangles for the two-dimensional strip packing problem (Lodi et al. 2002,

Hopper and Turton 2001). Therefore, many solution methods and techniques known to be

3

Time

Berth
B

xv ≥ av xv + tv0
0

v
yv

yv + lv
u

Figure 1 Berth allocations for two vessels v and u represented in a space-time diagram.

effective for the classic rectangle packing problems, such as those in Boschetti and Montaletti

(2010), are not applicable or effective when directly applied to solve the CBAP.

The CBAP has been studied extensively (Bierwirth and Meisel 2010). However, performance

of its existing solution methods is far behind that for the classic rectangle packing problems.

For the two-dimensional strip packing problem, existing branch and bound algorithms can solve

instances of 100 rectangles to optimality in an hour (Boschetti and Montaletti 2010, Côté et al.

2014, Martello and Vigo 1998, Pisinger and Sigurd 2007), and gaps between the best known

heuristic packings and the best known lower bounds on the optimal packings are usually less

than 5% (of the best known lower bounds), even for large instances of one thousand rectangles

(Burke et al. 2004, Zhang et al. 2013). In contrast, for the CBAP, the best known branch

and bound algorithm, as well as optimization solvers, such as CPLEX, often take hours to

solve small instances of only 10∼15 vessels to optimality (Lee et al. 2010, Guan and Cheung

2004), and for median instances of about 30∼80 vessels, gaps between the best known heuristic

solutions and the best known lower bounds on the optimal objective values often exceed 20%,

and sometimes even exceed 40% (Umang et al. 2013, Ak and Erera 2011, Guan and Cheung

2004, Dai et al. 2008). For large instances of more than 80 vessels, lower bounds on the optimal

objective values are seldom reported in the literature. This is mainly because existing lower

bounds for the CBAP either have large gaps from the optimal objective values, or cannot be

computed efficiently in polynomial time (Ak and Erera 2011, Lee et al. 2010, Dai et al. 2008).

The large gaps between the best known heuristic solutions and the best known lower bounds

of the optimal solutions for the CBAP indicate that there is room for improvement, not only

in deriving heuristic solutions, but also in computing lower bounds and optimal solutions. In

the literature, most of the existing studies focus on developing heuristics and meta-heuristics

that aim to produce heuristic solutions for the CBAP in affordable time, including the squeaky

wheel optimization (Umang et al. 2013), the greedy randomized adaptive search procedure (Lee

et al. 2010), the stochastic beam search algorithm (Wang and Lim 2007), the genetic algorithm

(Imai et al. 2003), the simulated annealing algorithm (Dai et al. 2008), and the tabu search

(Ak and Erera 2011) etc. These studies follow a similar approach by constructing heuristic

solutions in two loops, where the outer loop searches sequences of the vessels, and the inner loop

follows a sequence and applies certain greedy methods (Guan and Cheung 2004) to allocate

berth locations and mooring times to vessels one by one. Apart from these, several other studies

extend some heuristics and meta-heuristics for the DBAP to a restricted case of the CBAP,

where the quay is partitioned into segments in advance, such that each vessel can occupy at

4

most three segments (Cordeau et al. 2005, Mauri et al. 2016). Thus, it is of great interest to

propose some new approaches that can produce better solutions for the CBAP.

In contrast to the large number of studies on heuristics and meta-heuristics, only a few

methods are known to compute optimal solutions or their lower bounds for the CBAP. The most

common method is to formulate the CBAP into an integer programming model by introducing

binary variables σvu and δvu to indicate the relative positions of every two different vessels v ∈ V

and u∈ V in the space-time diagram, with σvu = 1 implying that v is positioned completely on

the right of u, i.e., xv ≥ xu+ tu, and with δvu = 1 implying that v is positioned completely above

u, i.e., yv ≥ yu+ lu (Lee et al. 2010). See Online Appendix A for the details of this model, which

we refer to as model IP1. Commercial solvers, such as CPLEX, can be directly applied to solve

IP1, but it is time-consuming, and can take more than half an hour to solve instances of only

ten vessels (Lee et al. 2010). Moreover, the linear programming relaxation of IP1 provides only

a trivial lower bound, equaling the weighted sum of vessel handling times, and often has a large

gap from the optimal objective value (Ak and Erera 2011).

Besides IP1, there is another integer programming model (Dai et al. 2008, Umang et al.

2013), which, however, is only for a discretized version of the CBAP (or the Discretized BAP

for short), where the quay is discretized into a set of segments S, and the planning horizon is

discretized into a set of periods T, so that each segment in S cannot be occupied by more than

one vessel during the same time period in T. The Discretized BAP can be formulated into an

integer programming model by introducing binary variables πvxy for v ∈ V , x ∈ T and y ∈ S

to indicate whether or not vessel v starts berthing in segment y during period x. See Online

Appendix A for the details of this model, which we refer to as model IP2.

Exact methods and commercial solvers have been applied to solve IP2 and its relaxations,

but only for instances of the Discretized BAP with a small number of quay segments and time

periods (Park and Kim 2002, Guan and Cheung 2004, Umang et al. 2013). The Discretized BAP

and the CBAP are not always equivalent. They are only equivalent if the sizes, arrival times

and handling times of the vessels are integers and all segments in S and time periods in T are

of unit size, which leads to |S|=B and |T|=H, where H is the length of the planning horizon.

When the two problems are equivalent, since |V |= n, |S|=B and |T|=H, model IP2 contains

O(nBH) binary variables and O(n+BH) constraints, which are pseudopolynomial but can

grow exponentially in the problem size O(n) (Michael and David 1979) (if B and H grows

exponentially in n). Thus, model IP2 and its linear programming relaxation can sometimes be

too large to be solved in affordable time. To resolve this issue, Dai et al. (2008) and Umang

et al. (2013) suggested scaling down the vessel sizes, arrival times, and handling times, as well

as the lengths of the quay and the planning horizon, to multiples of a scaling factor, so that

model IP2 of the scaled problem has a sufficiently small size to solve. By properly rounding up

or down the scaled values, the linear programming relaxation of the scaled model can provide

a valid lower bound for the CBAP (Dai et al. 2008), and the optimal solution to the scaled

model can be transformed to a feasible solution to the CBAP (Umang et al. 2013). However,

5

to achieve an affordable size for the scaled model, the scaling factor needs to be sufficiently

large, and can thus grow exponentially in the problem size, which can result in a large deviation

from the optimal solution for the lower bound and the feasible solution obtained. Furthermore,

Ak and Erera (2011) recently proposed a new relaxation of IP2 by splitting each vessel v of

size lv and handling time tv into lv × tv vessels of unit size and unit handling time. However,

the algorithm that they developed to compute this lower bound has a pseudopolynomial time

complexity of O(B3H3) and space complexity of O(nBH), making it still not affordable.

Therefore, it is of considerable importance to develop for the CBAP some new and tight

lower bounds that can be computed efficiently, as well as some new exact methods for solving

this basic problem more effectively. Success in doing so can generate novel insights into berth

allocation methods for various other complicated applications.

1.1. Summary of Our Contributions

The main results and contributions of this paper can be summarized as follows:

1. We have derived a new lower bound by relaxing the CBAP into a novel optimization

model on vectors of functions, which we can efficiently solve by a constructive algorithm in

quadratic O(n2) time, even when the sizes, arrival times and handling times of the vessels

take continuous values. We have proved that the new lower bound can be significantly

better than a widely known linear programming relaxation lower bound. Computational

results show that for instances of 40 vessels or more, the new lower bound is significantly

better than lower bounds produced by other methods in the literature, with an average

improvement of more than 46%. Its gap from the best known heuristic solution is about

10% on average. Therefore, it can be used as a good approximation of the optimal solution

in the development of solution methods, as well as in the evaluation of solution qualities.

2. By utilizing the new lower bound, we have developed a new exact method for the CBAP

based on the branch and bound approach. It incorporates a new heuristic method of

computing an upper bound of the optimal solution, as well as several new dominance rules

to reduce search space. Computational results show that the new method outperforms

other methods from the literature, and can solve to optimality all the test data of up to 24

vessels in just one hour. Compared with CPLEX, it has not only solved more and larger

instances, but has often done so in more than 94% less computing time. Moreover, for

instances of 40 vessels or more, the best solutions found by the new exact method within

an hour time limit outperform those produced by other meta-heuristic methods from the

literature, the improvement being more than 16% on average, as well as achieving a gap

of about 10%, on average, from the best known lower bounds.

3. We have conducted extensive computational experiments to compare our solution meth-

ods with methods from the literature, some of which have not previously been compared

using the same data sets. We have also performed sensitivity tests to demonstrate the

robustness of the solutions produced by the new exact method, notably with respect to

the uncertainties in various input parameters, such as vessel importance weights, arrival

times, and handling times.

6

4. To demonstrate the general applicability of the proposed solution methods for the CBAP,

we have extended them to a more complicated problem, where decisions on berth allo-

cations are also restricted by a quay crane constraint. Computational results show that

the extensions significantly outperform various conventional methods. Therefore, although

our study focuses on a basic berth allocation problem, the results show great promise

for applying and extending our new solution methods and analytical results to optimize

berth allocation for other more complicated problems in various applications. This study

establishes a sound base for pursuing such challenging and important research directions.

1.2. Outline

In the following, we present our new lower bound in Section 2, the new exact method in Sec-

tion 3, and their extensions in Section 4. The computational results are illustrated in Section 5,

followed by a conclusion in Section 6. All appendices are included in an online companion.

2. New Lower Bound

Let Z∗ indicate the optimal objective value of the CBAP. We now propose a new lower bound

on Z∗. To this end, we reformulate the CBAP in Section 2.1, and then derive a relaxation of

the reformulation in Section 2.2. In Section 2.3, we show that the relaxation can be solved

efficiently in O(n2) time to obtain the new lower bound. In Section 2.4, we prove that the new

lower bound equals Z∗ for a special case of the CBAP. In Section 2.1 and Section 2.4, we show

that the new lower bound is at least as good as, and can be significantly better than, the lower

bound from the linear programming relaxation of model IP1 (described in Online Appendix A).

2.1. Model RF: Reformulation of the CBAP

For each vessel v ∈ V , let (v,xv, yv) indicate its berth allocation. A solution to the CBAP can be

represented by {(v,xv, yv) : v ∈ V }. Let Y indicate the set of all feasible solutions to the CBAP

that satisfy xv ≥ av for v ∈ V , 0≤ yv ≤B− lv and the non-overlapping constraint (i.e., for any

two different vessels v and u in V , there exists no time t≥ 0 and no berth location p with 0≤

p <B, such that xv ≤ t < xv + tv, xu ≤ t < xu + tu, yv ≤ p < yv + lv and yu ≤ p < yu+ lu). Hence,

the CBAP can be represented as min
∑

v∈V wv(xv + tv − av) subject to {(v,xv, yv) : v ∈ V } ∈Y.

Before introducing our new lower bound on the optimal objective value Z∗, we need to

reformulate the CBAP as follows. Consider any feasible solution {(v,xv, yv) : v ∈ V } ∈ Y. For

each vessel v ∈ V , let fv(t) for t≥ 0 denote a function that represents the quay space occupied

by v at time t, which can be represented by the following staircase function with three pieces:

fv(t) =







0, for t∈ [0, xv),
lv, for t∈ [xv, xv + tv),
0, for t∈ [xv + tv,∞).

(1)

Using fv(t), we can represent the turnaround time, xv + tv − av of v as follows. Note

that
∫

t∈[0,∞)
tfv(t)dt=

∫

t∈[xv,xv+tv)
lvtdt=

1
2
lvtv(2xv + tv) = lvtvxv +

1
2
lvt

2
v and

∫

t∈[0,∞)
fv(t)dt=

∫

t∈[xv,xv+tv)
lvdt= lvtv. We can obtain that

xv + tv − av = xv − av + tv =
1

lvtv
[

∫

t∈[0,∞)

tfv(t)dt−
1

2
lvt

2
v]−

av

lvtv

∫

t∈[0,∞)

fv(t)dt+ tv

=
1

lvtv

∫

t∈[0,∞)

(t− av)fv(t)dt+
1

2
tv.

7

Berth

Time
0

1

2

210

3

B = 4

3

4

1

2

3 4
3

2

7

2

(a) An optimal berth allocation with Z∗ = 7.

0

1

2

410

3

B = 4

∑4
v=1 fv(t)

32
3

2

1

2

5

4

t

13

4

(b) A stacked bar chart for [f1, f2, f3, f4] in Example 2.

Figure 2 Illustration of the new lower bound for an instance with B =4, n=4, a1 =1/2, a2 =0, a3 = a4 =1,

l1 =4, l2 = l3 = l4 = 2, t1 = 1/2, t2 = 1, t3 = t4 =2, and w1 =w2 =w3 =w4 = 1.

Moreover, by defining W as the following function on vector [f1, ..., fn],

W (f1, ..., fn) :=
∑

v∈V

wv

lvtv

∫

t∈[0,∞)

(t− av)fv(t)dt, (2)

we can represent the total weighted turnaround time of the vessels as follows:

∑

v∈V

wv(xv + tv − av) =W (f1, ..., fn)+
1

2

∑

v∈V

wvtv. (3)

Hence, the CBAP can be reformulated as the following optimization model:

(RF) min W (f1, ..., fn)+
1

2

∑

v∈V

wvtv

s.t. (1) and {(v,xv, yv) : v ∈ V } ∈Y.

Example 1. Figure 2 shows an optimal solution in the space-time diagram for a four vessel

instance. It can be seen that the optimal objective value Z∗ = (1+1+5/2+5/2)= 7, and

W (f1, f2, f3, f4)+
1

2

4
∑

v=1

wvtv =
1

4× 1/2

∫ 3/2

1

4(t− 1/2)dt+
1

2× 1

∫ 1

0

2tdt+
1

2× 2

∫ 7/2

3/2

2(t− 1)dt

+
1

2× 2

∫ 7/2

3/2

2(t− 1)dt+
1/2+1+2+2

2
= 7=Z∗.

2.2. Relaxing Model RF for New Lower Bound ZF

In order to obtain a new lower bound on the optimal objective value Z∗, we need to derive a

relaxation of model RF by replacing its original constraints, (1) and {(v,xv , yv) : v ∈ V } ∈ Y,

with the following valid constraints (4)–(8), which are imposed only on vector [f1, ..., fn].

Consider any {(v,xv, yv) : v ∈ V } ∈Y and [f1, ..., fn] that are feasible to model RF and thus

satisfy (1). For each vessel v ∈ V , from (1) we know that fv is a staircase function with three

pieces, and each piece is defined on a right-half open interval in [0,∞). Let S denote the set

of all staircase functions, with each piece defined on a right-half open interval in [0,∞). Thus,

constraint (4) below is valid for model RF:

fv ∈ S, ∀v ∈ V . (4)

8

For each v ∈ V , since xv ≥ av, and since (1) implies that fv(t) = 0 for t ∈ [0, xv), we obtain

that constraint (5) below is valid for model RF:

fv(t) = 0, ∀t∈ [0, av) and ∀v ∈ V . (5)

For each v ∈ V , we know that fv(t) equals lv if t ∈ [xv, xv + tv) and equals zero otherwise.

Thus, constraint (6) below is valid for model RF:
∫

t∈[0,∞)

fv(t)dt= lvtv, ∀v ∈ V , (6)

which means that the area covered by fv(t) in the space-time diagram equals lvtv. Moreover,

for each t′ ∈ [av, av + tv), we have that
∫

t∈[0,t′)
fv(t)dt= lv(t

′ − av), implying that constraint (7)

below is also valid for model RF:
∫

t∈[0,t′)

fv(t)dt≤ lv(t
′ − av), ∀t′ ∈ [av, av + tv) and ∀v ∈ V , (7)

which means that the area covered by fv(t) for 0≤ t < t′ does not exceed lv(t
′ − av).

Furthermore, by the non-overlapping constraint, the total quay space occupied by all the

vessels in V cannot exceed B for each time t. Thus, (8) below is also valid for model RF:

∑

v∈V

fv(t)≤B, ∀t∈ [0,∞). (8)

Notice that valid constraints (4)–(8) for model RF are imposed only on [f1, ..., fn]. Define F :=

{[f1, ..., fn]∈ S
n : (5)–(8)}. Thus, the optimization model ZF below is a relaxation of model RF:

(ZF) minW (f1, ..., fn)+
1

2

∑

v∈V

wvtv (9)

s.t. [f1, ..., fn]∈ F.

With a slight abuse of the notation, we use ZF to also denote its optimal objective value.

Hence, by the theorem below, ZF is a lower bound on Z∗ for the CBAP.

Theorem 1. ZF ≤Z∗.

Proof. Since ZF is a relaxation of model RF, we obtain that ZF ≤Z∗. �

Next, let ZLP
1 denote the lower bound on Z∗ from the linear programming relaxation of IP1

(described in Online Appendix A). The relaxation model for ZLP
1 has an optimal solution with

xv = av for v ∈ V (if the constant M in IP1 is sufficiently large) (Ak and Erera 2011). Thus,

ZLP
1 =

∑

v∈V

wvtv. (10)

The following proposition shows that our new lower bound ZF is at least as good as, and can

be better than ZLP
1 . (In Section 2.4, we will present a stronger result on the improvement.)

Proposition 1. (i) ZLP
1 ≤ZF; (ii) ZLP

1 <ZF for infinitely many instances.

Proof. See Online Appendix B. �

9

For every [f1, ..., fn]∈ F, it can be represented by a stacked bar chart. Let A denote the set of

the endpoints of all the intervals of fv(t) for v ∈ V . Sort the endpoints in A according to their

positions on the time-axis from left to right. It can be seen that each fv(t) equals a constant

for t between two consecutive endpoints in A. Hence, we can plot a stacked bar chart so that

for each interval between two consecutive endpoints in A, it stacks n bars of the same width

equal to the interval length and of heights equal to fv(t) for v= 1, ..., n, respectively.

Example 2. For the instance in Figure 2(a), consider the vector [f1, f2, f3, f4] defined below:

f1(t) =







0, t∈ [0, 1
2
)

4, t∈ [1
2
,1)

0, t∈ [1,∞)
, f2(t) =











2, t∈ [0, 1
2
)

0, t∈ [1
2
,1)

4, t∈ [1, 5
4
)

0, t∈ [5
4
,∞)

, f3(t) =











0, t∈ [0, 5
4
)

4, t∈ [5
4
, 3
2
)

2, t∈ [3
2
,3)

0, t∈ [3,∞)

, f4(t) =











0, t∈ [0, 3
2
)

2, t∈ [3
2
,3)

4, t∈ [3, 13
4
)

0, t∈ [13
4
,∞)

,

which is represented by a stacked bar chart in Figure 2(b), where different colors indicate bars

for different vessels. It can be easily seen that fv(t) for 1≤ v ≤ 4 satisfy (4), (5), (6) and (8),

and that f1(t) and f2(t) for v ∈ {1,2} satisfy (7). Moreover, we have that

∫

t∈[0,t′]

f3(t)dt=











0, t′ ∈ [0, 5
4
)

4(t′ − 5
4
), t′ ∈ [5

4
, 3
2
)

1+2(t′ − 3
2
), t′ ∈ [3

2
,3)

4, t′ ∈ [2,∞)

and

∫

t∈[0,t′]

f4(t)dt=











0, t′ ∈ [0, 3
2
)

2(t′ − 3
2
), t′ ∈ [3

2
,3)

3+4(t′ − 3), t′ ∈ [3, 13
4
)

4, t′ ∈ [13
4
,∞)

,

both of which do not exceed 2(t′−1) for t′ ∈ [1,3), and thus satisfy (7). Hence, [f1, f2, f3, f4] ∈ F.

We will see later in Section 2.3.2 that such [f1, f2, f3, f4] is optimal to ZF.

Remark 1. It can be seen that a better lower bound than ZF can be obtained by adding to

F more valid constraints on [f1, ..., fn]. However, this will complicate the relaxation model so

that it may be too intractable to be solved. In the following section, we will show that for the

relaxation model that we have defined earlier, it is tractable to be solved by an O(n2) algorithm.

2.3. Computing the New Lower Bound ZF

In this section, we present a novel constructive algorithm that can return ZF in O(n2) time.

2.3.1. Framework of the Algorithm By (9), to compute ZF, we need to minimize

W (f1, ..., fn) + (1/2)
∑

v∈V wvtv over vectors of functions [f1, ..., fn] ∈ F, for which it is suf-

ficient to minimize W (f1, ..., fn). Thus, since each integration term
∫

t∈[0,∞)
(t− av)fv(t)dt of

W (f1, ..., fn) in (2) is weighted by wv/(lvtv), it is natural to construct each fv(t) by minimizing
∫

t∈[0,∞)
(t− av)fv(t)dt, at each time selecting fv(t) for v with the largest wv/(lvtv).

Following this intuition, we sort vessels v ∈ V by a non-increasing order of wv/(lvtv), rela-

bel them as 1,2, ..., n, and construct f1, f2, ..., fn sequentially. For each vessel v, given that

f1, .., fv−1 have been constructed, we construct fv by solving the following optimization model

Z(v)(f1, ..., fv−1), aiming to minimize
∫

t∈[0,∞)
(t−av)fv(t)dt over fv(t)∈ S, subject to constraints

derived from (4)–(8) of model ZF, where (11)–(14) are equivalent to (4)–(7) on fv, and (15) is

equivalent to
∑v

u=1 fu ≤B, a relaxed constraint of (8):

Z(v)(f1, ..., fv−1) = min

∫

t∈[0,∞)

(t− av)fv(t)dt

10

Algorithm 1 Computing ZF

1: Sort vessels v ∈ V in a non-increasing order of wv/(lvtv), and relabel them as 1, 2,, n.

2: For each v = 1,2, ..., n, given fu(t) for 1 ≤ u < v, follow the algorithm in Section 2.3.2 to

compute an optimal solution fv to Z(v)(f1, ..., fv−1) in O(n) running time.

3: Return W (f1, .., fn)+
1
2

∑

v∈V wvtv.

s.t. fv ∈ S, (11)

fv(t) = 0, ∀t∈ [0, av), (12)
∫

t∈[0,∞)

fv(t)dt= lvtv, (13)

∫

t∈[0,t′)

fv(t)dt≤ lv(t
′ − av), ∀t

′ ∈ [av, av + tv), (14)

fv(t)≤B−

v−1
∑

u=1

fu(t), ∀t∈ [0,∞). (15)

We summarize the above framework for computing ZF in Algorithm 1. We will later explain

in Section 2.3.2 how to solve Z(v)(f1, ..., fv−1) in Step 2 of Algorithm 1 in O(n) running time

for each v ∈ V , so as to guarantee an O(n2) running time for Algorithm 1.

To show that Algorithm 1 returns exactly ZF, we need to derive a sufficient and necessary

condition as follows for fv to be an optimal solution to Z(v)(f1, ..., fv−1), and this condition will

also be applied later in Section 2.3.2 to solve Z(v)(f1, ..., fv−1). To minimize
∫

t∈[0,∞)
(t−av)fv(t)dt

for Z(v)(f1, ..., fv−1), since t−av is increasing in t, for each p≥ 0 it is natural to assign as large a

value as possible to fv(p) if fv(t) are fixed for 0≤ t < p. In other words, for any optimal solution

fv to Z(v)(f1, ..., fv−1), it is natural to expect that its value at p for each p≥ 0 is always the

maximum among all feasible solutions to Z(v)(f1, ..., fv−1) that have the same values as fv(t)

for 0≤ t < p. Lemma 1 below shows that this is in fact a sufficient and necessary condition for

fv to be an optimal solution to Z(v)(f1, ..., fv−1).

Lemma 1. For each v = 1, ..., n, given fu for 1 ≤ u ≤ v − 1, a feasible solution fv to

Z(v)(f1, ..., fv−1) is optimal if and only if it satisfies the condition that for each p≥ 0, we have

fv(p)≥ f ′
v(p) for every feasible solution f ′

v to Z(v)(f1, ..., fv−1) with f ′
v(t) = fv(t) for 0≤ t < p.

Proof. See Online Appendix C. �

We can now establish Theorem 2 to show that Algorithm 1 returns ZF in O(n2) time.

Theorem 2. Algorithm 1 returns ZF in O(n2) running time.

Proof Sketch. (See Online Appendix D for details.) As claimed in Step 2 of Algorithm 1,

which will be proved later in Section 2.3.2, we can obtain an optimal solution fv to

Z(v)(f1, ..., fv−1) in O(n) time for each v= 1, ..., n. Thus, Algorithm 1 runs in O(n2) time.

To further prove Theorem 2, it is sufficient to show that W (f1, ..., fn) +
1
2

∑n

v=1wvtv = ZF,

for which it is sufficient to show that [f1, .., fn] is an optimal solution to ZF. By contradiction,

suppose such [f ∗
1 , .., f

∗
n] is not optimal to ZF. Consider any optimal solution [f ∗

1 , ..., f
∗
n] to ZF.

11

Let v ∈ V indicate the smallest vessel index with f ∗
v (t) 6= fv(t) for some t≥ 0. Let p≥ 0 indicate

the smallest time point with f ∗
v (p) 6= fv(p). Without loss of generality, we can assume that the

optimal solution [f ∗
1 , ..., f

∗
n] to ZF is selected in such a way that v is maximized, breaking ties

by maximizing p, and then breaking ties by minimizing |f ∗
v (p)−fv(p)|. It can be seen that both

fv and f ∗
v are feasible solutions to Z(v)(f1, ..., fv−1). Thus, since fv is an optimal solution to

Z(v)(f1, ..., fv−1), by Lemma 1 and f ∗
v (p) 6= fv(p), we obtain f ∗

v (p)< fv(p). Thus, we can change

[f ∗
1 , .., f

∗
n], but without changing f ∗

u(t) for 1≤ u< v or f ∗
v (t) for 0≤ t < p, to construct a feasible

solution having either a smaller objective value, or the same objective value but a smaller value

of |f ∗
v (p)− fv(p)|, contradicting the definition of [f ∗

1 , ..., f
∗
n]. �

2.3.2. Solving Z(v)(f1, ..., fv−1) for Step 2 of the Algorithm: Illustration of Major

Idea For each vessel v ∈ V , given f1, ..., fv−1, where each fu for 1 ≤ u ≤ v − 1 is a feasible

solution to Z(u)(f1, ..., fu−1), we construct fv in O(n) running time based on the following idea:

In view of Lemma 1, to construct fv to be an optimal solution to Z(v)(f1, ..., fv−1), it is natural

to assign as large a value as possible to fv(t) first for the earliest time t. For each t≥ 0, from (15)

we know that fv(t) has a maximum possible value equal to B−gv(t), where gv(t) :=
∑v−1

u=1 fu(t)

indicates the total value assigned to f1(t), ..., fv−1(t). Moreover, since each fu belongs to S for

1≤ u≤ v− 1, it can be seen that gv also belongs to S, that is, gv is also a staircase function on

[0,∞) over right-half open intervals. Denote the intervals of gv by [bv0, bv1), ..., [bv,mv−1, bv,mv)

with bv0 = 0< bv1 < ... < bv,mv =∞, where mv indicates the number of the intervals. Without

loss of generality, we can assume that {bv0, ..., bv,mv} contains av and av + tv, since otherwise

the interval that contains av or av + tv can be split at av or av + tv respectively.

For 1 ≤ j ≤ mv, since gv(t) for t ∈ [bv,j−1, bvj) equals a constant, denoted by βvj, we have

gv(t) = βvj for t∈ [bv,j−1, bvj). From (15) we know that fv(t) for all t∈ [bv,j−1, bvj) has a common

maximum possible value equal to B−βvj, which leads to the following constraint on fv(t):

fv(t)≤B−βvj, for t∈ [bv,j−1, bvj). (16)

Thus, to save computing time, we can use this common maximum possible value, B − βvj, to

construct fv(t) as follows for the entire interval [bv,j−1, bvj), rather than for each individual t.

For each j = 1,2, ...,mv, sequentially, given that fv(t) has been constructed for t∈ [0, bv,j−1),

we can construct fv(t) for t∈ [bv,j−1, bvj) as follows. Following the idea mentioned earlier from

Lemma 1, we shall assign the maximum possible value B − βvj to fv(t) as early and as much

as we can. However, to ensure that fv(t) can eventually be feasible to Z(v)(f1, ..., fv−1), our

assignment must be restricted by not only constraint (12), i.e., fv(t) = 0 for 0≤ t < av, but also

by the following constraints (17) and (18) that are derived from (13) and (14):

• By (13), the total area in the space-time diagram to be covered by fv(t) equals lvtv. Let

Qvj :=

∫

t∈[0,bv,j−1)

fv(t)dt

indicate the total area that has been covered by fv(t) for 0≤ t < bv,j−1. Thus, lvtv−Qvj , referred

to as the total remaining area of fv at bv,j−1, indicates the area that needs to be covered by

12

B

bv,j−1 α bvj

t

gv(t)

fv(t) = lv
βvj + lv

βvj

lv(bv,j−1−av)−Qvj

B−βvj−lv

fv(t) = B − βvj

(a) For Case I: bvj ≤ av + tv, where the black area is cov-

ered by fv(t)− lv.

α

B

bv,j−1

fv(t) = 0

bvj

t

gv(t)

fv(t) = B − βvj

βvj

lvtv−Qvj

B−βvj

(b) For Case II: bv >av + tv.

Figure 3 Construction of an optimal solution fv(t) to Z(v)(f1, ..., fv−1) for t∈ [bv,j−1, bvj), where gray areas

are covered by the newly assigned fv(t), and α is assumed to be less than bvj .

fv(t) for t≥ bv,j−1, implying that lvtv −Qvj is a maximum possible area that can be covered by

fv(t) for t∈ [bv,j−1, bvj). This leads to the following constraint (17) on fv(t) for t∈ [bv,j−1, bvj):

∫

t∈[bv,j−1,bvj)

fv(t)dt≤ lvtv −Qvj. (17)

• According to (14), for each t′ ∈ [av, av + tv), the total area covered by fv(t) for 0≤ t < t′

cannot exceed lv(t
′ − av). Thus, we refer to lv(t

′ − av) as the available area of fv at t′. If t′ ∈

[bv,j−1, bvj), then from (14) we can obtain the following constraint (18) on fv(t) for t∈ [bv,j−1, t
′):

∫

t∈[bv,j−1,t
′)

fv(t)dt≤ lv(t
′ − av)−Qvj, (18)

where the right hand side indicates the remaining area that is available at t′ but has not been

covered by fv(t) for 0≤ t < bv,j−1, implying that lv(t
′ − av)−Qvj is a maximum possible area

that can be covered by fv(t) for t∈ [bv,j−1, t
′).

Hence, in the following construction, we will assign the maximum possible value B− βvj as

early and as much as possible to fv(t) for t ∈ [bv,j−1, bvj), subject to constraints (12), (17) and

(18). First, for any of the following three situations, we have to set fv(t) = 0 for all t∈ [bv,j−1, bvj):

• IfQvj = lvtv, then fv(t) for 0≤ t≤ bv,j−1 has covered all the area lvtv, and its total remaining

area at bv,j−1 becomes zero, which, together with (17), implies that fv(t) = 0 for t∈ [bv,j−1, bvj).

• If βvj =B for t∈ [bv,j−1, bvj), then the total value assigned to f1(t), ..., fv−1(t) has reached

B, and thus from (16) we obtain that fv(t) = 0 for t∈ [bv,j−1, bvj).

• If av ≥ bvj , then each time t∈ [bv,j−1, bvj) is earlier than the arrival time av, and thus from

(12) we also obtain fv(t) = 0 for t∈ [bv,j−1, bvj).

We next need to consider only the situation where Qvj < lvtv, βvj < B and av < bvj. Since

av ∈ {bv0, ..., bv,mv} and av < bvj , we know av ≤ bv,j−1, implying that each t∈ [bv,j−1, bvj) satisfies

av ≤ t. Thus, in this situation, constraint (12) is not imposed on the construction of fv(t) for

t∈ [bv,j−1, bvj), and only constraints (17) and (18) need to be considered. We now continue our

construction for the following two cases, as illustrated in Figure 3:

13

• Case I: bvj ≤ av + tv. Since av ≤ bv,j−1, we have [bv,j−1, bvj) ⊆ [av, av + tv). Thus, if lv ≥

B − βvj, then even if we assign B − βvj to all fv(t) with t ∈ [bv,j−1, bvj), constraints (17) and

(18) are still satisfied, and therefore we set fv(t) =B−βvj for all t∈ [bv,j−1, bvj).

Otherwise, lv < B − βvj. Since [bv,j−1, bvj) ⊆ [av, av + tv), each t′ ∈ [bv,j−1, bvj) satisfies that

lv(t
′ − av)−Qvj ≤ lvtv −Qvj , which implies that if (18) is satisfied, then (17) is also satisfied.

Thus, in this case, only constraint (18) needs to be considered.

Suppose we now assign B − βvj to all fv(t) with t ∈ [bv,j−1, t
′) for some t′ ∈ [bv,j−1, bvj). To

satisfy (18), t′ must satisfy (t′ − bv,j−1)(B−βvj)≤ lv(t
′ − av)−Qvj, which implies that

(B−βvj − lv)(t
′ − bv,j−1)≤ lv(bv,j−1 − av)−Qvj. (19)

In (19), the right hand side is the remaining area available to fv but not yet covered at bv,j−1,

which allows fv(t) for t ∈ [bv,j−1, t
′) to be greater than lv, and thus it is a maximal possible

area that can be covered by [fv(t)− lv] for t ∈ [bv,j−1, t
′). The left hand side is the actual area

covered by [fv(t)− lv] for t∈ [bv,j−1, t
′), where fv(t)− lv =B−βvj− lv. See Figure 3(a). By (19),

t′ ≤ [lv(bv,j−1 − av)−Qvj]/(B−βvj − lv)+ bv,j−1. Thus, from t′ ≤ bvj, we obtain t′ ≤ α, where

α :=min{bvj ,
lv(bv,j−1 − av)−Qvj

B−βvj − lv
+ bv,j−1}.

This implies that we can set fv(t) =B− βvj for t from bv,j−1 and only up to α (not including

α), without violating constraint (18).

Hence, if α= bvj , we set fv(t) =B − βvj for all t ∈ [bv,j−1, bvj). Otherwise, α < bvj. We then

set fv(t) =B−βvj for all t∈ [bv,j−1, α), which implies that (18) is satisfied at equality for t′ = α.

This means that fv(t) for t∈ [0, α) has covered all its available area lv(α−av). Thus, to satisfy

(18) for t′ ∈ [α, bvj), we have fv(t)≤ lv for t∈ [α, bvj). It can be seen that even if we assign lv to

all fv(t) with t∈ [α, bvj), constraint (18) is still satisfied. Thus, we set fv(t) = lv for t∈ [α, bvj).

• Case II: bvj > av + tv. Since bvj > av + tv and (av + tv) ∈ {bv0, ..., bv,mv}, we have bv,j−1 ≥

av + tv, which implies [av, av + tv)⊆ [0, bv,j−1). Thus, each t∈ [bv,j−1, bvj) satisfies t≥ av + tv, so

that (18) is not imposed on fv(t) for t ∈ (bv,j−1, bvj]. Thus, all the remaining area lvtv −Qvj is

available to fv(t) for t∈ (bv,j−1, bvj], and only constraint (17) needs to be considered.

We can now determine the maximum value of t′ ∈ [bv,j−1, bvj) as follows, such that even if

we assign B − βvj to all fv(t) with t ∈ [bv,j−1, t
′), constraint (17) is still satisfied. By (17), t′

must satisfy (t′−bv,j−1)(B−βvj)≤ lvtv−Qvj. Thus, we have t
′ ≤ (lvtv−Qvj)/(B−βvj)+bv,j−1,

which, together with t′ ≤ bvj , implies t′ ≤α, where

α :=min{bvj ,
lvtv −Qvj

B−βvj

+ bv,j−1}.

Thus, we can set fv(t) =B−βvj for t from bv,j−1 and only up to α (not including α), without

violating constraint (17).

Hence, similar to Case I, if α= bvj, we set fv(t) =B − βvj for all t ∈ [bv,j−1, bvj). Otherwise,

α< bvj. We then set fv(t) =B−βvj for all t∈ [bv,j−1, α), which implies that fv(t) for t∈ [0, α)

has covered all the area lvtv, and its total remaining area at α becomes zero, which, together

with (17), implies that we shall set fv(t) = 0 for t∈ [α, bvj).

14

Algorithm 2 Computing an optimal solution fv to Z(v)(f1, ..., fv−1).

1: Let gv(t) =
∑v−1

u=1 fu(t), which is a staircase function over intervals

[bv0, bv1), ..., [bv,mv−1, bv,mv) with 0 = bv0 < ... < bv,mv =∞ and {av, av + tv} ⊆ {bv0, ..., bv,mv},

and for each 1≤ j ≤mv, let βvj indicate the constant value of gv(t) for t∈ [bv,j−1, bvj).

2: for j = 1,2, ..,mv do

3: Let Qvj =
∫

t∈[0,bv,j−1)
fv(t)dt.

4: if Qvj = lvtv, or βvj =B, or av ≥ bvj then

5: Set fv(t) = 0 for t∈ [bv,j−1, bvj).

6: else if bvj ≤ av + tv then ⊲ Case I:

7: if lv ≥B−βvj then

8: Set fv(t) =B−βvj for t∈ [bv,j−1, bvj).

9: else

10: Let α=min{bvj , [lv(bv,j−1 − av)−Qvj]/(B−βvj − lv)+ bv,j−1}.

11: If α= bvj, then set fv(t) =B−βvj for t∈ [bv,j−1, bvj).

12: If α< bvj , then set fv(t) =B−βvj for t∈ [bv,j−1, α), and fv(t) = lv for t∈ [α, bvj).

13: end if

14: else ⊲ Case II:

15: Let α=min{bvj , (lvtv −Qvj)/(B−βvj)+ bv,j−1}.

16: If α= bvj, then set fv(t) =B−βvj for t∈ [bv,j−1, bvj).

17: If α< bvj, then set fv(t) =B−βvj for t∈ [bv,j−1, α), and fv(t) = 0 for t∈ [α, bvj).

18: end if

19: end for

20: Return fv.

We have by now completed the construction of fv(t) for t∈ [bv,j−1, bvj), which can be repeated

for j = 1,2, ...,mv to obtain fv(t) for t∈ [0,∞). The pseudocode of the construction is in Algo-

rithm 2. We can establish Theorem 3 to show that fv obtained is optimal to Z(v)(f1, ..., fv−1).

Theorem 3. Algorithm 2 can return an optimal solution fv to Z(v)(f1, ..., fv−1) in O(n) time.

Proof Sketch. (See Online Appendix E for details.) We can first verify that fv is a feasible

solution to Z(v)(f1, ..., fv−1), and then prove that fv is optimal by verifying the condition in

Lemma 1. Moreover, it can be seen that Algorithm 2 runs in O(mv) time. Thus, we can prove

that Algorithm 2 runs in O(n) time by showing that mv is in O(n). �

See Online Appendix F that illustrates an example as to how Algorithm 2 is used by Algo-

rithm 1 to construct f1, f2, f3, and f4, sequentially, in the computation of ZF for the instance

in Figure 2, where the resulting [f1, f2, f3, f4] is the same as that in Example 2 and Figure 2(b).

2.4. Special Case of the CBAP Satisfying ZF =Z∗

Consider a special case of the CBAP, where lv =B and av = a for v ∈ V , and a≥ 0 is a constant,

that is, all vessels have sizes equal to the quay length, and have equal arrival times. This special

15

case is equivalent to the classic single machine scheduling problem for minimizing the total

weighted completion time, and thus it is optimal to process vessels with the largest wv/tv first

(Pinedo 2012). Proposition 2 below shows that in this special case, our new lower bound ZF

equals the optimal objective value Z∗.

Proposition 2. If lv =B and av = a for v ∈ V , where a≥ 0 is a constant, then ZF =Z∗.

Proof. See Online Appendix G. �

From Proposition 2, we can derive the following corollary, which strengthens Proposition 1

and implies that the improvement of ZF against Z
LP
1 , measured by the gap ratio (ZF−ZLP

1)/ZLP
1 ,

can be arbitrarily large when the number of vessels n grows to infinity.

Corollary 1. (ZF−ZLP
1)/ZLP

1 can be as large as (n− 1)/2 for any n≥ 1.

Proof. Consider any instance with lv = B, av = a, tv = t and wv = w for v ∈ V , where a≥ 0,

t > 0 and w > 0. Since vessels are identical and their sizes all equal the quay length, it is

optimal to handle vessels one by one. Thus, Z∗ = w(1 + 2 + ...+ n)t= w(n+ 1)nt/2. By (10)

and Proposition 2, we have ZLP
1 =wnt and ZF =Z∗. Thus, (ZF −ZLP

1)/ZLP
1 = (n− 1)/2. �

3. New Exact Method

Our exact method follows a branch and bound approach that has been commonly adopted for

the two dimensional bin packing problem (Martello et al. 2000). In Section 3.1, we present

its branching rules. In Section 3.2, we illustrate its bounding procedure, which makes use of

the new lower bound introduced in Section 2, and applies a new heuristic to compute upper

bounds. To reduce the search space, our exact method also adopts several new dominance rules

for pruning nodes of the search tree, and these are introduced in Section 3.3.

3.1. Branching Rules

As it goes down the search tree from a root node, the exact method assigns positions in the

space-time diagram to vessels one by one. When exploring the search tree, among all the nodes

visited but not branched, it selects a node p, and then branches node p to generate new nodes by

assigning positions to one more vessel. There are two strategies commonly used to select node p,

including a depth-first strategy that selects a node furthest from the root, and a breadth-first

strategy that selects a node nearest to the root. Compared with the breadth-first strategy, the

depth-first strategy requires less computer memory, but it is often stuck in branches that do

not lead to good solutions. We therefore adopt a mixed strategy that applies the breadth-first

strategy as long as the memory consumption is below a certain threshold, and applies the

depth-first strategy otherwise.

We now consider any selected node p, and let E denote the current partial solution at

node p. We still assume that the horizontal axis of the space-time diagram represents the

time, and the vertical axis represents the berth locations. Let V (E) indicate the set of vessels

whose positions in the space-time diagram have been assigned by E. Descendant nodes of p

can be generated by selecting in turn each unassigned vessel v ∈ V \ V (E), assigning v all its

16

(Berth)

(Time)

0

1

2

43210

3

B = 5

4

2

3

4

av = 2.5

y

z(E, v, y)

1

(a) z(E,v, y), shown in bold lines, for a partial

solution E with four vessels, 1, 2, 3, and 4, and

for vessel v with av = 2.5 and lv = 1.

(Berth)

(Time)

0

1

2

543210

3

B = 5

4

2

3

4

5

6 x7

761

y

(b) A berth allocation of 7 vessels, where a1 = 1, a4 = a5 =

0, a6 = 4, a7 = 0, w1 =1, w4 = 1, w5 = 2, and w6 =w7 = 2.

Figure 4 Examples for illustration of the new exact algorithm.

“admissible” positions (xv, yv) in the space-time diagram, and increasing E by including each

new assignment (v,xv, yv).

To define the admissible positions, we follow an argument similar to that in Martello et al.

(2000) for the two-dimensional bin packing problem, which implies that for every optimal

solution {(u,xu, yu) : u ∈ V } to the CBAP, there exists an ordering of the vessels such that

for u ∈ V and r ∈ V with u < r, either yr ≥ yu + lu or xr ≥ xu + tu. Thus, unassigned vessels

may be placed only at positions above or on the right of any assigned vessel in the space-time

diagram. In effect, the assigned vessels define an “envelope” that separates the two areas where

unassigned vessels may or may not be placed, and this can be represented by z′(E,y), indicating

the latest departure time of the assigned vessels that occupy berth locations at or above y:

z′(E,y) := max{xu + tu : ∀u∈ V (E) with y < yu + lu}, for y ∈ [0,B). (20)

Hence, each unassigned vessel v ∈ V \ V (E) can only be placed at positions (xv, yv) with

z′(E,yv)≤ xv, av ≤ xv, and yv ≤B− lv. Thus, for each 0≤ y ≤B− lv, we can use Z(E,v, y) to

indicate the earliest mooring time for v to be assigned y as its starting berth location, where

z(E,v, y) :=max{z′(E,y), av}, for y ∈ [0,B− lv]. (21)

It can be seen that each Z(E,v, y) is a staircase function for y ∈ [0,B− lv]. See Figure 4(a) for

an example of z(E,v, y).

Moreover, by the argument in Guan and Cheung (2004), every feasible solution to the CBAP

can, without increasing the objective value, be transformed to a feasible solution where no vessel

can be moved leftward or downward in the space-time diagram. Thus, for each unassigned vessel

v ∈ V \V (E) that is selected to be placed, it may be placed only at the positions on z(E,v, y)

where the slope of z(E,v, y) changes from vertical to horizontal. See positions (2.5,3) and (4,0)

in Figure 4(a) for a vessel v with av = 2.5 and lv = 1. We define such positions as “admissible”

positions for v. They can be computed in O(|V (E)| log |V (E)|) time by an algorithm similar to

that proposed by Martello et al. (2000).

17

3.2. Bounding Procedure with a New Heuristic

Consider the current selected node p of the search tree and its corresponding partial solution E.

Let UB indicate the objective value of the current best feasible solution that has been found,

and LB indicate the value of the current best lower bound that has been found for the optimal

solution. If LB equals UB, then the current best feasible solution is optimal.

For each decedent node of p that is newly generated by assigning an admissible position

(xv, yv) to an unassigned vessel v ∈ V \V (E), we can compute a lower bound as follows for the

remaining problem that decides on positions for other unassigned vessels in V \ V (E) \ {v}.

Let E′ = E ∪ {(v,xv, yv)}. For each t≥ 0, let ρ(E′, t) indicate the highest berth location that

the assigned vessels in V (E′) occupy at or after time t. We can see that ρ(E′, t) is a staircase

function of at most O(n) pieces. For each u∈ V \V (E′), we know from the branching rules that

u can be positioned only at (xu, yu) with yu ≥ ρ(E′, xu). By following the argument in Section 2,

we can obtain that [
∑

u∈V (E′)wu(xu + tu − au) + ZF(E
′)] is a lower bound on the remaining

problem, where ZF(E
′) is a revised model of ZF that replaces V with V \ V (E′), and B with

B − ρ(E′, t) in (4)–(9). Moreover, Algorithm 1 can be revised to solve ZF(E
′) by replacing V

with V \ V (E′), and using a revised Algorithm 2 in Step 2. The revised Algorithm 2 requires

bv0, ..., bv,mv , the endpoints of the pieces of gv(t) in Step 1, to include the endpoints of the pieces

of ρ(E′, t), and requires the replacement of B with B− ρj in the loop from Step 2 to Step 19,

where ρj for each 1≤ j ≤mv indicates the constant value of ρ(E′, t) for t ∈ [bv,j−1, bvj). Since

ρ(E′, t) is a staircase function of at most O(n) pieces, the revised algorithm can still return the

lower bound in O(n2) time. If the lower bound is greater than LB, then LB will be updated. If

the lower bound is not smaller than UB, then the new node can be pruned so that it will not

be explored further.

From the partial solution E of node p, we can extend it to obtain a feasible solution by a

new heuristic method as follows. If the objective value of the feasible solution is smaller than

UB, then UB will be updated. Our new heuristic for the CBAP adopts a best-fit strategy and

follows a one-loop approach, as shown in Algorithm 3, where the best-fit unassigned vessel v∗

from V \ V (E) and its best-fit position (x∗
v∗ , y

∗
v∗) in the space-time diagram are dynamically

selected, so as to gradually extend the partial solution E to a feasible solution. To save on

computing time, we add the restriction that no unassigned vessel in V \V (E) can occupy the

same quay space earlier than any assigned vessel. In other words, no unassigned vessel can be

placed directly on the left of any assigned vessel in the space-time diagram. As a result, those

assigned vessels define an “envelope” that separates the two areas where the unassigned vessels

may or may not be placed. The envelope can be represented by h(E,y), which indicates the

departure time of the latest assigned vessel that occupies the berth location y ∈ [0,B):

h(E,y) :=max{xv + tv : ∀v ∈ V (E) with y ∈ [yv, yv + lv)}, for y ∈ [0,B). (22)

For example, for the instance in Figure 4(a), we have h(E,y) = 2 for y ∈ [0,1) and y ∈ [3,5),

h(E,y) = 1 for y ∈ [1,2), and h(E,y) = 4 for y ∈ [2,3). Next, we can use S(E) to indicate the

18

Algorithm 3 Framework of the best-fit heuristic to extend a partial solution E

1: for i=1,2, ..., n do

2: Among all unassigned vessels v ∈ V \ V (E) and all valid positions (xv, yv) ∈ S(E) of v,

choose v∗ and (x∗
v∗ , y

∗
v∗) that minimizes a certain fitness evaluation function.

3: Add the new assignment (v∗, x∗
v∗ , y

∗
v∗) to E.

4: end for

5: Return E.

area where unassigned vessels may be placed, which corresponds to the area on the right of

h(E,y) in the space-time diagram:

S(E) := {(x, y) : x≥ h(E,y), 0≤ y <B}. (23)

By minimizing a certain fitness evaluation function, the heuristic then selects the best-fit unas-

signed vessel v∗ from V \ V (E) and its best-fit position (x∗
v∗ , y

∗
v∗) from S(E), and inserts

assignment (v∗, x∗
v∗ , y

∗
v∗) to extend E. In our implementation of the heuristic, we have carefully

designed the fitness evaluation function so that the heuristic has a polynomial time complexity,

and that it can always produce optimal solutions for a special case of the CBAP with lv =B and

av = a for v ∈ V . See Online Appendix H for the implementation details of the new heuristic.

3.3. Dominance Rules

Using the branching rules mentioned earlier, the exact method may generate a decision node q

that is dominated by a previously encountered node q′, in the sense that the best solution that

can be created by completing the partial solution of q has an objective value not smaller than

the best solution that can be created by completing the partial solution of q′. In such a case,

node q can be pruned so as to reduce the search space.

Consider each decedent node q of a current decision node p, where the partial solution E′

of q extends the partial solution E of p by assigning (xv, yv) to v ∈ V \ V (E). We propose the

following rules to quickly identify dominance for node q.

Rule 1 (for better sequencing): Let u ∈ V (E) indicate the vessel assigned just before v is

assigned. Node q may be dominated by a node that assigns u and v in a different sequence.

Consider the partial solution for vessels 1–5 shown in Figure 4(b), which first places vessel u=4

at (0,4), and then vessel v= 5 at (2,3). However, one could also first place vessel 5 at (1,3) to

start berthing earlier, and then place vessel 4 at (0,4), which leads to a better partial solution

for vessels 1–5. To identify such dominance for node q, we check the condition that yv+ lv ≤ yu.

If the condition is satisfied, which implies that v is placed below u, then due to the branching

rules, v must be placed on the right of u, i.e., xu + tu ≤ xv, and thus one can first place v at a

position (x′, yv) with x′ ≤ xu + tu, before placing u at position (xu, yu). In this case, since x′ is

no later than xv, node q is dominated and can be pruned.

It is noted that Guan and Cheung (2004) proposed to prune node q if yv+ lv ≤ yu and (xv, yv)

is also an admissible position of v in node p, which is more restrictive than our condition above.

19

For example, their condition is not satisfied by the partial solution of vessels 1–5 in Figure 4(b)

for u= 4 and v = 5. Proposition 3 below shows that our condition ensures that among nodes

with the same partial solution, at most one will be explored to generate new nodes.

Proposition 3. For any two nodes reached by the exact method, if they are associated with the

same partial solution, then at least one of them satisfies yv + lv ≤ yu, and thus must be pruned,

where v is an assigned vessel, and u is the vessel assigned just before v is assigned.

Proof. See Online Appendix I. �

Rule 2 (for better placement of unassigned vessels): Consider any unassigned vessel r ∈ V \

V (E′) of node q. Let xmin
r indicate the earliest possible mooring time for r such that t≥ ar and

t≥miny∈[0,B−lr] z(E
′, r, y). By the branching rules, we know that in the future completion of

E′, r cannot be assigned any mooring time earlier than xmin
r . Thus, we check whether or not

there exists a position (x′
r, y

′
r) with ar ≤ x′

r <xmin
r , such that r can be placed at (x′

r, y
′
r) without

overlapping any assigned vessels in V (E′). If such a position (x′
r, y

′
r) exists for r, then we can

obtain a partial solution P by adding (r,x′
r, y

′
r) to E. Accordingly, for every solution that can be

created by completing E′, by placing r at (x′
r, y

′
r) it can be transformed to a solution that can

be created by completing P , which, by x′
r < xmin

r , has a smaller objective value. Thus, node q

is dominated, and can be pruned. See Figure 4(b) with E′ being the partial solution for vessels

1–3, and with r= 7, xmin
7 = 1 and (x′

7, y
′
7) = (0,0).

Rule 3 (for eliminating symmetry): For each feasible solution P = {(u,xu, yu) : u ∈ V }, its

reflection symmetry about the quay, denoted by P̂ = {(u,xu,B − yu − lu) : u ∈ V }, is also a

feasible solution with the same objective value. To avoid reaching both P and P̂ , we introduce

a new dominance relation as follows. Let L(P) := {r ∈ V : xr <xu + tu,∀u∈ V \ {r}} indicate a

subset of vessels with mooring times no later than the departure times of all other vessels. We

define the bottom vessel of L(P) as the vessel s ∈L(P) of the lowest starting berth location ys,

and the top vessel of L(P) as the vessel ŝ ∈ L(P) of the highest starting berth location yŝ. It

can be seen that ŝ and s are unique for P . Since L(P) =L(P̂), we can see that ŝ and s are in

turn the bottom and the top vessels of L(P̂). Define that P is dominated by symmetry if s > ŝ.

It can be seen that if P is dominated by symmetry, P̂ is not dominated by symmetry.

Example 3. Consider the berth allocation P of vessels 1, 2, 3 and 4 in Figure 4(a). Its reflection

symmetry P̂ equals the berth allocation of vessels 1, 2, 3 and 4 shown in Figure 4(b). It can

be seen that L(P) = {2,3,4}, and the bottom vessel and top vessel of L(P) are 4 and 2,

respectively, which are the top and the bottom vessels of L(P̂), respectively. Thus, since 4> 2,

P is dominated by symmetry, but P̂ is not dominated by symmetry.

To reach only feasible solutions not dominated by symmetry, we check each new node q and

its partial solution E′. Let L(E′) := {r ∈ V (E′) : xr < xu + tu,∀u ∈ V (E′) \ {r}}. Let s denote

the vessel in L(E′) that has the lowest starting berth location, and let ŝ denote the vessel in

L(E′) that has the highest starting berth location. For every feasible solution P that can be

created by completing E′, according to the branching rules, (i) s must be the bottom vessel

20

of L(P), if each u ∈ V \ V (E′) has either xs < au + tu or z(E′, u, xs − tu) + lu >B, so that no

unassigned vessel can depart when or before s starts berthing; and (ii) ŝ must be the top vessel

of L(P), if each u ∈ V \ V (E′) has either xŝ + tŝ ≤ au or z(E′, u, x) + lu >B for all x < xŝ + tŝ,

so that no unassigned vessel can start berthing before ŝ departs. Thus, if both (i) and (ii) are

satisfied, and s > ŝ, then P must be dominated by symmetry, and node q can be pruned.

Rule 4 (for better placement of vessels with equal sizes): Consider any assigned vessel r ∈

V (E′) \ {v} other than the newly assigned vessel v of node q, such that lr = lv, yr = yv and

xr + tr = xv. If such r exists, then r and v occupy the same berth locations, and v starts

berthing right after the departure of r. Thus, node q may be dominated by another node where

r starts berthing right after the departure of v. See the partial solution for vessels 1–7 shown

in Figure 4(b), where the total weighted turnaround time of vessel r = 6 and vessel v = 7

equals 2× 2 + 2× 7 = 18, and it can be reduced to 2× 3 + 2× 5 = 16 if vessel 6 is placed at

(5,0) and vessel 7 is placed at (4,0). To identify such dominance, we check the condition that

wr/tr <wv/tv and av ≤ xr. If the condition is satisfied, then one can change the mooring times

of v and r to xr and xr + tv, respectively, which, by wr/tr < wv/tv, leads to a better partial

solution that costs less than E′. Thus, node q is dominated, and can be pruned.

Rule 5 (for better placement of vessels with equal sizes and handling times): Consider any

unassigned vessel r ∈ V \V (E′) and assigned vessel u∈ V (E′) of node q with lr = lu and tr = tu.

Note that r and u have equal sizes and handling times. Thus, node q may be dominated by

another node that assigns (xu, yu) to r instead of to u. To identify such dominance, we check the

condition that wu <wr and ar ≤ xu < xmin
r , where xmin

r indicates the earliest possible mooring

time for r, as defined in rule 2. If it is satisfied, one can replace (u,xu, yu) in E′ with (r,xu, yu) to

obtain another partial solution P . Every solution that can be created by completing E′ can be

transformed by swapping positions of v and r to a solution that can be created by completing

P , which, by wu <wr and xu <xmin
r , has a smaller objective value. Thus, node q is dominated,

and can be pruned. See the partial solution for vessels 1–4 shown in Figure 4(b) with r= 5 and

u= 4, where w4 <w5 and a5 = 0= x4 < 2= xmin
5 .

Remark 2. Rules 4 and 5 are effective only for instances that have some vessels with equal

sizes or equal handling times. Such instances often appear when vessel sizes or handling times

are measured by integral multiples of some constant factors, such as one hundred meters or one

hour. In such a case, vessel sizes or handling times can be scaled down by the constant factors,

and rounded to some small integers, which are likely to be equal for some vessels.

4. Extensions to the CBAP with a Quay Crane Constraint

As we mentioned in Section 1, vessel handling times are often estimated based on vessel cargo

volume and pre-assigned quay cranes. For each vessel v ∈ V , let kv indicate the number of quay

cranes pre-assigned to v. Let K indicate the total number of available quay cranes. Thus, it is

natural to impose a quay crane constraint on berth allocation, so that the total number of quay

cranes used at the same time cannot exceed K. We refer to the CBAP with this additional quay

21

crane constraint as the CBAPQ for short. The CBAPQ is more complicated than the CBAP,

but solutions to the CBAPQ can be used to improve the quay crane assignment, which can in

turn be used to improve the solutions to the CBAPQ. Such an iterative approach, known as

“feedback-loop” integration, can be applied to jointly optimize the berth allocation and quay

crane assignment (Bierwirth and Meisel 2010, 2015).

We are now going to show that our new lower bound and exact method for the CBAP can be

extended to the CBAPQ. To extend the lower bound, we first formulate the CBAPQ as follows

by using functions fv(t) defined in (1) for vessels v ∈ V , where each fv(t) represents the quay

space occupied by vessel v at time t. From (1) we know that (kv/lv)fv(t) indicates the number

of quay cranes used by vessel v at time t. Thus, due to the quay crane constraint, we have:

∑

v∈V

(kv/lv)fv(t)≤K, ∀t∈ [0,∞). (24)

Adding (24) to model RF of the CBAP in Section 2.1, we can formulate the CBAPQ by the

following model, denoted by Q:

(Q) min W (f1, ..., fn)+
1

2

∑

v∈V

wvtv

s.t. (1), (24), and {(v,xv, yv) : v ∈ V } ∈Y.

Next, we introduce a parameter θ ∈ [0,1], and for each value of θ, we will construct an instance

of the CBAP with revised vessel sizes, so that the relaxation ZF (defined in Section 2.2) of

this CBAP instance is a relaxation of model Q of the CBAPQ. To revise vessel sizes, we let

λ :=B/K, and then transform the quay crane constraint (24) equivalently to (25) as follows:

∑

v∈V

λ(kv/lv)fv(t)≤B, ∀t∈ [0,∞). (25)

Combining (25) with the quay space constraint (8), we have that
∑

v∈V [θλ(kv/lv) + (1 −

θ)]fv(t)≤B, ∀t∈ [0,∞), from which, by letting γv(θ) := θλ(kv/lv)+ (1− θ), we obtain a valid

constraint (26) for model Q as follows:

∑

v∈V

γv(θ)fv(t)≤B, ∀t∈ [0,∞). (26)

We can now obtain an instance of the CBAP with vessel sizes revised to l̂v(θ) := γv(θ)lv =

θλkv +(1− θ)lv for v ∈ V , where other input parameters are the same as those of the CBAPQ.

For the instance of the CBAP obtained above with the revised vessel sizes l̂v(θ) for v ∈ V ,

we can see from (1) that γv(θ)fv(t) equals the quay space occupied by each vessel v at time t,

and thus, (26) is equivalent to the quay space constraint. Let ZF(θ) denote the relaxation ZF

(defined in Section 2.2) of this CBAP instance, where lv is replaced with l̂v(θ) for each v ∈ V .

We can establish Theorem 4 as follows to show that model ZF(θ) is a relaxation of model Q.

Theorem 4. For each θ ∈ [0,1], model ZF(θ) is a relaxation of model Q.

Proof. See Online Appendix J. �

22

By Theorem 4, for each θ ∈ [0,1], ZF(θ) provides a lower bound on the optimal solution to

the CBAPQ. Since ZF(θ) equals ZF of the CBAP instance with the revised vessel sizes l̂v(θ) for

v ∈ V , we can directly use the algorithm in Section 2.3 to compute ZF(θ) in O(n2) time.

Moreover, with different values of θ, the lower bound ZF(θ) may have different values. Thus,

given a subset Θ⊆ [0,1] of values for θ, among all ZF(θ) with θ ∈Θ we can choose the maximum

as the best lower bound for the CBAPQ, denoted by ZF(Θ) as follows:

ZF(Θ) := max
θ∈Θ

ZF(θ). (27)

See Online Appendix K for an illustrative example of ZF(Θ).

With ZF(Θ) defined above, we can extend the new exact method of the CBAP to solve the

CBAPQ. The extension is direct, since we can still follow the branch-and-bound approach, use

the same mixed-strategy to select nodes to be branched, and extend ZF(Θ) to obtain lower

bounds for new nodes generated. By incorporating the newly introduced quay crane constraint,

we can also extend the admissible positions for the branching rules, and extend the best-fit

heuristic in Algorithm 3 for computing upper bounds. The dominance rules derived for the

CBAP can also be applied or extended. See Online Appendix L for details.

Nevertheless, in some situations the number of quay cranes assigned to each vessel can be

changed from time to time during the handling period. This is known as a “variable-in-time”

quay crane assignment, which complicates the berth allocation (Bierwirth and Meisel 2010,

Giallombardo et al. 2010). However, as shown in Online Appendix M, the above new lower

bound and exact method for the CBAPQ can be extended to this more complicated case.

5. Experiments and Results

This section reports on the results of the experiments that were conducted to test how our

proposed new exact method and lower bound perform in comparison to published methods and

bounds. All the algorithms were coded in C++ and run on a PC with 1.0GB of RAM and an

Intel Xeon CPU at 2.80GHz. The test data are based on those from the literature, with the

number of vessels ranging from 5 to 160, which, according to a container terminal operator in

Hong Kong, covers the needs for various berth plans, such as daily or weekly plans, or for those

ports with different quay lengths or traffic density. More details of the computational results

can be found at http://www.mypolyuweb.hk/~lgtzx/cbap/result.htm.

5.1. Comparing Exact Methods

For the new exact method proposed in Section 3, we want to compare its performance with

conventional methods that use optimization solvers to solve integer programming models IP1

and IP2 (described in Online Appendix A) (Lee et al. 2010, Guan and Cheung 2004, Park and

Kim 2002, Umang et al. 2013). We adopted ILOG CPLEX 12.2 as the optimization solver.

For the experiment, we used 308 instances of test data from the following sixteen data sets

in three different classes, where the number of vessels ranges from 5 to 24. In Class A, two of

the data sets, denoted by a05 and a10, are from Lee et al. (2010), where each set contains 30

23

Table 1 Test data statistics for data sets of Class A, Class B, and Class C.

Class B l σl t σt a σa B/l σl/l σt/t σa/t

A 80 28.0 12.7 50.0 0.4 10.0 10.0 2.9 0.5 0.2 0.1

B 10 5.5 2.6 9.0 0.2 0.0 0.0 1.8 0.5 0.3 0.0
C 600 240.1 41.8 31.2 0.2 78.3 78.3 2.5 0.2 0.2 1.6

instances, with the number of vessels n ∈ {5,10} and the quay length B = 80. In addition, we

followed the same approach as Lee et al. (2010) in generating another two data sets for Class A,

denoted by a12 and a15, having 10 instances in each, with larger n ∈ {12,15} and the same

B = 80. To include instances with smaller B, we followed an approach of Guan and Cheung

(2004) to generate another three data sets for Class B, denoted by b10, b15 and b20, where

each set contains 10 instances, with n ∈ {10,15,20} and B = 10. For Class C, we used another

data set, denoted by c, of 44 instances with 11≤ n≤ 24 and B = 600, which is based on actual

operational data at the Pusan Port from Park and Kim (2002). For all eight data sets above,

vessel importance weights wv are the same for all v ∈ V . To include instances with different

vessel importance weights, we changed each wv randomly to a value in {5,6,7,8,9,10}, and

obtained another eight data sets, denoted by a05w, a10w, a12w, a15w, b10w, b15w, b20w and

cw, for Class A, Class B, and Class C, respectively.

Table 1 summarizes the test data statistics for the three classes of data sets, where the mean

and the variance of vessel sizes, handling times, and arrival times are indicated by l, σl, t, σt,

a, and σa, respectively. Since, in different classes of data sets, units of measurement for lengths

and times can be different, we use B/l to measure how large the quay is with respect to the

average vessel size, and use σa/t to measure how concentrated vessel arrivals are with respect

to the vessel average handling time. Smaller values of B/l and σa/t indicate that the port is

more crowded. Moreover, we use σl/l and σt/t to indicate relative deviations of vessel sizes and

handling times from their means. Larger values of σl/l and σt/t imply that vessels are more

heterogeneous. Table 1 shows that, compared with the data in Class C, test data in Class A and

Class B have significantly smaller σa/t and larger σl/l, implying that they are more crowded,

and are comprised of more heterogeneous vessels.

Table 2 compares the results produced by the new exact method (New BB) and by CPLEX

on IP1 and IP2. For each data set, we show in column #Inst the total number of instances.

For each method, we report in column S the number of instances solved to optimality, and in

column G% the average percentage gap between the best lower bound lb and the best feasible

solution ub found by the method, i.e., G%= (ub− lb)/ub. Columns T0, T1 and T2 report the

average computing times in seconds for test data solved to optimality by the new exact method,

by CPLEX on IP1, and by CPLEX on IP2, respectively. The time limit was set to be 3600

seconds. The symbol ‘-’ indicates that no feasible solutions were found within the time limit.

Table 2 shows that the new exact method solves all 308 instances to optimality within the

time limit, significantly outperforming CPLEX. For test data in Class A and Class B with 15

vessels or more, CPLEX on IP1 solves only one to optimality, and its average percentage gap

exceeds 34%. For test data with B ∈ {80,600}, CPLEX on IP2 always runs out of memory

before finding any feasible solutions, because there are too many variables and constraints in

24

Table 2 Comparison of the new exact method (New BB) with CPLEX on IP1 and IP2.

Set n B #inst
New BB CPLEX on IP1 CPLEX on IP2

T0 T1 T2 S T1 G% S T2 G% S
a5 5 80 30 0 0 - 30 0 0.0 30 - - 0
a5w 5 80 30 0 0 - 30 0 0.0 30 - - 0
a10 10 80 30 2 2 - 30 171 0.1 29 - - 0
a10w 10 80 30 2 2 - 30 186 0.0 30 - - 0
a12 12 80 10 32 21 - 10 2003 7.2 3 - - 0
a12w 12 80 10 38 25 - 10 1214 5.6 4 - - 0
a15 15 80 10 655 - - 10 - 32.3 0 - - 0
a15w 15 80 10 522 - - 10 - 28.8 0 - - 0
b10 10 10 10 0 0 0 10 18 0.0 10 3 0.0 10
b10w 10 10 10 0 0 0 10 8 0.0 10 3 0.0 10
b15 15 10 10 39 - 7 10 - 19.3 0 157 0.3 8
b15w 15 10 10 32 2 6 10 2318 18.0 1 203 0.4 8
b20 20 10 10 521 - 446 10 - 51.3 0 1289 0.1 9
b20w 20 10 10 462 - 376 10 - 48.4 0 432 0.2 8
c 11–24 600 44 6 3 - 44 27 0.1 43 - - 0
cw 11–24 600 44 5 5 - 44 97 0.0 44 - - 0
Total 308 308 234 53

Table 3 Comparisons among variants of the new exact method with alternative settings.

Set #inst
Not using the Not using the Using depth-first Not using any

new lower bound new heuristic strategy dominance rules
S ∆T ∆N S ∆T ∆N S ∆T ∆N S ∆T ∆N

a5 30 30 0.0 0.5 30 6.8 62.9 30 0.2 0.3 30 -0.1 0.3
a5w 30 30 -0.2 0.3 30 3.8 61.7 30 0.0 0.1 30 -0.1 0.3
a10 30 30 3.2 8.6 30 17.9 151.4 30 2.3 7.0 30 1.7 2.1
a10w 30 30 2.9 7.6 30 18.0 152.2 30 2.2 6.3 30 1.9 2.0
a12 10 10 10.3 27.7 10 1.0 11.4 10 11.0 28.9 10 2.8 2.5
a12w 10 10 8.2 28.1 10 1.2 20.3 10 7.6 27.4 10 2.5 2.9
a15 10 0 - - 9 0.4 1.7 0 - - 5 4.4 3.8
a15w 10 0 - - 10 0.2 1.3 0 - - 7 4.7 4.4
b10 10 10 6.5 236.9 10 689.2 1 · 105 10 6.1 262.2 10 3.0 4.0
b10w 10 10 7.9 148.0 10 1 · 103 1 · 105 10 6.4 147.2 10 3.9 3.4
b15 10 9 178.2 330.6 10 2.5 43.3 9 141.4 602.8 8 32.4 45.6
b15w 10 9 191.7 805.4 10 9.0 85.9 9 154.1 528.1 9 23.9 22.1
b20 10 0 - - 9 1.2 4.5 0 - - 1 14.4 20.7
b20w 10 0 - - 3 0.3 2.8 0 - - 1 3.9 3.1
c 44 42 38.6 77.8 21 4 · 104 3 · 105 42 116.5 281.2 38 2 · 103 4 · 103

cw 44 42 39.4 54.8 21 7 · 104 3 · 105 41 94.4 146.8 38 2 · 103 3 · 103

Total 308 262 253 261 267

IP2. Moreover, as shown in columns T1 and T2 of Table 2, the average computing time of the

new exact method is much shorter than CPLEX, more than 94% less for most data sets.

Table 2 also shows that test data in Class A are more difficult to solve than test data in

Class B and Class C, since no instances with n≥ 15 in Class A can be solved to optimality by

CPLEX. This may be because test data in Class A have a larger value ofB than those in Class B,

and as shown earlier, they are also more crowded and are comprised of more heterogeneous

vessels than those in Class C.

Moreover, to prove computationally the effectiveness of the enhancements introduced for our

new exact method, namely the new lower bound, heuristic, mixed node selection strategy, and

dominance rules, we have further tested and compared four more variants of the new method.

25

Each variant excludes one of these enhancements but includes the other three. For the variant

not using the mixed node selection strategy, it adopts the depth-first strategy, since the breadth-

first strategy has an obvious weakness due to its extensive memory consumption. For each

variant, column S in Table 3 reports the number of instances solved to optimality. Column ∆T

reports the relative increase in computing time, expressed as a ratio against that of the new

method with all the enhancements. Column ∆N reports the relative increase in the number of

explored nodes, expressed as a ratio against that of the new method with all the enhancements.

The results show that, except for test data in a5 and a5w where n = 5, the four variants all

spent significantly longer time and explored many more nodes than the new method with all

the enhancements. Therefore, using all the enhancements together is effective in reducing both

the computing time and the number of explored nodes.

5.2. Comparing the New Exact Method with Heuristic Methods

For instances with a large number of vessels, although their optimal solutions can barely be

guaranteed, the new exact method can still produce the best found feasible solutions, together

with the best found lower bounds, within a certain time limit, which was set to be 3600 seconds.

We have run the new exact method on 240 instances of test data from the following eight data

sets. Among them, four data sets, denoted by a40, a80, a120, and a160, are from Lee et al.

(2010), where each set contains 30 instances, with n ∈ {40,80,120,160} and B = 80. For these

instances, the vessel importance weights wv are the same for all v ∈ V . To include instances with

different vessel importance weights, we changed each wv randomly to a value in {5,6,7,8,9,10},

and obtained another four data sets, denoted by a40w, a80w, a120w, and a160w. All these data

sets belong to Class A, whose setting, as shown in Section 5.1, leads to more difficult instances

than Class B and Class C, and therefore can allow for a more exhaustive performance test.

We want to compare the performance of the new exact method with those best known

heuristic methods of the CBAP, including the squeaky wheel optimization (SWO) (Umang et al.

2013), the greedy randomized adaptive search procedure (GRASP) (Lee et al. 2010), and the

stochastic beam search algorithm (SBS) (Wang and Lim 2007). For SWO, we have implemented

it according to Umang et al. (2013), and set the time limit to 3600 seconds. For GRASP and

SBS, the test results are from Lee et al. (2010) and are only available for data sets a40, a80,

a120, and a160.

Table 4 compares the results of the new exact method and various heuristic methods. For

each method and each data set, we report in column Gub
lb∗% the average percentage gap between

the objective value of its solution ub and the best known lower bound lb∗, i.e., Gub
lb∗%= (ub−

lb∗)/lb∗. For GRASP and SBS, their average computing times in seconds are reported in column

T according to Lee et al. (2010), based on experiments on a PC with a CPU at 3.00 GHZ, about

1.1 times faster than our PC. For the new BB and SWO, their computing times are always

equal to the time limit of 3600 seconds.

According to Table 4, the new exact method always produces significantly better solutions

within the 3600 second time limit than other heuristics from the literature, reducing the average

26

Table 4 Comparison of the new exact method with various heuristic methods.

Set n B #inst
New BB SWO GRASP SBS

Gub
lb∗% T Gub

lb∗% T Gub
lb∗% T Gub

lb∗% T
a40 40 80 30 11.1 3600 20.9 3600 42.1 37 45.3 188
a40w 40 80 30 10.8 3600 24.7 3600 - - - -
a80 80 80 30 10.8 3600 27.1 3600 44.5 271 54.2 790
a80w 80 80 30 10.1 3600 30.3 3600 - - - -
a120 12 80 30 10.2 3600 29.3 3600 44.0 882 54.7 911
a120w 12 80 30 9.8 3600 32.1 3600 - - - -
a160 160 80 30 9.7 3600 30.8 3600 44.3 2137 56.7 1703
a160w 160 80 30 9.2 3600 33.8 3600 - - - -

percentage gap from 20–57% to only 9–11%, with the average improvement being more than

16%. Among the heuristics taken from the literature, solutions produced by SWO have the best

quality. However, they still deviate significantly from the best lower bounds, by at least 20% on

average, even for instances with only 40 vessels. This is consistent with the findings of Umang

et al. (2013), who showed that solutions of SWO had an average percentage gap of about 20%

for their test data of 40 vessels and B = 30. This also confirms that our implementation of SWO

is comparable to the one in Umang et al. (2013).

5.3. Comparing Lower Bounds

For the new lower bound ZF proposed in Section 2, we want to compare it with the lower bounds

from the linear programming relaxations of IP1 and IP2, denoted by ZLP
1 and ZLP

2 . For the

experiment, we have used all the 608 instances of test data introduced in Sections 5.1 and 5.2.

By (10), computing ZLP
1 =

∑

v∈V wvtv is easy. However, computing ZLP
2 is difficult, particu-

larly for instances with large values of the number of vessels n, quay length B, and length of

the planning horizon H. We adopted ILOG CPLEX 12.2 to solve linear programming models.

When computing ZLP
2 , except for instances in Class B, CPLEX always runs out of memory.

Therefore, we have instead followed a scaling approach, proposed in Dai et al. (2008), to com-

pute a lower bound ZSLP
2 , by first scaling down vessel sizes, arrival times and handling times,

as well as values of B and H, by certain constant factors, then rounding them to integers

and solving the linear programming relaxation of IP2 for the scaled instance. For instances in

Class B, since n, B and H are small, we set the scaling factors to 1, implying ZSLP
2 =ZLP

2 . For

other instances, we set the scaling factors to greater than 1, so that the values of H and B after

scaling do not exceed 80 (if n≤ 20) or 40 (if n> 20), to avoid CPLEX running out of memory.

Table 5 compares the lower bounds ZF, Z
LP
1 and ZSLP

2 , as well as the best lower bounds found

by CPLEX on IP1 within 3600 seconds. For each lower bound lb, we report in column T its

average computing time (in seconds), and in column Glb
ub∗ its average percentage gap from the

best known upper bound ub∗, i.e., Glb
ub∗%= (ub∗− lb)/ub∗. It can be seen that ZF is close to the

best known upper bound of the optimal solution, with an average percentage gap of about 10%.

For those median and large instances with n≥ 40, when comparing with ZLP
1 , CPLEX on IP1,

and ZSLP
2 , ZF significantly improves the lower bounds by about 90%, 88% and 47%, respectively.

Table 5 also shows that the computation of ZF is very fast, as it takes less than a second even

for large instances in a160 and a160w. Moreover, although other lower bounds, such as ZSLP
2

27

Table 5 Comparison of the new lower bound ZF with the lower bounds from methods in the literature.

Sets n B
ZF ZLP

1 CPLEX on IP1 ZSLP
2

Glb
ub∗% T Glb

ub∗% T Glb
ub∗% T Glb

ub∗% T
a5,a5w 5 80 12.2 0 24.0 0 0.0 0 9.7 185
a10,a10w 10 80 13.2 0 46.0 0 0.0 236 13.3 163
a12,a12w 12 80 11.6 0 51.5 0 6.4 2884 12.0 167
a15,a15w 15 80 10.9 0 58.9 0 29.4 3600 13.8 141
b10,b10w 10 10 10.4 0 65.6 0 0.0 13 3.0 0
b15,b15w 15 10 8.8 0 70.9 0 18.4 3536 4.3 0
b20,b20w 20 10 7.0 0 78.0 0 48.9 3600 2.2 1
c,cw 11–24 600 8.9 0 13.1 0 0.0 103 30.8 35
a40,a40w 40 80 10.0 0 82.1 0 76.5 3600 25.6 149
a80,a80w 80 80 9.5 0 90.5 0 88.0 3600 40.5 134
a120,a120w 120 80 9.1 0 93.6 0 92.2 3600 60.4 127
a160,160w 160 80 8.6 0 95.1 0 94.3 3600 75.1 71

and ZLP
2 , can produce better lower bounds for small instances, it can still be more effective

to use ZF to compute lower bounds, particularly in branch and bound algorithms, when the

saving in computing time can more than offset the slight decrease of the lower bounds. This

is exactly the case that can be observed from the test of the exact methods on instances in

Class B, where our new exact method computes lower bounds based on ZF, and it performs

significantly better than CPLEX on IP2, which computes lower bounds based on ZLP
2 .

5.4. Sensitivity Tests for Solutions Produced by the New Method

In the CBAP, all input parameters are assumed to be known. However, in practice, due to

uncertainties, one may not know actual values of some parameters in advance, such as the vessel

importance weights wv (which often depend on vessel delays and cargo values), vessel arrival

times av, and handling times tv. We therefore want to test the sensitivity of solution qualities

for the new exact method towards various deviations of these parameter values.

We conducted sensitivity tests for wv, and for av and tv, separately. In each test, we generated

new test data randomly from existing ones that have different vessel importance weights wv,

by introducing random deviations to the values of the parameters. We use δ% to control the

extent of deviations, varying from 5%, 10%, ..., to 30%, so that the maximum deviation of wv

equals δ% of the original value of wv, and the maximum deviations of av and tv both equal δ%

of the original value of tv. For each new instance I ′ generated from an existing instance I, we

applied the new exact method with a 3600 second time limit to obtain the best found feasible

solution SI′ . We use ub to indicate the objective value of solution SI′ for instance I, and use

ub∗ to denote the best known upper bound for I obtained in the experiments in Section 5.1

and Section 5.2. It can be seen that solution SI′ corresponds to a berth allocation made before

actual parameter values are known, that ub is the actual objective value that SI′ achieves for

the instance of actual parameter values, and that ub∗ is the best objective value that we can

obtain when all parameter values are known in advance. Therefore, we can measure the quality

of SI′ with respect to I by the percentage gap Gub
ub∗%= (ub− ub∗)/ub∗.

For each test data set and each deviation δ%, we report the average percentage gaps Gub
ub∗%

in Tables 6(a) and 6(b). Table 6(a) shows that the qualities of solutions obtained by the new

28

Table 6 Comparison of solutions produced by the new exact method for instances with various deviations of

(a) vessel importance weights wv, or (b) vessel arrival times av and handling times tv.

(a) Gub
ub∗% for instances with δ% deviations of wv.

δ: 5 10 15 20 25 30
a5w 5.9 6.1 6.0 6.1 6.3 6.2
a10w 1.6 1.7 1.8 1.9 2.1 2.6
a12w 1.3 1.4 1.4 2.1 2.6 1.9
a15w 0.1 0.1 0.3 0.2 0.7 2.3
b10w 0.0 0.1 0.5 0.7 0.9 1.1
b15w 2.5 3.0 2.8 3.1 3.6 3.9
b20w 1.3 1.4 1.6 1.9 1.9 2.8
cw 0.5 0.5 0.5 0.7 0.8 0.8
Average 1.7 1.8 1.9 2.1 2.4 2.7

a40w 0.5 0.7 0.8 0.8 1.4 1.7
a80w 0.5 0.6 0.6 0.8 1.2 1.4
a120w 0.3 0.1 0.4 0.6 0.9 1.2
a160w 0.2 0.3 0.4 0.7 1.0 1.5
Average 0.4 0.4 0.6 0.7 1.1 1.5

(b) Gub
ub∗% for instances with δ% deviations of av and tv.

δ: 5 10 15 20 25 30
a5w 0.1 0.4 1.0 1.5 1.4 2.2
a10w 0.3 0.7 1.3 2.6 2.7 5.3
a12w 0.4 0.7 1.7 2.8 2.7 6.1
a15w 0.5 1.2 1.6 5.6 4.5 6.8
b10w 0.0 0.9 0.7 1.8 2.1 5.6
b15w 0.2 1.6 2.1 2.9 4.1 4.6
b20w 0.2 1.5 2.0 2.3 2.8 5.7
cw 0.3 0.8 0.9 2.4 2.6 4.4
Average 0.3 1.0 1.4 2.7 2.9 5.1
a40w 0.8 1.9 2.7 3.4 5.2 6.6
a80w 0.8 1.6 2.4 4.1 6.2 7.6
a120w 0.6 1.8 2.8 3.9 5.7 7.5
a160w 0.8 1.9 2.8 4.2 5.9 8.1

Average 0.8 1.8 2.7 3.9 5.7 7.4

exact method are robust even in scenarios where there are some large deviations of wv, with an

average percentage gap of only about 2% from the best known upper bounds for instances with

up to 30% deviations in wv. Table 6(b) shows that the qualities of solutions obtained by the new

exact method are robust even in scenarios where there are some mild deviations of av and tv,

with an average percentage gap of about 2% from the best known upper bounds for instances

with up to 15% deviations in av and tv. However, solutions obtained by the new exact method

can have an average percentage gap of about 8% when deviations δ% reach 30% in av and tv.

Although such solution may leave room for improvement, they are satisfactory, particularly for

large sized instances, since from the experiments in Section 5.2 we know that, even when actual

parameter values are known in advance, the meta-heuristic SWO can only produce solutions

with an average percentage gap of more than 16% from the best known upper bounds.

5.5. Testing the Extensions to the CBAPQ

For the extensions of our new lower bound and exact method to the CBAPQ, proposed in

Section 4, we want to compare their performance with conventional bounds and methods. To

generate test data for the CBAPQ, we extended the data for the CBAP with different wv, by

including the numbers of pre-assigned quay cranes kv for v ∈ V , where each kv was randomly

drawn from {1,2,3,4,5,6}, and the total number of available quay cranes K = 10. For all

solution methods to be tested for the CBAPQ, we set their time limits to 3600 seconds.

We conducted experiments on test data with 5 ≤ n ≤ 24 for the CBAPQ, to compare the

extension of the new exact method (Extended New BB) with using CPLEX on integer pro-

gramming models IPQ1 and IPQ2 of the CBAPQ. See Online Appendix N for details of the two

models. Similar to Table 2, the results shown in Online Appendix O indicate that the extension

of the new exact method significantly outperforms CPLEX for solving more and larger instances

to optimality in much less computing time. Among all the 154 instances, it solves 150 instances

to optimality, and for the other four instances, it produces solutions with an average percentage

gap less than only 8% from the best known lower bound.

29

We also conducted experiments on test data with 40≤ n≤ 160 for the CBAPQ, to compare

the extension of the new exact method with an extension of the meta-heuristic SWO (Extended

SWO) for the CBAPQ, and to compare the extension of the new lower bound ZF(Θ), where

Θ= {0.0,0.01, ...,1.0}, with a lower bound ZLPQ
1 derived from the linear programming relaxation

of model IPQ1. Similar to Table 4, the results shown in Online Appendix O indicate that the

extension of the new exact method always produces near optimal solutions for large sized test

data, with an average percentage gap less than 9%, outperforming the extension of the SWO.

Similar to Table 5, the results shown in Online Appendix O also show that the extension of the

new lower bound ZF(Θ) outperforms ZLPQ
1 , not only for being much closer to the best known

upper bound, but also for requiring much less computing time.

6. Conclusions

In this paper, we have proposed a new lower bound and a new exact method for the CBAP. For

the new lower bound, we have derived a novel relaxation of the problem, which we can efficiently

solve in quadratic time. For the new exact method, we have used our new lower bound, together

with a new heuristic and some new dominance rules. Computational results have shown that

the new lower bound and exact method significantly outperform existing bounds and methods.

We have also extended our new lower bound and exact method to a more complicated problem

CBAPQ, where decisions on berth allocations are restricted by a quay crane constraint. Its

solutions are of significant practical value for integrating with the quay crane assignment.

Due to uncertainties in certain input parameters, we have also conducted extensive computa-

tional experiments to test the sensitivity of solution qualities for our new exact method of the

CBAP. The results show that they are robust even in scenarios with some large deviations in

vessel importance weights, as well as in scenarios with some mild deviations in vessel arrival and

handling times. For problems with high uncertainties in vessel arrival and handling times, one

can often formulate them into stochastic programming models or robust optimization models.

As demonstrated in Zhen (2015), Shang et al. (2016), several bounds and solution methods

for these models closely rely on solutions to certain deterministic berth allocation problems.

Therefore, our new solution methods for the CBAP can also be applied or extended to these

models. Moreover, in a dynamic setting, where values of input parameters are updated from

time to time, we can follow a rolling-horizon approach (Cordeau et al. 2005) to re-allocate berths

whenever values of certain input parameters are changed. Although such berth re-allocation

problems may include additional objectives to minimize recovery costs for the changes from

the original berth allocation (Zeng et al. 2011), their decisions and constraints are similar to

those of the CBAP. Therefore, extending our new solution methods for the CBAP to them also

shows great promise.

This paper has opened up several directions for future research. First, although in the research

for this paper we have reduced the gap between the best known lower bound and heuristic

solution, there is still room for improvement. Such improvement can be achieved by further

enhancing the lower bounds. In future studies, we will follow this direction to strengthen our

30

lower bound by including more valid constraints into the relaxations, which may involve solving

even more complex optimization models on vectors of functions.

Second, this paper mainly focuses on new solution methods for the basic berth allocation

problem. As we have discussed earlier, these new methods can be useful in solving some more

complicated problems, including those integrating the berth allocation with quay crane assign-

ment, and those with uncertainties in input parameters. Apart from these, there are other issues

that have not been considered in this study, but that sometimes arise in real-world applications,

such as the total cost of tardiness of the vessels (Meisel and Bierwirth 2009), the total cost of

transporting cargo from berths to the yard (Park and Kim 2003), the hybrid layout of berths

(Moorthy and Teo 2006), and the joint optimization of berth allocation with yard planning

(Zhen et al. 2011). Since the CBAP is often a special case of these more complicated problems,

the new lower bound proposed in this paper is often valid for them as well. However, it needs

to be further strengthened, so as to well approximate their optimal solutions. To achieve this,

we may extend our reformulation of the CBAP to reformulate these more complicated prob-

lems into optimization models on vectors of functions, and following this we need to carefully

relax these models, so that the relaxations can be not only computationally tractable, but also

effective in providing good lower bounds on the optimal solutions (see Online Appendix P for

detailed illustrations.). This task is challenging but of significant research value, and we there-

fore leave it to our future study. Moreover, for these more complicated problems, the new exact

method proposed in this paper can also be extended, but future research is required to develop

valid dominance rules for pruning, as well as effective heuristics for computing upper bounds.

Third, the CBAP can be formulated as a rectangle packing problem that aims to minimize

the total packing cost. This is different from the classic rectangle packing problems, which

mainly aim to optimize min-max objectives (Hopper and Turton 2001). Therefore, by changing

the objective function, the new relaxation model proposed in this paper for the CBAP can be

revised to derive new lower bounds for such classic rectangle packing problems. It will be very

interesting to investigate how to compute these lower bounds, and how good they actually are.

Acknowledgments

The authors are grateful to the area editor, associate editor, and two reviewers for helpful

comments. This research was supported by grants from the Research Grants Council of the

HKSAR, China, T32-620/11 and 152186, and the Hong Kong Polytechnic University, 1-ZVDS.

References

A. Ak and A. L. Erera. A nested tabu search algorithm for the berth allocation problem, 2011. Working

paper.

C. Bierwirth and F. Meisel. A survey of berth allocation and quay crane scheduling problems in container

terminals. European Journal of Operational Research, 202(3):615–627, 2010.

C. Bierwirth and F. Meisel. A follow-up survey of berth allocation and quay crane scheduling problems

in container terminals. European Journal of Operational Research, 244(3):675–689, 2015.

31

M.A. Boschetti and L. Montaletti. An exact algorithm for the two-dimensional strip-packing problem.

Operations Research, 58(6):1774–1791, 2010.

K. Buhrkal, S. Zuglian, S. Ropke, J. Larsen, and R. Lusby. Models for the discrete berth allocation

problem: a computational comparison. Transportation Research Part E: Logistics & Transportation

Review, 47(4):461–473, 2011.

E.K. Burke, G. Kendall, and G. Whitwell. A new placement heuristic for the orthogonal stock-cutting

problem. Operations Research, 52(4):655–671, 2004.

C.Y. Cheong, K.C. Tan, D.K. Liu, and C.J. Lin. Multi-objective and prioritized berth allocation in

container ports. Annals of Operations Research, 180(1):63–103, 2010.

J.-F. Cordeau, G. Laporte, P. Legato, and L. Moccia. Models and tabu search heuristics for the berth-

allocation problem. Transportation Science, 39(4):526–538, 2005.

J.-F. Côté, M. DellAmico, and M. Iori. Combinatorial Benders’ cuts for the strip packing problem.

Operations Research, 62(3):643–661, 2014.

J. Dai, W. Lin, R. Moorthy, and C.P. Teo. Berth allocation planning optimization in container terminals.

In C. Tang, C.P. Teo, and K.K. Wei, editors, Supply Chain Analysis, volume 119 of International

Series in Operations Research & Management Science, pages 69–104. Springer US, 2008.

R. M. de Oliveira, G. R. Mauri, and Nogueira L.A.N. Clustering search for the berth allocation problem.

Expert Systems with Applications, 39(5):5499–5505, 2012.

G. Giallombardo, L. Moccia, M. Salani, and I. Vacca. Modeling and solving the tactical berth allocation

problem. Transportation Research Part B: Methodological, 44(2):232–245, 2010.

Y. Guan and R.K. Cheung. The berth allocation problem: models and solution methods. OR Spectrum,

26(1):75–92, 2004.

E. Hopper and B.C.H. Turton. A review of the application of meta-heuristic algorithms to 2D strip

packing problems. Artificial Intelligence Review, 16(4):257–300, 2001.

A. Imai, E. Nishimura, and S. Papadimitriou. The dynamic berth allocation problem for a container

port. Transportation Research Part B: Methodological, 35(4):401–417, 2001.

A. Imai, E. Nishimura, and S. Papadimitriou. Berth allocation with service priority. Transportation

Research Part B: Methodological, 37(5):437–457, 2003.

D.H. Lee, J.H. Chen, and J.X. Cao. The continuous berth allocation problem: a greedy randomized

adaptive search solution. Transportation Research Part E: Logistics & Transportation Review, 46

(6):1017–1029, 2010.

F. Li, J.-B. Sheu, and Z.-Y. Gao. Solving the continuous berth allocation and specific quay crane

assignment problems with quay crane coverage range. Transportation Science, 49(4):968–989, 2015.

A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: a survey. European Journal

of Operational Research, 141(2):241–252, 2002.

S. Martello and D. Vigo. Exact solution of the two-dimensional finite bin packing problem. Management

Science, 44(3):388–399, 1998.

32

S. Martello, D. Pisinger, and D. Vigo. The three-dimensional bin packing problem. Operations Research,

48(2):256–267, 2000.

G.R. Mauri, G.M. Ribeiro, L.A.N. Lorena, and G. Laporte. An adaptive large neighborhood search

for the discrete and continuous berth allocation problem. Computers & Operations Research, 70:

140–154, 2016.

F. Meisel and C. Bierwirth. Heuristics for the integration of crane productivity in the berth allocation

problem. Transportation Research Part E: Logistics & Transportation Review, 45(1):196–209, 2009.

R.G. Michael and S.J. David. Computers and intractability: a guide to the theory of NP-completeness.

W. H. Freeman and Company, San Francisco, 1979.

M. F. Monaco and M. Sammarra. The berth allocation problem: a strong formulation solved by a

Lagrangian approach. Transportation Science, 41(2):265–280, 2007.

R. Moorthy and C.P. Teo. Berth management in container terminal: the template design problem. OR

Spectrum, 28(4):495–518, 2006.

T.E. Notteboom. The time factor in liner shipping services. Maritime Economics & Logistics, 8(1):

19–39, 2006.

K.T. Park and K.H. Kim. Berth scheduling for container terminals by using a sub-gradient optimization

technique. Journal of the Operational Research Society, 53(9):1054–1062, 2002.

Y.-M. Park and K.H. Kim. A scheduling method for berth and quay cranes. OR Spectrum, 25(1):1–23,

2003.

M. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012.

D. Pisinger and M. Sigurd. Using decomposition techniques and constraint programming for solving the

two-dimensional bin-packing problem. INFORMS Journal on Computing, 19(1):36–51, 2007.

X.T. Shang, J.X. Cao, and J. Ren. A robust optimization approach to the integrated berth allocation

and quay crane assignment problem. Transportation Research Part E: Logistics and Transportation

Review, 94:44–65, 2016.

N. Umang, M. Bierlaire, and I. Vacca. Exact and heuristic methods to solve the berth allocation problem

in bulk ports. Transportation Research Part E: Logistics & Transportation Review, 54:14–31, 2013.

F. Wang and A. Lim. A stochastic beam search for the berth allocation problem. Decision Support

Systems, 42(4):2186–2196, 2007.

Q. Zeng, Z. Yang, and X. Hu. Disruption recovery model for berth and quay crane scheduling in container

terminals. Engineering Optimization, 43(9):967–983, 2011.

D. Zhang, L. Wei, S.C.H. Leung, and Q. Chen. A binary search heuristic algorithm based on randomized

local search for the rectangular strip-packing problem. INFORMS Journal on Computing, 25(2):

332–345, 2013.

L. Zhen. Tactical berth allocation under uncertainty. European Journal of Operational Research, 247(3):

928–944, 2015.

L. Zhen, E.P. Chew, and L.H. Lee. An integrated model for berth template and yard template planning

in transshipment hubs. Transportation Science, 45(4):483–504, 2011.

33

Online Appendix A: Integer Programming Models for the CBAP

There are two integer programming models that are well-known in the literature for the CBAP.

The first model, IP1, is based on the representation of the CBAP in a space-time diagram (Lee

et al. 2010), and can be represented as follows:

(IP1) min
∑

v∈V

wv(xv + tv − av) (28)

s.t. xv − (xu + tu)≥ (σvu − 1)M, ∀v ∈ V,u∈ V \ {v}, (29)

yv − (yu+ lu)≥ (δvu − 1)M, ∀v ∈ V,u∈ V \ {v}, (30)

σvu +σuv + δvu + δuv ≥ 1, ∀v ∈ V,u∈ V \ {v}, (31)

xv ≥ av,0≤ yv ≤B− lv, ∀v ∈ V , (32)

σvu ∈ {0,1}, δvu ∈ {0,1}, ∀v ∈ V,u∈ V \ {v}, (33)

where the binary variables σvu and δvu indicate the relative positions of every two different

vessels v and u in the space-time diagram, with σvu = 1 implying that v is positioned completely

on the right of u, i.e., xv ≥ xu + tu, and with δvu = 1 implying that v is positioned completely

above u, i.e., yv ≥ yu+ lu. (29)–(31) are equivalent to the condition that no two vessels overlap

in the space-time diagram, where M represents a sufficiently large constant. (32) restricts the

position of each vessel due to its arrival time and the length of the quay.

The second model, IP2, which is defined below, is only for a discretized version of the CBAP

(or the Discretized BAP for short), where the quay is discretized into a set of segments denoted

by S, and the planning horizon is discretized into a set of periods denoted by T, so that each

segment in S cannot be occupied by more than one vessel during the same time period in T.

For each vessel v ∈ V , let Sv and Tv indicate the set of segments and the set of time periods

that are feasible to v. For each time period x ∈ Tv and each segment y ∈ Sv, we use πvxy to

denote a binary variable that indicates whether or not vessel v starts berthing in segment y

during period x. Let cvxy denote the weighted turnaround time of vessel v if v starts berthing

in segment y during period x. Let Avxy indicate the set of pairs (x′, y′) with x′ ∈ T and y′ ∈ S

such that vessel v will occupy segment y′ during period x′ if it starts berthing in segment y

during period x. The Discretized BAP can be formulated as the following integer programming

model:

(IP2) min
∑

v∈V

∑

x∈Tv

∑

y∈Sv

cvxyπvxy (34)

s.t.
∑

x∈Tv

∑

y∈Sv

πvxy =1, ∀v ∈ V , (35)

∑

v∈V

∑

∀x∈Tv,y∈Sv :(x′,y′)∈Avxy

πvxy ≤ 1, ∀x′ ∈T, y′ ∈ S, (36)

πvxy ∈ {0,1}, ∀v ∈ V,x ∈Tv, y ∈ Sv. (37)

In this model, (35) specifies that each vessel must be assigned exactly one pair of starting berth

segment and time period, and (36) specifies that each segment cannot be occupied by more than

34

one vessel during the same period. It is worthy of note that Park and Kim (2002) and Guan

and Cheung (2004) have formulated the Discretized BAP with a similar integer programming

model that differs from the above model only in the formulation of constraints (36).

Online Appendix B: Proof of Proposition 1

Proof. To show ZLP
1 ≤ZF, consider [f

∗
1 , ..., f

∗
n]∈ F that is optimal to model ZF. We have

ZF =W (f ∗
1 , ..., f

∗
n)+

1

2

∑

v∈V

wvtv. (38)

From (5) and (6), we have
∫

t∈[0,∞)

(t− av)f
∗
v (t)dt≥

∫

t∈[av,av+tv)

(t− av)f
∗
v (t)dt+ tv

∫

t∈[av+tv,∞)

f ∗
v (t)dt (39)

=

∫

t∈[av,av+tv)

(t− av)f
∗
v (t)dt+ tv[lvtv −

∫

t∈[av,av+tv)

f ∗
v (t)dt]

=−

∫

t∈[av,av+tv)

∫

s∈[t,av+tv]

f ∗
v (t)dsdt+ lvt

2
v =−

∫

s∈[av,av+tv)

∫

t∈[av,s]

f ∗
v (t)dtds+ lvt

2
v.

Thus, since (5) and (7) implies that

−

∫

s∈[av,av+tv)

∫

t∈[av,s]

f ∗
v (t)dtds+ lvt

2
v ≥−

∫

s∈[av,av+tv)

lv(s− av)ds+ lvt
2
v = lvt

2
v/2,

we obtain
∫

t∈[0,∞)
(t− av)f

∗
v (t)dt≥ lvt

2
v/2. This, together with (10), (2) and (38), implies that

ZLP
1 =

∑

v∈V

wv

lvtv
(lvt

2
v/2)+

∑

v∈V

1

2
wvtv ≤W (f ∗

1 , ..., f
∗
n)+

1

2

∑

v∈V

wvtv =ZF.

Hence, (i) of Proposition 1 is proved.

Next, consider any instance with n> t′, lv =B/t′, av = 0 and tv = t′ for v ∈ V and for some

t′ > 0. Let [f ∗
1 , ..., f

∗
n]∈ F denote an optimal solution to model ZF. By (6), n> t′ and (8),

∑

v∈V

∫

t∈[0,∞)

f ∗
v (t)dt= nB > t′B =

∫

t∈[0,t′)

Bdt≥

∫

t∈[0,t′)

∑

v∈V

f ∗
v (t)dt=

∑

v∈V

∫

t∈[0,t′)

f ∗
v (t)dt,

which implies that there exists at least one vessel v ∈ V such that f ∗
v (p) > 0 for some p ≥ t′.

Moreover, since f ∗
v (t) ∈ S, there must exist δ > 0 such that f ∗

v (t) = f ∗
v (p)> 0 for t ∈ [p, p+ δ),

which, together with p≥ t′ = tv and av =0, implies that p≥ av + tv, and that
∫

t∈[p,p+δ)

(t− av)f
∗
v (t)dt=

∫

t∈[p,p+δ)

tf ∗
v (t)dt > p

∫

t∈[p,p+δ)

f ∗
v (t)dt≥ tv

∫

t∈[p,p+δ)

f ∗
v (t)dt.

Thus, it can be seen that the left-hand side of (39) must be strictly greater than the right-hand

side, which implies that ZLP
1 <ZF. Hence, (ii) of Proposition 1 is proved. �

Online Appendix C: Proof of Lemma 1

Proof. To show that the condition in Lemma 1 is necessary, by contradiction, suppose there

exists an optimal solution fv to Z(v)(f1, ..., fv−1), exists p∈ [0,∞), and exists a feasible solution

f ′
v to Z(v)(f1, ..., fv−1) with fv(t) = f ′

v(t) for all 0≤ t < p, such that fv(p)< f ′
v(p). Since both fv

and f ′
v are in S, there must exist δ1 > 0 such that fv(t) = fv(p) and f ′

v(t) = f ′
v(p) for t∈ [p, p+δ1).

35

This, together with fv(t) = f ′
v(t) for t∈ [0, p), and

∫

t∈[0,∞)
fv(t)dt=

∫

t∈[0,∞)
f ′
v(t)dt= lvtv due to

(13), implies that there must exist p′ ≥ p+δ1 and δ2 > 0 such that fv(t)≤ f ′
v(t) for t∈ [p+δ1, p

′),

that fv(p
′)> f ′

v(p
′), and that fv(t) = fv(p

′) and f ′
v(t) = f ′

v(p
′) for t ∈ [p′, p′ + δ2). Thus, define

δ := min{δ1, δ2}> 0. We obtain that fv(t) = fv(p)< f ′
v(p) = f ′

v(t) for t ∈ [p, p+ δ), fv(t)≤ f ′
v(t)

for t∈ [p+ δ, p′), and fv(t) = fv(p
′)> f ′

v(p
′) = f ′

v(t)≥ 0 for t∈ [p′, p′ + δ).

Since (12) implies f ′
v(p) = 0 for p ≤ av, by f ′

v(p) > fv(p) ≥ 0 we obtain p ≥ av, implying

p′ > p≥ av. Define θ :=min{f ′
v(p)− fv(p), fv(p

′)}> 0. It can be seen that increasing fv(t) by θ

for t ∈ [p, p+ δ), and decreasing fv(p
′) by θ for t∈ [p′, p′ + δ), do not violate (13). Since p≤ av

and fv(t)− θ= fv(p
′)− θ≥ 0 for t∈ [p′, p′ + δ), it can be seen that such changes do not violate

(11) and (12). Moreover, since fv(t)+ θ= fv(p)+ θ≤ f ′
v(p) = f ′

v(t) for t∈ [p, p+ δ), fv(t)≤ f ′
v(t)

for t∈ [p+ δ, p′), and fv(t) = f ′
v(t) for t∈ [0, p), it can be seen that such changes do not violate

(14) and (15). Thus, we obtain that such changes of fv lead to another feasible solution to

Z(v)(f1, ..., fv−1), whose objective value, however, is decreased by
∫ p′+δ

p′
(t− av)θdt−

∫ p+δ

p
(t−

av)θdt= (p′−p)δθ > 0, which contradicts the assumption that fv is optimal to Z(v)(f1, ..., fv−1).

Hence, the condition in Lemma 1 is necessary.

To show that the condition in Lemma 1 is sufficient, consider any feasible solution fv to

Z(v)(f1, ..., fv−1) that satisfies fv(p)≥ f ′
v(p) for each p∈ [0,∞) and for each feasible solution f ′

v

to Z(v)(f1, ..., fv−1) with f ′
v(t) = fv(t) for t∈ [0, p). By contradiction, suppose fv is not optimal.

Consider an optimal solution f ∗
v to Z(v)(f1, ..., fv−1). There must exist p ∈ [0,∞), such that

f ∗
v (p) 6= fv(p) and f ∗

v (t) = fv(t) for t ∈ [0, p). By the assumption on fv, we have fv(p)≥ f ∗
v (p).

However, since we have shown that the condition in Lemma 1 is satisfied by every optimal

solution to Z(v)(f1, ..., fv−1), it can be seen that f ∗
v (p)≥ fv(p). Thus, we obtain fv(p) = f ∗

v (p),

which contradicts f ∗
v (p) 6= fv(p). Hence, the condition in Lemma 1 is sufficient. �

Online Appendix D: Proof of Theorem 2

Proof. It is easy to see that Algorithm 1 runs in O(n2) time. Consider [f1, ..., fn] where fv is

an optimal solution to Z(v)(f1, ..., fv−1) for each v = 1, ..., n. To further prove Theorem 2, it is

sufficient to show that [f1, .., fn] is an optimal solution to ZF. By contradiction, suppose this

is not true. Consider an optimal solution [f ∗
1 , ..., f

∗
n] ∈ F to ZF. Let v ∈ V indicate the smallest

vessel index with f ∗
v (t) 6= fv(t) for some t≥ 0. Let p≥ 0 indicate the smallest time point with

f ∗
v (p) 6= fv(p). Thus, f

∗
v (p) 6= fv(p), f

∗
u(t) = fu(t) for 1≤ u≤ v− 1 and t≥ 0, and f ∗

v (t) = fv(t)

for t ∈ [0, p). Without loss of generality, we can assume that the optimal solution [f ∗
1 , ..., f

∗
n]

to ZF is selected in such a way that v is maximized, breaking ties by maximizing p, and then

breaking ties by minimizing |f ∗
v (p)− fv(p)|.

Since [f ∗
1 , ..., f

∗
n] ∈ F, it can be seen that f ∗

v is a feasible solution to Z(v)(f ∗
1 , ..., f

∗
v−1), which,

together with that fu and f ∗
u are equal for 1≤ u≤ v−1, implies that f ∗

v is also a feasible solution

to Z(v)(f1, ..., fv−1). Thus, since fv is an optimal solution to Z(v)(f1, ..., fv−1), by Lemma 1

and f ∗
v (p) 6= fv(p), we obtain f ∗

v (p) < fv(p). Thus, since (13) implies that
∫

t∈[0,∞)
f ∗
v (t)dt =

∫

t∈[0,∞)
fv(t)dt= lvtv, and since (11) implies that both f ∗

u and fu for u∈ V are in S, there must

exist δ > 0 and p′ ≥ p+ δ, such that f ∗
v (t) = f ∗

v (p)< fv(p) = fv(t) for t∈ [p, p+ δ), f ∗
v (t)≤ fv(t)

36

for t ∈ [p+ δ, p′), and f ∗
v (t) = f ∗

v (p
′)> fv(p

′) = f ∗
v (t) for t ∈ [p′, p′ + δ), and that for all u ∈ V ,

f ∗
u(t) = f ∗

u(p) and fu(t) = fu(p) for t ∈ [p, p+ δ), and f ∗
u(t) = f ∗

u(p
′) and fu(t) = fu(p

′) for t ∈

[p′, p′ + δ).

Since (12) implies f ∗
v (t) = 0 for t≤ av, from 0≤ f ∗

v (p)< fv(p) and p′ ≥ p+ δ, we obtain p≥ av

and p′ > av. By (15) we have
∑

u∈V f ∗
u(p)≤ B. Thus, based on p, p′ and δ defined above, we

can derive contradictions to complete the proof of Theorem 2 by the following two cases:

• Case 1:
∑

u∈V f ∗
u(p) < B. Let θ1 = min{B −

∑

u∈V f ∗
u(p), fv(p) − f ∗

v (p), f
∗
v (p

′)}. Since
∑

u∈V f ∗
u(p)<B, f ∗

v (p)< fv(p), and f ∗
v (p

′)> fv(p
′)≥ 0, we have θ1 > 0. Since B−

∑

u∈V f ∗
u(p)≥

θ, p≥ av, and f ∗
v (p

′)≥ θ, it can be seen that increasing f ∗
v (t) by θ1 for t∈ [p, p+δ), and decreas-

ing f ∗
v (t) by θ1 for t∈ [p′, p′+δ) do not violate (4)–(6) and (8). Moreover, since f ∗

v (t)+θ1 ≤ fv(t)

for t∈ [p, p+δ), f ∗
v (t)≤ fv(t) for t∈ [p+δ, p′), and f ∗

v (t) = fv(t) for t∈ [0, p), it can be seen that

such changes do not violate (7). Thus, we obtain that such changes of f ∗
v lead to another feasible

solution to ZF, with W (f ∗
1 , ..., f

∗
n) decreased by [wv/(lvtv)](p

′ − p)δθ1 > 0. This contradicts the

definition of [f ∗
1 , ..., f

∗
n].

• Case 2:
∑

u∈V f ∗
u(p) =B. Since f ∗

v (p)< fv(p), and f ∗
u(p) = fu(p) for 1≤ u≤ v− 1, we have

∑v

u=1 f
∗
v (p) <

∑v

u=1 fv(p) ≤ B. This, together with
∑

u∈V f ∗
u(p) = B, implies that there must

exist e≥ v+1 with f ∗
e (p)> 0. Since e > v, we have we/(lete)≤wv/(lvtv). Let θ2 =min{fv(p)−

f ∗
v (p), f

∗
e (p), f

∗
v (p

′)}. Since f ∗
v (p) < fv(p), f

∗
e (p) > 0, and f ∗

v (p
′) > fv(p

′) ≥ 0, we have θ2 > 0.

Thus, following similar reasoning to that in Case 1, it can be seen that increasing f ∗
v (t) and

decreasing f ∗
e (t) by θ2 for t ∈ [p, p + δ), and decreasing f ∗

v (t) and increasing f ∗
e (t) by θ2 for

t∈ [p′, p′+δ) do not violate (4)–(8), leading to another feasible solution to ZF. Notice that with

such changes, values of f ∗
u(t) for 1 ≤ u < v or values of f ∗

v (t) for 0 ≤ t < p are not changed,

but W (f ∗
1 , ..., f

∗
n) is decreased by [wv/(lvtv)− we/(lete)](p

′ − p)δθ2 ≥ 0, and |f ∗
v (p)− fv(p)| is

decreased by θ2 > 0. This contradicts the definition of [f ∗
1 , ..., f

∗
n]. �

Online Appendix E: Proof of Theorem 3

Proof. First, we prove as follows that fv is a feasible solution to Z(v)(f1, ..., fv−1). As we have

shown earlier, fv satisfies (12), (16), (17) and (18). From (18) and (16) we have that fv satisfies

(14) and (15). Moreover, since bv,mv =∞, we have av < bv,mv , βv,mv < B, and av + tv < bv,mv .

Thus, fv(t) for t∈ [bv,mv−1, bv,mv) must be constructed by Case II, which, together with bv,mv =

∞, implies that αmust equal (lvtv−Qv)/(B−βv,mv), and thus fv(t) must cover all the remaining

area, i.e.,
∫

t∈[bv,mv−1,bv,mv)
fv(t)dt= lvtv −Qv,mv . Hence, fv also satisfies (13). Moreover, it can

be seen that for each 1 ≤ j ≤ mv, fv(t) constructed for t ∈ [bv,j−1, bvj) is a staircase function

with at most two pieces, and each piece is defined on a right-half open interval, which implies

that fv also satisfies (11). Hence, fv is a feasible solution to Z(v)(f1, ..., fv−1).

Thus, to show fv is optimal, it is sufficient to show that fv satisfies the condition in Lemma 1.

By contradiction, suppose fv does not satisfy the condition. There must exist p∈ [0,∞) and a

feasible solution f ′
v to Z(v)(f1, ..., fv−1) with fv(t) = f ′

v(t) for t∈ [0, p), such that fv(p)< f ′
v(p).

Consider the construction of fv(t) in Algorithm 2. Let j indicate the unique index of the

interval [bv,j−1, bvj) defined in Step 1 that includes p, i.e., p ∈ [bv,j−1, bvj). Consider the con-

struction of fv(t) for t ∈ [bv,j−1, bvj) in Steps 2–19. If Qvj = lvtv, or av ≥ bvj , or βvj = B, then

37

since f ′
v(t) = fv(t) for t ∈ [0, p), it can be seen, from (12), (13) and (15) for f ′

v and fv, that

f ′
v(t) = fv(t) = 0 for t∈ [bv,j−1, bvj), implying that f ′

v(p) = fv(p), which contradicts f ′
v(p) 6= fv(p).

Thus, we have Qvj < lvtv, av < bvj and βvj <B, implying that fv(t) for t∈ [bv,j−1, bvj) must be

constructed in Steps 6–18 of Algorithm 2.

We can now complete the proof of the fact that fv is indeed optimal by showing f ′
v(p) ≤

fv(p), which contradicts fv(p)< f ′
v(p): If fv(p) =B − βvj, since f ′

v(p)≤B −
∑v−1

u=1 f
′
u(p) =B −

∑v−1

u=1 fu(p) =B − βvj, we have f ′
v(p)≤ fv(p). Otherwise, by (15), fv(p)<B− βvj, and we can

consider the following two cases:

• If fv(p) is assigned in Case I (Steps 6–13). Since fv(p)<B−βvj, we know that fv(p) must

be set to lv in Step 12. Thus, p∈ [α, bvj) and p < bvj ≤ av+ tv. According to the argument earlier

for Case I, we know that by now fv(t) for t∈ [0, α) has covered all its available area lv(α−av),

and so has f ′
v(t). Thus, from (12) and (14) on f ′

v, we can obtain f ′
v(p)≤ lv = fv(p).

• If fv(p) is assigned in Case II (Steps 14–18). Since fv(p) < B − βvj, it can be seen that

fv(p) must be set to zero in Step 17, which implies that p∈ [α, bvj). According to the argument

earlier for Case II, we know that by now fv(t) for 0≤ t≤ α has covered all the area lvtv, and

so has f ′
v(t). Thus, from (12) and (13) on f ′

v, we can obtain f ′
v(t) = 0≤ 0= fv(p).

Next, we are going to show that Algorithm 2 for each v ∈ V can achieve a running time

of O(n). To show this, since the running time of Algorithm 2 for each v ∈ V is O(mv), it is

sufficient to show as follows that mv is in O(n) for each v ∈ V .

Sort elements in {av : v ∈ V } ∪ {av + tv : v ∈ V } ∪ {0} ∪ {∞} in an increasing order, denoted

by 0 = e0 < e1 < ... < em =∞. It can be seen that m ≤ 2n+ 2. Thus, to prove that mv is in

O(n) for each v ∈ V , it is sufficient to show that for each v ∈ V , there exist pvi ∈ [ei−1, ei) for

1≤ i≤m that satisfy the following two conditions: (i) gv(t) =B for t∈ [ei−1, pvi), and (ii) gv(t)

equals a constant less than or equal to B for t ∈ [pvi, ei), and for 1 ≤ i ≤m. This is because

if, for each v ∈ V , such pvi for 1 ≤ i ≤ m exist, then gv(t) can be represented as a staircase

function over at most 2m intervals, [e0, pv1), [pv1, e1), ..., [em−1, pvm), [pvm, em), such that the set

of endpoints of the intervals always includes av and av+ tv, satisfying the requirements of Step 1

of Algorithm 2, and implying that mv ≤ 2m≤ 4n+4 is in O(n).

Thus, all we are now left to prove is the existence of such pvi for 1≤ i≤m that satisfy the

above conditions (i) and (ii) for each v ∈ V . For v = 1, since g1(t) = 0 for t ∈ [0,∞), setting

p1i = ei−1 for 1≤ i≤m satisfy the conditions (i) and (ii). By induction, supposing that such pvi

for 1≤ i≤m exist for 1≤ v ≤ n− 1, we can construct pv+1,i for 1≤ i≤m as follows to satisfy

the conditions (i) and (ii) for v+1. Consider each interval [ei−1, ei) where 1≤ i≤m. For each

t ∈ [ei−1, pvi), since gv(t) =B, it can be seen from Step 5 of Algorithm 2 that fv(t) = 0, which

implies that gv+1(t) = gv(t) =B. Now, consider interval [pvi, ei) for the following two cases:

• If Qvj = lvtv, or βvj =B, or av ≥ ei, then from Step 5 of Algorithm 2, it can be seen that

fv(t) = 0 for t ∈ [pvi, ei), which implies gv+1(t) = gv(t) for t ∈ [pvi, ei). Thus, gv+1(t) = gv(t) for

t∈ [ei−1, ei). Hence, by setting pv+1,i = pvi it satisfies the conditions (i) and (ii).

38

• Otherwise, by Steps 6–18 of Algorithm 2, there exists α such that gv+1(t) =B for t∈ [pvi, α),

and that gv+1(t) equals a constant not exceeding B for t ∈ [α, ei). Thus, by setting pv+1,i = α,

it satisfies the conditions (i) and (ii).

Hence, we have obtained pv+1,i for 1≤ i≤m that satisfy the conditions (i) and (ii) for v+ 1.

Thus, such pvi for 1≤ i≤m must exist for all v ∈ V , implying that Algorithm 2 for each v ∈ V

can achieve a running time of O(n). This completes the proof of Theorem 3. �

Online Appendix F: An Illustrative Example for Computing ZF

We apply Algorithm 1 on the instance in Figure 2, with Algorithm 2 used in Step 2. Since

vessels 1, 2, 3 and 4 are in a non-increasing order of wv/(lvtv), Algorithm 1 will construct fv

for v= 1,2,3,4, sequentially. (The resulting [f1, f2, f3, f4] is the same as that in Example 2 and

Figure 2(b).)

For v = 1, since g1(t) = 0 for t ∈ [0,∞), a1 = 1/2, t1 = 1/2, and l1 = 4 =B, it is easy to see

that Algorithm 2 assigns f1(t) = l1 = 4 for t ∈ [1/2,1) to cover all the area of 4× 1/2 = 2, and

sets f1(t) = 0 for t∈ [0,1/2) and t∈ [1,∞).

For v = 2, we have g2(t) = f1(t), i.e., g2(t) = 0 for t ∈ [0,1/2), g2(t) = 4 for t ∈ [1/2,1), and

g2(t) = 0 for t ∈ [1,∞). Endpoints of the three intervals include a2 = 0 and a2 + t2 = 1. Thus,

m2 = 3, b20 = 0, b21 = 1/2, b22 =1, b23 =∞, β21 =0, β22 = 4, and β23 = 0 in Step 1 of Algorithm 2.

Next, consider each iteration j of Steps 2–19 of Algorithm 2 for j =1,2,3, respectively:

• For j = 1, we have Q21 = 0< 2 = l2t2, β21 = 0< 4 =B, a2 = 0< 1/2 = b21, and b21 = 1/2<

1 = a2 + t2, implying that Algorithm 2 constructs f2(t) for t ∈ [0,1/2) by Case I (Steps 6–13).

Since l2 = 2< 4=B−β21, and α=min{1/2,0}= 0 (by Step 10), Algorithm 2 sets f2(t) = l2 =2

t∈ [0,1/2) in Step 12.

• For j = 2, since β22 =4=B, Algorithm 2 sets f2(t) = 0 for t∈ [1/2,1) in Step 5.

• For j = 3, we have Q23 = 1 < 2 = l2t2, β23 = 0 < 4 = B, a2 = 0 <∞= b23, and b23 =∞>

1 = a2 + t2, implying that Algorithm 2 constructs f2(t) for t∈ [1,∞) by Case II (Steps 14–18).

Noticing that B− β23 = 4 is the current maximal possible value that can be assigned, by (17)

we can set f2(t) =B−β23 = 4 for t from 1 only up to α, and set f2(t) = 0 for all t≥α, where by

Step 15, α=min{∞, (2× 1− 1)/(4− 0)+1}=5/4. Thus, Step 17 sets f2(t) = 4 for t∈ [1,5/4),

and f2(t) = 0 for t∈ [5/4,∞).

For v = 3, we have g3(t) = f1(t) + f2(t), implying that g3(t) = 2 for t ∈ [0,1/2), g3(t) = 4

for t ∈ [1/2,1), g3(t) = 4 for t ∈ [1,5/4), g3(t) = 0 for t ∈ [5/4,3), and g3(t) = 0 for t ∈ [3,∞).

Endpoints of the five intervals include a3 = 1 and a3 + t3 = 1+ 2= 3. Thus, we obtain m3 = 5,

b30 = 0, b31 = 1/2, b32 = 1, b33 = 5/4, b34 = 3, b35 =∞, β31 = 2, β32 = 4, β33 = 4, β34 = 0, and

β35 = 0 in Step 1 of Algorithm 2. Next, consider each iteration j of Steps 2–19 of Algorithm 2

for j = 1,2,3,4,5, respectively:

• For j = 1,2,3, since a3 = 1 = b32 > b31 and β33 = 4 = B, Algorithm 2 sets f3(t) = 0 for

t∈ [0,1/2), t∈ [1/2,1), and t∈ [1,5/4) in Step 5.

• For j = 4, we have Q34 =0< 4 = l3t3, β34 = 0< 4=B, a3 =1< 3 = b34, and b34 =3= a3+t3.

Thus, Algorithm 2 constructs f3(t) for t ∈ [5/4,3) by Case I (Steps 6–13). Since l3 = 2 < 4 =

39

B−β34, by (18), we can set f3(t) =B−β34 = 4 for t from 5/4 only up to α, and set f3(t) = l3 =2

for t from α to 3, where by Step 10, α=min{3, [2(5/4− 1)− 0]/(4− 0− 2)+5/4}= 3/2. Thus,

Step 12 sets f3(t) = 4 for t∈ [5/4,3/2), and f3(t) = 2 for t∈ [3/2,3).

• For j = 5, we have Q35 = 4= l3t3, implying that all the area is covered. Thus, Algorithm 2

sets f3(t) = 0 for t∈ [3,∞) in Step 8.

For v =4, we have g4(t) = f1(t)+f2(t)+f3(t), implying that g4(t) = 2 for t∈ [0,1/2), g4(t) = 4

for t ∈ [1/2,1), g4(t) = 4 for [1,3/2), g4(t) = 2 for t ∈ [3/2,3), and g4(t) = 0 for t ∈ [3,∞).

Endpoints of the five intervals include a4 = 1 and a4 + t4 = 3. Thus, we obtain that m4 = 5,

b40 = 0, b41 = 1/2, b42 = 1, b43 = 3/2, b44 = 3, b45 =∞, β41 = 2, β42 = 4, β43 = 4, β44 = 2, and

β45 = 0 in Step 1 of Algorithm 2. Next, consider each iteration j in Steps 2–19 of Algorithm 2

for j = 1,2,3,4,5, respectively:

• For j = 1,2,3, since a4 = 1 = b42 > b41 and β43 = 4 = B, Algorithm 2 sets f4(t) = 0 for

t∈ [0,1/2), t∈ [1/2,1), and t∈ [1,3/2) in Step 5.

• For j = 4, we have Q44 = 0 < 4 = l4t4, β44 = 2 < 4 = B, a4 = 1 < 3 = b44, and b44 = 3 =

a4+ t4, implying that Algorithm 2 constructs f4(t) for t∈ [3/2,3) by Case I (Steps 6–13). Since

l4 = 2=B−β44, Algorithm 2 sets f4(t) =B−β44 = 2 for t∈ [3/2,3) in Step 8.

• For j = 5, we have Q45 = 3 < 4 = l4t4, β45 = 0 < 4 = B, b45 = ∞ > a4, and a4 + t4 = 3 <

∞= b45, implying that Algorithm 2 constructs f4(t) for t∈ [3,∞) by Case II (Steps 14–18). By

(17), we can set f4(t) = B − β45 = 4 for t from 3 only up to α, and set f4(t) = 0 for all t≥ α,

where by Step 15, α=min{∞, (2× 2− 3)/(4− 0)+ 3}= 13/4. Thus, Step 17 sets f4(t) = 4 for

t∈ [3,13/4), and f4(t) = 0 for t∈ [13/4,∞).

The vector [f1, f2, f3, f4] that we finally obtained is the same as that in Example 2 and

Figure 2(b). By Theorem 3, each fv for v = 1,2,3,4 is an optimal solution to Z(v)(f1, ..., fv−1).

By (2), we have that

W (f1, f2, f3, f4) =
1

4× 1/2

∫ 1

1/2

4(t− 1/2)dt+
1

2× 1
[

∫ 1/2

0

2(t− 0)dt+

∫ 5/4

1

4(t− 0)dt]

+
1

2× 2
[

∫ 3/2

5/4

4(t− 1)dt+

∫ 3

3/2

2(t− 1)dt] +
1

2× 2
[

∫ 3

3/2

2(t− 1)dt+

∫ 13/4

3

4(t− 1)dt] =
55

16
.

Thus, since 1
2

∑4

v=1wvtv =
11
4
, by Theorem 2 and Theorem 1 we obtain that ZF =

55
16
+ 11

4
=6 3

16

is a lower bound on Z∗ =7, greater than ZLP
1 =

∑4

v=1wvtv = (1/2+1+2+2)= 5 1
2
by (10).

Online Appendix G: Proof of Proposition 2

Proof. Without loss of generality, assume that vessels v ∈ V are sorted by a non-increasing

order of wv/tv. Consider the special case of the CBAP with lv = B and av = a for all v ∈ V ,

where a≥ 0 is a constant. First of all, let us apply Algorithm 1 on this special case to construct

the optimal solution [f1, ..., fn] to ZF. For v = 1, since l1 =B, it can be seen that the optimal

solution to Z(1) satisfies that f1(t) =B if t ∈ [a,a+ t1), and f1(t) = 0, otherwise. This implies

that g2(t) =B for t∈ [a,a+ t1). Thus, for v= 2, since l2 =B and g2(t) =B for t∈ [a,a+ t1), it

can be seen that the optimal solution to Z(2)(f1) satisfies that f2(t) =B if t∈ [a+ t1, a+ t1+ t2),

and f2(t) = 0, otherwise. This implies that g3(t) =B for t∈ [a,a+ t1 + t2). Thus, by induction,

40

(Berth)

(Time)

0

1

2

43210

3

B = 5

4

y

h(E, y)

2

3

4

1

(a) h(E,y) and S(E) for a partial solution E with four

vessels, where h(E,y) is a staircase function shown in bold

lines, and S(E) is the shadow area.

(Time)

(Berth)

0

1

5430

3

B = 5

4

y

2

21
a5 = 1.5

π5(E, y)

(b) π5(E,y), shown in bold lines, for E shown in

Figure 5(a) and for vessel 5 with l5 = 1 and a5 = 1.5.

Figure 5 Illustration of functions h(E,y), S(E) and πu(P,y)

we can obtain that fv(t) =B if t∈ [a+ t1 + ...+ tn−1, a+ t1 + ...+ tn), and fv(t) = 0, otherwise,

for v= 1,2, ..., n. Moreover, by Theorem 2, we have ZF =W (f1, ..., fn)+
∑

v∈V wvtv/2.

On the other hand, as mentioned earlier, for this special case of the CBAP, it is optimal to

handle vessels 1,2, .., n, sequentially, implying that {(v,x∗
v, y

∗
v) : v ∈ V }, with y∗

v = 0 for v ∈ V ,

x∗
1 = a and x∗

v = a+ t1 + ... + tv−1 for 2 ≤ v ≤ n, is an optimal solution. It can be seen that

[f1, ..., fn] constructed above satisfies that fv(t) =B if t∈ [x∗
v, x

∗
v + tv), and fv(t) = 0, otherwise.

Hence, {(v,x∗
v, y

∗
v) : v ∈ V } and [f1, ..., fn] is an optimal solution to model RF, which implies

that Z∗ =W (f1, ..., fn)+
∑

v∈V wvtv/2=ZF. �

Online Appendix H: Implementation Details of the New Heuristic

In the following, we first illustrate the design of the fitness evaluation function in Section H.1,

and then describe the polynomial time implementation of the new heuristic in Section H.2.

H.1. Design of the Fitness Evaluation Function

For any partial solution E, we are given an unassigned vessel v ∈ V \V (E) and its valid position

(xv, yv) ∈ S(E) with av ≤ xv and 0≤ yv ≤B− lv, where, as we defined in (23) and (22), S(E) =

{(x, y) : x≥ h(E,y), 0≤ y < B} with h(E,y) = max{xv + tv : ∀v ∈ V (E) with y ∈ [yv, yv + lv)}

for y ∈ [0,B). See the example of h(E,y) and S(E) in Figure 5(a). To evaluate the fitness of

the assignment (v,xv, yv), the new heuristic adopts a fitness evaluation function φ
(2)
E (v,xv, yv),

which is modified from another fitness evaluation function φ
(1)
E (v,xv, yv), as illustrated below.

First, we derive φ
(1)
E (v,xv, yv) as follows to estimate the difference between the objective

values of feasible solutions that can be obtained from E before and after the assignment. To

illustrate this, consider any partial solution P , unassigned vessel u ∈ V \ V (P), and starting

berth location y with 0≤ y≤B− lu. If vessel u is assigned y as its starting berth location, then

to avoid overlapping or placing u directly on the left of some assigned vessel, u must be berthed

41

no earlier than max{h(P, z) : y ≤ z < y+ lu}. Thus, since u cannot be berthed earlier than its

arrival time au, we can represent the earliest possible mooring time of u by πu(P,y), where

πu(P,y) :=max{au,max{h(P, z) : y ≤ z < y+ lu}}, for y ∈ [0,B− lu]. (40)

See an example of πu(P,y) illustrated in Figure 5(b) with h(E,y) shown in Figure 5(a), where

l5 = 1, a5 = 1.5, π5(E,y) =max{1.5,2}= 2 for y ∈ [0,1), π5(E,y) =max{1.5,1}= 1.5 for y= 1,

π5(E,y) =max{1.5,4}= 4 for y ∈ (1,3), and π5(E,y) =max{1.5,2}= 2 for y ∈ [3,4]. Based on

(40), we can represent the average earliest possible mooring time of u by πu(P), where

πu(P) :=
1

B− lu

∫ B−lu

0

πu(P,y)dy, (41)

which is defined as equaling πu(P,0) if lu = B. Using πu(P) to estimate the mooring time of

each unassigned vessel u∈ V \V (P), we define

φ(P) :=
∑

u∈V (P)

wu(xu + tu − au)+
∑

u∈V \V (P)

wu[πu(P)+ tu− au], (42)

to estimate the objective value of the feasible solutions that can be obtained from P . Hence,

φ(E ∪{(v,xv, yv)})−φ(E) can be used to estimate the difference between the objective values

of the feasible solutions that can be obtained from E before and after the assignment. Based

on this, we obtain our first fitness evaluation function φ(1)
E (v,xv, yv) as follows:

φ(1)
E (v,xv, yv) := φ(E ∪{(v,xv, yv)})−φ(E). (43)

Remark 3. Consider the special case of the CBAP with lv =B and av = a for all v ∈ V , where

a ≥ 0 is a constant. As explained in Section 2.4, for this special case it is always optimal to

process vessels with the largest wv/tv first. Thus, we are interested in investigating how our

new heuristic performs in this special case, when φ
(1)
E is used as the fitness evaluation function.

For each iteration of the heuristic, consider the partial solution E at its beginning. For each

u∈ V \V (E), since lu =B and au = a, from (22), (23), (40), and (41) we can obtain that πu(E) =

πu(E,0) =max{a,h(E,0)}. Similarly, for any v ∈ V \V (E) and its valid position (xv, yv)∈ S(E),

and for any u ∈ V \ V (E) \ {v}, we can obtain πu(E ∪ {(v,xv, yv)}) = πu(E ∪ {(v,xv, yv)},0) =

max{a,h(E∪{(v,xv, yv)},0)}. Since lv =B and xv ≥ a, we have h(E∪{(v,xv, yv)},0) = xv+tv ≥

a, implying that πu(E ∪{(v,xv, yv)}) = xv + tv. Thus, from (43) and (42) we have

φ
(1)
E (v,xv, yv) =wv[xv −πv(E)]+

∑

u∈V \V (E)\{v}

wu[πu(E ∪{(v,xv, yv)})−πu(E)]

=wv[xv −max{a,h(E,0)}] +
∑

u∈V \V (E)\{v}

wu[xv + tv −max{a,h(E,0)}]

= (
∑

u∈V \V (E)

wu)[xv −max{a,h(E,0)}] + (
∑

u∈V \V (E)

wu −wv)tv. (44)

Since xv ≥ a and (xv, yv) ∈ S(E), we have xv ≥ max{a,h(E,0)}. Thus, it can be seen that

φ
(1)
E (v,xv, yv) is minimized when xv =max{a,h(E,0)} and v minimizes (

∑

u∈V \V (E)wu−wv)tv.

Hence, for this special case, using φ
(1)
E as the fitness evaluation function, our heuristic may not

return an optimal solution, unless vessels have equal weights. �

42

Next, to ensure that the heuristic can guarantee optimal solutions for the above special case

with lv =B and av = a for v ∈ V , where a≥ 0, even if vessels have different weights, we modify

φ
(1)
E (v,xv, yv) to obtain the other fitness evaluation function φ

(2)
E (v,xv, yv) as follows. Notice

that if we divide φ
(1)
E (v,xv, yv) by [wv(

∑

u∈V \V (E)wu −wv)], then (44) will be changed to

(
1

∑

u∈V \V (E)wu −wv

+
1

wv

)[xv −max{a,h(E,0)}] +
tv
wv

. (45)

It can be seen that (45) is minimized when xv =max{a,h(E,0)} and v maximizes wv/tv. Thus,

with (45) as the fitness evaluation function, the heuristic always chooses to process vessels with

the largest wv/tv first. Due to this, we define φ
(2)
E (v,xv, yv) as follows:

φ
(2)
E (v,xv, yv) :=

φ(1)
E (v,xv, yv)

wv(
∑

u∈V \V (E)wu −wv)
. (46)

By the arguments above, the heuristic with φ
(2)
E as the evaluation function can guarantee optimal

solutions to the special case of the CBAP with lv = B and av = a for v ∈ V . Moreover, our

preliminary computational experiments show that, using φ(2)
E , the heuristic can always produce

better solutions than using φ
(1)
E . Therefore, in the bounding procedure of the new exact method,

we use the heuristic with φ
(2)
E as the evaluation function to construct feasible solutions and

obtain upper bounds of the optimal solutions.

H.2. Polynomial Time Implementation

The key to the implementation of the new heuristic is the minimization of the fitness eval-

uation function, φ
(1)
E (v,xv, yv) or φ

(2)
E (v,xv, yv), for the partial solution E of each iteration in

Algorithm 3. This can be achieved by first enumerating every unassigned v ∈ V \ V (E), then

determining (x∗
v, y

∗
v) that minimizes φ

(1)
E (v,xv, yv) or φ

(2)
E (v,xv, yv) for v, and then choosing v∗

that minimizes φ(1)
E (v,x∗

v, y
∗
v) or φ(2)

E (v,x∗
v, y

∗
v). From (46), it can be seen that when v is fixed,

the ratio of φ
(2)
E (v,xv, yv) and φ

(1)
E (v,xv, yv) is also fixed, equal to wv(

∑

u∈V \V (E)wu−wv). Thus,

the minimization of φ
(2)
E (v,xv, yv) for v is equivalent to the minimization of φ

(1)
E (v,xv, yv) for

v. Therefore, to show that our heuristic with φ
(1)
E (v,xv, yv) or φ

(2)
E (v,xv, yv) as the fitness eval-

uation function can achieve a polynomial time complexity, it is sufficient to show that the

minimization of φ
(1)
E (v,xv, yv) for v can be solved in polynomial time, as follows.

Given v ∈ V \ V (E), due to the continuous domain, minimizing φ
(1)
E (v,xv, yv) over (xv, yv)

is not trivial. To tackle this, we first show that φ(1)
E (v,xv, yv) is non-decreasing in xv. By (22)

and (40), πu(E ∪ {(v,xv, yv)}, y) is non-decreasing in xv. By (41), πu(E ∪ {(v,xv, yv)}) for u ∈

V \V (E) is non-decreasing in xv. Thus, by (42) and (43), φ
(1)
E (v,xv, yv) is non-decreasing in xv.

Therefore, given v and yv, to minimize φ
(1)
E (v,xv, yv) over xv, it is sufficient to minimize xv.

Moreover, from (40) we know that πv(E,yv) indicates the minimal possible value of xv if v is

assigned yv as its starting berth location. Thus, for a given v, to minimize φ
(1)
E (v,xv, yv) over

(xv, yv), it is sufficient to fix xv to be πv(E,yv), and to minimize φ(1)
E (v,πv(E,yv), yv) over yv.

Given v, we next explain how to minimize φ
(1)
E (v,πv(E,yv), yv) over yv. To simplify the nota-

tion, we use Ey to denote the partial solution that adds assignment (v,πv(E,y), y) to E, i.e.,

Ey :=E ∪{(v,πv(E,y), y)}, for any 0≤ y≤B− lv. (47)

43

According to (42) and (43), we can rewrite φ
(1)
E (v,πv(E,yv), yv) as follows:

φ(1)
E (v,πv(E,yv), yv) =wv[πv(E,yv)−πv(E)]+

∑

u∈V \V (E)\{v}

wu[πu(Eyv)−πu(E)]. (48)

Thus, to compute φ
(1)
E (v,πv(E,yv), yv), it needs to compute πv(E), as well as πu(E) and πu(Eyv)

for each u∈ V \V (E)\{v}, which, by (41), needs to integrate πv(E,y), πu(E,y) and πu(Eyv , y)

for 0≤ y ≤B − lu. By Proposition 4 below, each of these integrations can be computed, piece

by piece, in O(n) time. Thus, φ
(1)
E (v,πv(E,yv), yv) can be computed in O(n2) time.

Proposition 4. Consider any partial solution P , and any u ∈ V \ V (P). Let 0 = qu0 < ... <

qu,nu = B − lu indicate distinct elements in {yj − lu, yj, yj + lj , yj + lj − lu : j ∈ V (P)} ∪ {0} ∪

{B − lu} that belong to interval [0,B − lu]. Thus, nu ≤ 4n+ 2. Then, πu(P,y) is a staircase

function of y on intervals (qu,i−1, qui) for 1≤ i≤ nu, and on endpoints qui for 0≤ i≤ nu, such

that max{πu(P, qu,i−1), πu(P, qui)} ≤ πu(P,y) for each y ∈ (qu,i−1, qui).

Proof. For each 1≤ i≤ nu, it can be proved as follows that h(P,y) equals a constant for all

y ∈ [qu,i−1, qui), and that h(P,y) equals a constant for all y ∈ [qu,i−1 + lu, qui + lu):

• Consider any e and e′ with qu,i−1 ≤ e < e′ < qui, which implies that there exists no vessel

j ∈ V (P) with e < yj ≤ e′ or e < yj + lj ≤ e′. In other words, for each vessel j ∈ V (P), either j

occupies no berth location in [e, e′], or j occupies all berth locations in [e, e′]. Thus, {j ∈ V (P) :

e∈ [yj , yj + lj)}= {j ∈ V (P) : e′ ∈ [yj, yj + lj)}. By (22), we obtain h(P, e)= h(P, e′).

• Consider any e and e′ with qu,i−1 + lu ≤ e < e′ < qui + lu, which implies qu,i−1 ≤ e− lu <

e′ − lu < qui. Thus, there exists no vessel j ∈ V (P) with e− lu < yj − lu ≤ e′ − lu or e− lu <

yj + lj − lu ≤ e′ − lu, (i.e., e < yj ≤ e′ or e < yj + lj ≤ e′). Thus, by the same argument as that

for the above case where qu,i−1 ≤ e < e′ < qui, we can also obtain h(P, e)= h(P, e′).

Thus, for 1≤ i≤ nu, and for any e and e′ with qu,i−1 < e< e′ < qui, we have h(P,s) = h(P, e′)

for s∈ [qu,i−1, e
′], and h(P,s) = h(P, qu,i−1+ lu) for s∈ [qu,i−1+ lu, e

′+ lu]. Since qu,i−1 < e< e′ <

qui, we obtain max{h(P,s) : e≤ s < e+ lu}=max{h(P,s) : e′ ≤ s < e+ lu}=max{h(P,s) : e′ ≤

s < e′ + lu}. From this and (40), we obtain πu(P, e) = πu(P, e
′). Hence, πu(P,y) is a staircase

function of y on intervals (qu,i−1, qui) for 1≤ i≤ nu, and on endpoints qui for 0≤ i≤ nu.

Moreover, for each 1≤ i≤ nu, consider any y ∈ (qu,i−1, qui). Since h(P,s) equals a constant

for s ∈ [qu,i−1, qui), max{h(P,s) : qu,i−1 ≤ s < qu,i−1 + lu} ≤max{h(P,s) : y ≤ s < y+ lu}. Thus,

by (40), we have πu(P, qu,i−1)≤ πu(P,y). Since h(P,s) equals a constant for s ∈ [qu,i−1+ lu, qui+

lu), max{h(P,s) : qui ≤ s < qui + lu} ≤ max{h(P,s) : y ≤ s < y + lu}. Thus, by (40), we have

πu(P, qui)≤ πu(P,y). Hence, max{πu(P, qu,i−1), πu(P, qui)} ≤ πu(P,y). �

For given E and v ∈ V \ V (E), let 0 = e1 < ... < em = B − lv indicate distinct elements in

{qui− lv, qui, qui+ lu : u∈ V \V (E),1≤ i≤ nu}∪{0}∪{B− lv} that belong to interval [0,B− lv],

where 0 = qu0 < ... < qu,nu =B− lu for each u∈ V \V (E) indicate the endpoints of the intervals

of πu(E,y) on y ∈ [0,B − lu], as defined in Proposition 4, which implies nu ≤ 4n+ 2. Thus,

m≤ (2+3
∑

u∈V \V (E) nu) is in O(n2). From Proposition 5 below, it can be seen that to minimize

φ
(1)
E (v,πv(E,yv), yv) over yv, it is sufficient to consider only values of yv in {ei : 0≤ i≤m}.

44

Proposition 5. Given any partial solution E, and any v ∈ V \ V (E), define c(y) :=

φ
(1)
E (v,πv(E,y), y). For each 1≤ i≤m, we have min{c(ei−1), c(ei)}≤ c(y) for any y ∈ (ei−1, ei).

Proof. Consider any i and y with 1≤ i≤m and y ∈ (ei−1, ei). By Proposition 4, πr(E,ei−1)≤

πr(E,y) and πr(E,ei)≤ πr(E,y) for each r ∈ V \V (E). Thus, by (48) and (41), we have

c(ei−1)− c(y)≤
∑

u∈V \V (E)\{v}

wu

B− lu

∫ B−lu

0

[πu(Eei−1
, s)−πu(Ey, s)]ds. (49)

For each u∈ V \V (E) \ {v}, and each p∈ [0,B− lv], it can be seen from (40) and (22) that

πu(Ep, s) =

{

πu(E,s), if s∈ [0, p− lu], or s ∈ [p+ lv,B− lu],
max{πu(E,s), πv(E,p)+ tv}, if s∈ (p− lu, p+ lv).

Thus, we can obtain the value of πu(Eei−1
, s)−πu(Ey, s) for each s ∈ [0,B− lu] as follows:

• For s ∈ [0, ei−1− lu] and s∈ [y+ lv,B− lu], πu(Eei−1
, s)−πu(Ey, s) = πu(E,s)−πu(E,s) = 0.

• For s ∈ (ei−1 − lu, y − lu], πu(Eei−1
, s) − πu(Ey, s) = max{πu(E,s), πv(E,ei−1) + tv} −

πu(E,s). Since ei−1 < s+ lu ≤ y < ei, there exists no index i with 0≤ i≤ nu, such that s+ lu ≤

qui + lu ≤ y (or s≤ qui ≤ y − lu), and thus by Proposition 4, we have πu(E,s) = πu(E,y − lu).

Thus, since πv(E,ei−1)≤ πv(E,y), we obtain πu(Eei−1
, s)−πu(Ey, s) =max{0, πv(E,ei−1)+ tv−

πu(E,y− lu)} ≤max{0, πv(E,y)+ tv −πu(E,y− lu)}.

• For s ∈ (y − lu, ei−1 + lv), πu(Eei−1
, s) − πu(Ey, s) = max{πu(E,s), πv(E,ei−1) + tv} −

max{πu(E,s), πv(E,y)+ tv}. By πv(E,ei−1)≤ πv(E,y), we have πu(Eei−1
, s)−πu(Ey, s)≤ 0.

• For s ∈ [ei−1 + lv, y+ lv), πu(Eei−1
, s)−πu(Ey, s) = πu(E,s)−max{πu(E,s), πv(E,y)+ tv}.

Since ei−1 <s− lv ≤ y < ei, there exists no index i with 0≤ i≤ nu, such that s− lv ≤ qui− lv ≤ y

(or s≤ qui ≤ y+ lv), and thus by Proposition 4, we have πu(E,s) = πu(E,y+ lv), implying that

πu(Eei−1
, s)−πu(Ey, s) =−max{0, πv(E,y)+ tv −πu(E,y+ lv)}.

Define ∆u := [max{0, πv(E,y) + tv − πu(E,y − lu)} −max{0, πv(E,y) + tv − πu(E,y + lv)}].

From the above, we have
∫ B−lu

0
[πu(Eei−1

, s)− πu(Ey, s)]ds ≤ (y − ei−1)∆u. Thus, by (49), we

obtain

c(ei−1)− c(y)≤ (y− ei−1)
∑

u∈V \V (E)\{v}

wu∆u

B− lu
. (50)

Similarly, noticing that by Proposition 4, each r ∈ V \V (E) satisfies that πr(E,ei)≤ πr(E,y),

πr(E,s) = πr(E,y− lr) for s∈ (y− lr, ei− lr], and πr(E,s) = πr(E,y+ lv) for s∈ [y+ lv, ei+ lv),

we can also obtain

c(ei)− c(y)≤ (ei− y)
∑

u∈V \V (E)\{v}

−wu∆u

B− lu
. (51)

By (50), (51) and ei−1 < y < ei, we have that c(ei−1)≤ c(y), if
∑

u∈V \V (E)\{v}[wu∆u/(B− lu)]≤

0, and c(ei)≤ c(y) otherwise. Thus, we obtain min{c(ei−1), c(ei)}≤ c(y). �

We can now summarize the implementation of the new heuristic with φ
(1)
E or φ

(2)
E as the fitness

evaluation function: In each of the n iterations in Step 2 of Algorithm 3, we enumerate v ∈

45

V \V (E), and for each v, we enumerate yv ∈ {ei : 0≤ 1≤m}, so as to determine v∗ and y∗
v∗ that

minimize φ
(1)
E (v,πv(E,yv), yv) or φ

(2)
E (v,πv(E,yv), yv), and then we set x∗

v∗ to be πv∗(E,y∗
v∗). Note

that φ
(2)
E (v,πv(E,yv), yv) for each v and yv equals φ

(1)
E (v,πv(E,yv), yv)/[wv(

∑

u∈V \V (E)wu−wv)].

Thus, since the computation of φ
(1)
E (v,πv(E,yv), yv) needs O(n2) time for each v and yv, and

since m is in O(n2) and |V \ V (E)| ≤ n, it can be seen that the total running time of the

implementation, whether using φ
(1)
E or φ

(2)
E , is O(n6) in the worst case.

Online Appendix I: Proof of Proposition 3

Proof. Consider any two nodes q and q′ associated with the same partial solution, reached by

the exact method by following two different vessel sequences. Without loss of generality, assume

the two sequences differ in their last vessels, denoted by r and r′, respectively, with yr ≤ yr′ .

To prove Proposition 3, we need to show as follows that either q or q′ satisfies yv + lv ≤ yu, and

thus must be pruned, where v is an assigned vessel, and u is the vessel assigned just before v

is assigned.

In node q, since r′ is assigned before r, noting that yr ≤ yr′ implies that r is not above r′ in

the space-time diagram, due to the branching rules, r must be on the right of r′. Let v indicate

the first vessel that is assigned and placed on the right of r′ after r′ is assigned. Let u indicate

the vessel that is assigned just before v is assigned. Thus, either u equals r′, implying yu = yr′ ,

or u is assigned after r′ is assigned, implying that u is not placed on the right of r′, and therefore

must be placed above r′, which implies that yu ≥ yr′ + lr′ > yr′ . Thus, we obtain yr′ ≤ yu.

In node q′, v must be assigned before r′. Thus, since v is on the right of r′, due to the

branching rules, r′ must be placed above v, implying that yv + lv ≤ yr′ .

Hence, we have yv + lv ≤ yr′ ≤ yu. Proposition 3 is proved. �

Online Appendix J: Proof of Theorem 4

Proof. According to the definition of ZF(θ) (in Section 4), by replacing lv with l̂v(θ) in the

relaxation ZF (in Section 2.2) we can obtain ZF(θ) as follows:

ZF(θ) = min
∑

v∈V

wv

l̂v(θ)tv

∫

t∈[0,∞)

(t− av)f̂v(t)dt+
1

2

∑

v∈V

wvtv

s.t. f̂v ∈ S, ∀v ∈ V ,

f̂v(t) = 0, ∀t∈ [0, av) and ∀v ∈ V ,
∫

t∈[0,∞)

f̂v(t)dt= l̂v(θ)tv, ∀v ∈ V ,

∫

t∈[0,t′)

f̂v(t)dt≤ l̂v(θ)(t
′− av), ∀t′ ∈ [av, av + tv) and ∀v ∈ V ,

∑

v∈V

f̂v(t)≤B.

Here we use f̂v(t) instead of fv(t) for ease of presentation below. Noting that constraints (4)–

(7) are valid for model Q (in Section 4), since (26) is also a valid constraint, we can obtain a

46

relaxation of model Q by replacing (1), (24), and {(v,xv, yv) : v ∈ V } ∈Y with (4)–(7) and (26)

as follows:

(R’) minW (f1, ..., fn)+
1

2

∑

v∈V

wvtv

s.t. (4)–(7), and (26).

To prove Theorem 4, we only need to show as follows that the relaxation R’ above is equivalent

to ZF(θ): First, it can be seen that for each v ∈ V , fv ∈ S if and only if γv(θ)fv ∈ S, implying

that (4) is equivalent to

γv(θ)fv ∈ S, for v ∈ V . (52)

Next, by multiplying both the left and right sides of (5)–(7) by γv(θ), and noting l̂v(θ) = γv(θ)lv,

we obtain their equivalent equalities and inequalities as follows:

γv(θ)fv(t) = 0, ∀t∈ [0, av) and ∀v ∈ V , (53)
∫

t∈[0,∞)

γv(θ)fv(t)dt= l̂v(θ)tv, ∀v ∈ V , (54)

∫

t∈[0,t′)

γv(θ)fv(t)dt≤ l̂v(θ)(t
′− av), ∀t′ ∈ [av , av + tv) and ∀v ∈ V . (55)

Moreover, from (2) we have that

W (f1, ..., fn) =
∑

v∈V

wv

[γv(θ)lv]tv

∫

t∈[0,∞)

(t− av)γv(θ)fv(t)dt=
∑

v∈V

wv

l̂v(θ)tv

∫

t∈[0,∞)

(t− av)γv(θ)fv(t)dt.

Thus, we obtain that the relaxation R’ of model Q is equivalent to:

min
∑

v∈V

wv

l̂v(θ)tv

∫

t∈[0,∞)

(t− av)γv(θ)fv(t)dt+
1

2

∑

v∈V

wvtv

s.t. (52)–(55),(26),

which can be equivalently transformed to ZF(θ) by replacing γv(θ)fv(t) with f̂v(t). This com-

pletes the proof of Theorem 4. �

Online Appendix K: An Illustrative Example for Computing ZF(Θ) of the CBAPQ

Consider an instance of the CBAPQ with four vessels, where n = 4, a1 = a2 = a3 = a4 = 0,

t1 = t2 = t3 = t4 = 1, l1 = l2 = 1, l3 = l4 = 2, k1 = k2 = 2, k3 = k4 = 1, w1 =w2 =w3 =w4 = 1, and

B =K = 2. Its optimal berth allocation is to handle vessels 1, 2, 3, and 4 sequentially, as shown

in Figure 6, with an objective value Z∗ = 1+ 2 + 3+ 4 = 10. Let Θ = {0,1,0.5}. To compute

ZF(Θ) =maxθ∈ΘZF(θ), we calculate ZF(θ) for θ= 0, 1, and 0.5 as follows:

For θ= 0, we have ZF(θ) =ZF(0), which equals the lower bound ZF of the CBAP. Noting that

wv/(lvtv) = 1, 1, 0.5, and 0.5 for v = 1 , 2, 3, and 4, respectively, we can apply Algorithm 1 to

obtain an optimal solution [f1, f2, f3, f4] to ZF, by setting f1(t) = f2(t) = 1 for t∈ [0,1), f3(t) = 2

for t∈ [1,2), f4(t) = 2 for t∈ [2,3), and others to zero. Thus, ZF(0) = 1+1+2+3= 7.

47

Time

Berth

0

1

20 3 41

21

3 4
B = 2

(a) An optimal berth allocation with Z∗ = 10.

0

1

0

B = 2

t

∑4
v=1 fv(t)

1
3

2 2 3
9

4

(b) A stacked bar chart for an optimal solution

[f1, f2, f3, f4] to ZF(0.5).

Figure 6 Illustration of the computation of ZF(Θ) for the instance of the CBAPQ in Section K.

For θ = 1, we have ZF(θ) = ZF(1). By B =K = 2, we have λ= B/K = 1. Thus, the revised

vessel sizes l̂v(1) = kv/lv equal 2, 2, 1, 1 for v = 1, 2, 3, and 4, respectively. This implies that

wv/[l̂v(1)tv] = 0.5, 0.5, 1, and 1 for v= 1, 2, 3, and 4, respectively. Based on this, we can apply

Algorithm 1 to obtain an optimal solution [f1, f2, f3, f4] to ZF(1), by setting f3(t) = f4(t) = 1

for t ∈ [0,1), f1(t) = 2 for t ∈ [1,2), f2(t) = 2 for t ∈ [2,3), and others equal to zero. Thus,

ZF(1) = 1+1+2+3= 7.

When θ = 0.5, we have ZF(θ) = ZF(0.5). By B = K = 2, we have λ = B/K = 1. Thus, the

revised vessel sizes l̂v(0.5) = 0.5kv + 0.5lv equal 1.5 for all v ∈ {1,2,3,4}. This implies that

wv/[l̂v(0.5)tv] = 2/3 for all v ∈ {1,2,3,4}. Based on this, we can apply Algorithm 1 to obtain an

optimal solution [f1, f2, f3, f4] to ZF(0.5), by setting f1(t) = 1.5 for t∈ [0,1), setting f2(t) = 0.5

for t ∈ [0,1) and f2(t) = 2 for t ∈ [1,1.5), setting f3(t) = 2 for t ∈ [1,2.25), setting f4(t) = 2 for

t∈ [2.25,3), and setting others equal to zero. See Figure 6(b). Thus, we obtain that

ZF(0.5) =
1

1.5
(1.5× 0.5t2

∣

∣

1

0
+0.5× 0.5t2

∣

∣

1

0
+2× 0.5t2

∣

∣

1.5

1
+2× 0.5t2

∣

∣

2.25

1.5
+2× 0.5t2

∣

∣

3

2.25
)+ 0.5× 4× 1

= (1/1.5)(0.75+0.25+1.25+1.5× 4.5)+2= 8.

Hence, for Θ= {0,1,0.5}, we obtain ZF(Θ)=maxθ∈ΘZF(θ) = 8.

Online Appendix L: Details on Extending the New Exact Method to the CBAPQ

With the lower bound ZF(Θ) derived above we can extend our exact method as follows to solve

the CBAPQ. We still follow the branch-and-bound approach by using the same mixed-strategy

to select nodes to be branched.

From any selected node p with its partial solution E, we follow similar branching rules to

generate new nodes by selecting in turn each unassigned vessel v ∈ V \V (E), and then assigning

v all its admissible positions (xv, yv) in the space-time diagram. Let k(E, t) indicate the number

of quay cranes used by assigned vessels in E at time t. Due to the quay crane constraint, the

admissible positions (xv, yv) must satisfy that k(E, t) + kv ≤ K for all t ∈ [xv, xv + tv). With

this, we can extend the admissible positions defined for the CBAP to the CBAPQ.

The bounding procedure of the exact method for the CBAPQ is similar to that for the

CBAP. For each new node generated with a partial solution E′, we can compute a lower bound

ZF(Θ,E′) on the remaining problem by extending the method for computing ZF(Θ). To balance

the lower bound quality and the time consumption, we set Θ to be {0.0,0.01, ...,1.0} for the

48

computation of ZF(Θ) =maxθ∈ΘZF(θ) in the root node of the search tree, and let θ∗ indicate

the value of θ ∈Θ that maximizes ZF(θ), and then, for partial solutions E′ of other non-root

nodes in the search tree, we restrict Θ to be {0.0, θ∗,1.0} for the computation of ZF(Θ,E′).

To compute an upper bound from any selected node p, we can extend its partial solution E

to a feasible solution by a best-fit heuristic similar to Algorithm 3, where positions (xv, yv) to

be examined for each unassigned vessel v must satisfy k(E, t) + kv ≤K for all t∈ [xv, xv + tv),

due to the quay crane constraint.

Moreover, among the dominance rules derived for the CBAP, it can be verified that rule 1

and rule 3 are still valid for the CBAPQ. Rules 4 and 5 are valid for the CBAPQ only for

vessels r and v that have an equal number of pre-assigned quay cranes. Although rule 2 is not

valid for the CBAPQ, it can be revised by taking into account the quay crane constraint.

Online Appendix M: The CBAPQ with Variable-in-Time Pre-Assigned Quay Cranes

In the CBAPQ, the number of quay cranes assigned to each vessel is fixed during its handling

period. However, in some situations the number of quay cranes assigned to a vessel can vary

from time to time. For these situations, we need to solve a more generalized berth allocation

problem, referred to as the GCBAPQ for short, where each vessel v ∈ V is assigned a set of pairs

{(hv1, kv1),, (hvmv , kvmv)} (with hv1 = 0), indicating that for each 1≤ j ≤mv, the number of

quay cranes assigned to v is changed to kvj after hvj time units from the mooring time of v.

To derive a lower bound on the optimal solution to the GCBAPQ, we construct an instance

of the CBAPQ with fixed numbers of quay cranes assigned to the vessels, by splitting each

vessel into mv vessels, where for each vessel (v, j) with v ∈ V and 1≤ j ≤mv, its length lvj := lv,

handling time tvj := hv,j+1 − hvj (with hv,mv+1 := tv), arrival time avj := av + hvj, importance

weight wvj :=wv/mv, and its number of pre-assigned quay cranes equals kvj. It can be seen that

every solution {(xv, yv) : v ∈ V } to the GCBAPQ can be transformed to a feasible solution to this

CBAPQ instance, by setting xvj = xv +hvj and yvj = yv for v ∈ V and 1≤ j ≤mv, so that their

total weighted turnaround times,
∑

v∈V wv(xv + tv − av) and
∑

v∈V

∑mv

j=1wvj(xvj + tvj − avj),

have a difference of
∑

v∈V (mv −1)wvtv/mv. Thus, using the lower bound ZF(Θ) defined in (27)

for the CBAPQ instance, we can obtain that ZF(Θ) +
∑

v∈V (mv − 1)wvtv/mv is a valid lower

bound for the GCBAPQ.

Moreover, we can extend the exact method for the CBAPQ to the GCBAPQ by following

the same mixed-strategy to select nodes to be branched, adopting similar dominance rules, and

using the lower bound derived above. For the branching rules, as well as the heuristic used in

the bounding procedure, we need to revise the quay crane constraint for assigning a position

(x, y) to an unassigned vessel v for a partial solution E, as follows:

k(E, t)+ kvj ≤K, for x+hvj ≤ t < x+hv,j+1, 1≤ j ≤mv.

49

Online Appendix N: Integer Programming Models for the CBAPQ

First, we extend model IP1 of the CBAP (described in Online Appendix A) to the CBAPQ.

For the K quay cranes, we index them by 1, 2, ..., and K. The quay crane constraint is then

equivalent to that each crane k for 1≤ k ≤K can handle at most one vessel at any time. For

each v ∈ V and 1≤ k ≤K, we introduce a new binary variable zvk to indicate whether or not

vessel v is handled by crane k. To ensure that each vessel v is assigned kv cranes, we have:

K
∑

k=1

zvk = kv, for v ∈ V , (56)

and due to the quay crane constraint, we have:

zvk + zuk ≤ σvu +σuv +1, for 1≤ k≤K, (57)

where the binary variable σvu, as defined in IP1, equals 1 if vessel v is positioned completely

on the right of vessel u in the space-time diagram. Thus, adding (56), (57), and zvk ∈ {0,1}

for v ∈ V and 1 ≤ k ≤K to IP1, we obtain the following integer programming model for the

CBAPQ:

(IPQ1) min
∑

v∈V

wv(xv + tv − av)

s.t. (29) – (33), (56), and (57),

zvk ∈ {0,1}, for v ∈ V and 1≤ k≤K.

From the computational results, we know that, similar to model IP1 of the CBAP, the optimal

objective value of model IPQ1 and its linear programming relaxation often have a large gap.

Next, we extend model IP2 of the CBAP (described in Online Appendix A) to the CBAPQ,

given that the quay is discretized into a set of segments S, and that the planning horizon is

discretized into a set of periods T. For this, let Tvxy indicate the set of time periods t∈T such

that vessel v will be processed during period t if it starts berthing in quay segment y during

time period x. Thus, the quay crane constraint can be represented by:

∑

v∈V

∑

∀x∈T,y∈Sv:t∈Tvxy

kvπvxy ≤K, ∀t∈T, (58)

where the binary variable πvxy, as defined in IP2, equals 1 if vessel v starts berthing in quay

segment y during time period x. Thus, adding (58) to IP2, we obtain the following mixed integer

programming model for the CBAPQ:

(IPQ2) min
∑

v∈V

∑

x∈Tv

∑

y∈Sv

cvxyπvxy

s.t. (35)–(37), and (58).

It can be seen that, similar to model IP2 of the CBAP, model IPQ2 contains O(nBH) vari-

ables and O(n+BH) constraints, where B = |S| and H = |T|. Therefore, it can be very time

consuming to solve IPQ2 and its linear programming relaxation when B and H are large.

50

Online Appendix O: Computational Results for the Test of the Extensions to the CBAPQ

Table 7 reports the results on test data with 5≤ n≤ 24 for the CBAPQ, to compare the exten-

sion of the new exact method (Extended New BB) with using CPLEX on integer programming

models IPQ1 and IPQ2 of the CBAPQ. See Online Appendix N for details of the two models.

Table 7 Computational results on CBAPQ instances with 5≤ n≤ 24.

Set n B #inst
Extended New BB CPLEX on IPQ1 CPLEX on IPQ2

T0 T1 T2 G% S T1 G% S T2 G% S
a5wq 5 80 30 0 0 - 0.0 30 0 0.0 30 - - 0
a10wq 10 80 30 3 2 - 0.0 30 469 3.2 19 - - 0
a12wq 12 80 10 54 - - 0.0 10 - 20.3 0 - - 0
a15wq 15 80 10 1507 - - 0.7 9 - 41.8 0 - - 0
b10wq 10 10 10 0 0 0 0.0 10 40 0.0 10 30 0.0 10
b15wq 15 10 10 86 - 60 0.0 10 - 28.4 0 2026 2.5 3
b20wq 20 10 10 1540 - - 2.5 7 - 59.3 0 - 3.8 0
cwq 11–24 600 44 25 0 - 0.0 44 34 0.2 43 - - 0
Total 154 150 102 13

Table 8 reports the results on test data with 40≤ n≤ 160 for the CBAPQ, to compare the

extension of the new exact method with an extension of the meta-heuristic SWO (Extended

SWO) for the CBAPQ, and to compare the extension of the new lower bound ZF(Θ), where

Θ= {0.0,0.01, ...,1.0}, with a lower bound ZLPQ
1 derived from the linear programming relaxation

of model IPQ1.

Table 8 Computational results on CBAPQ instances with 40≤ n≤ 160.

Set n B #inst
Extended New BB Extended SWO ZF ZLPQ

1

Gub
lb∗% T Gub

lb∗% T Glb
ub∗% T Glb

ub∗% T
a40wq 40 80 30 8.6 3600 23.2 3600 7.2 0 83.7 1
a80wq 80 80 30 7.3 3600 20.1 3600 6.5 0 91.4 37
a120wq 12 80 30 6.7 3600 19.8 3600 6.2 0 94.2 86
a160wq 160 80 30 6.1 3600 18.8 3600 5.7 0 95.6 241

Online Appendix P: Extending the Reformulation of the CBAP for Other Objective Terms

The new model RF proposed in Section 2.1 of this paper for the CBAP can be extended to

reformulate other berth allocation problems with various objective terms in addition to the

total weighted turnaround time of the vessels. To demonstrate this, let us consider the following

two additional objective terms: (i) The total cost of tardiness of the vessels, and (ii) the total

cost of transporting cargo from berths to the yard, both of which have been studied in the

existing literature (see Meisel and Bierwirth (2009), Park and Kim (2003) for examples).

Consider any feasible solution {(v,xv, yv) : v ∈ V } ∈ Y. For each v ∈ V , let τv indicate the

requested departure time of vessel v. It can be seen that the tardiness of vessel v equals max{xv+

tv − τv,0}. Following Meisel and Bierwirth (2009), we consider linear tardiness costs for the

vessels. Let w(i)
v indicate the unit cost of tardiness for each vessel v. We obtain that the additional

objective term (i) for the total cost of tarindess can be represented in (59) as follows:

∑

v∈V

w(i)
v max{xv + tv − τv,0}. (59)

51

Moreover, for each v ∈ V , let ŷv indicate the preferred starting berth location for the least

cost, denoted by d̂v, for transporting cargo of vessel v ∈ V to the yard. It can be seen that the

distance between the preferred starting berth location and the allocated location of vessel v

equals |yv− ŷv|. Following Park and Kim (2003), we consider the additional cost for transporting

cargo between the allocated location yv and the yard to be linear in |yv − ŷv|. Let w
(ii)
v indicate

the additional transportation cost per unit distance. We obtain that the additional objective

term (ii) for the total cost of transporting cargo between berths and the yard can be represented

in (60) as follows:

∑

v∈V

(d̂v +w(ii)
v |yv − ŷv|). (60)

As a result, model IP1 of the CBAP can be extended to the problem with the above two

additional objective items by revising the objective to

min
∑

v∈V

wv(xv + tv − av)+
∑

v∈V

w(i)
v max{xv + tv − τv,0}+

∑

v∈V

(d̂v +w(ii)
v |yv − ŷv|). (61)

Next, we are going to show how model RF for the CBAP can be extended to incorporate the

two additional objective terms represented in (59) and (60). To reformulate (59), we introduce

a new function rv(t) for each v ∈ V and t≥ 0, to indicate the quay space occupied by vessel v

at time t or later, which can be represented by the following staircase function with two pieces:

rv(t) =

{

lv, for t∈ [0, xv + tv),
0, for t∈ [xv + tv,∞).

(62)

Since
∫

t∈[τv,∞)
rv(t)dt= lv max{xv+tv−τv,0}, we can reformulate (59) as a function on [r1, ..., rn]

as follows:

∑

v∈V

w(i)
v min{xv + tv − τv,0}=

∑

v∈V

w(i)
v

lv

∫

t∈[τv,∞)

rv(t)dt. (63)

To reformulate (60), note that |yv − ŷv|=max{ŷv − yv,0}+max{yv − ŷv,0}. For each v ∈ V ,

we introduce a new function ηv(s) for s ∈ [0,B), to indicate the length of duration for vessel v

to occupy any berth location at or below s, which can be represented by the following staircase

function with two pieces:

ηv(s) =

{

0, for s ∈ [0, yv),
tv, for s ∈ [yv,B).

(64)

It can be seen that

∫

s∈[0,ŷv)

ηv(s)ds= tv max{ŷv − yv,0}. (65)

Moreover, for each v ∈ V , we introduce another binary function ξv(s) for s∈ [0,B), to indicate

the length of duration for vessel v to occupy any berth location at or above s:

ξv(s) =

{

tv, for s ∈ [0, yv + lv),
0, for s ∈ [yv + lv,B).

(66)

52

It can be seen that

∫

s∈[ŷv+lv,B)

ξv(s)ds= tv max{(yv + lv)− (ŷv + lv),0}= tv max{yv − ŷv,0}. (67)

By (65) and (67), we can reformulate (60) as a function on [η1, ..., ηn] as follows:

∑

v∈V

(d̂v +w(ii)
v |yv − ŷv|) =

∑

v∈V

w(ii)
v

tv

∫

s∈[0,ŷv)

ηv(s)ds+
∑

v∈V

w(ii)
v

tv

∫

s∈[ŷv+lv,B)

ξv(s)ds+
∑

v∈V

d̂v. (68)

Define W (i) and W (ii) as the following functions on [r1, ..., rn] and [ξ1, ..., ξn], respectively:

W (i)(r1, ..., rn) =
∑

v∈V

w(i)
v

lv

∫

t∈[τv,∞)

rv(t)dt, (69)

W (ii)(ξ1, ..., ξn) =
∑

v∈V

w(ii)
v

tv

∫

s∈[0,ŷv)

ηv(s)ds+
∑

v∈V

w(ii)
v

tv

∫

s∈[ŷv+lv,B)

ξv(s)ds. (70)

By (63) and (68), we can extend model RF to incorporate the two additional objective terms

as follows:

(ERF) min W (f1, ..., fn)+
1

2

∑

v∈V

wvtv +W (i)(r1, ..., rn)+W (ii)(ξ1, ..., ξn)+
∑

v∈V

d̂v

s.t. (1), (62), (64), (66), and {(v,xv, yv) : v ∈ V } ∈Y.

Remark 4. It can be seen that the objective function in model ERF above is linear in fv(t),

rv(t), ηv(s), and ξv(s). The new lower bound proposed in this paper for the RF is still valid for

model ERF, since the objective function of model RF is always less than or equal to that of

model ERF. To strengthen the lower bound, we can further derive various relaxations of model

ERF by following or extending our approach proposed in this paper for model RF. This requires

identifying a number of valid constraints on only vectors [f1, .., fn], [r1, ..., fn], and [ξ1, ..., ξn],

and using them to replace the constraints (1), (62), (64), (66), and {(v,xv, yv) : v ∈ V } ∈ Y of

model ERF. The valid constraints have to be included properly, so that solving the relaxation

can be not only computationally tractable, but also effective in providing tight lower bounds on

the optimal solutions to model ERF. Achieving this is challengning, but of significant research

value, and we therefore leave it to our future study.

