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Abstract 8 

The addition of a dynamic vibration absorber (DVA) to a vibrating structure could provide 9 

an economic solution for vibration suppressions if the absorber is properly designed and 10 

located onto the structure. A common design of the DVA is a sprung mass because of its 11 

simple structure and low cost. However, the vibration suppression performance of this kind 12 

of DVA is limited by the ratio between the absorber mass and the mass of the primary 13 

structure . In this paper, a beam-based DVA (beam DVA) is proposed and optimized for 14 

minimizing the resonant vibration of a general structure.  The vibration suppression 15 

performance of the proposed beam DVA depends on the mass ratio, the flexural rigidity and 16 

length of the beam. In comparison with the traditional sprung mass DVA, the proposed beam 17 

DVA shows more flexibility in vibration control design because it has more design 18 

parameters. With proper design, the beam DVA’s vibration suppression capability can 19 

outperform that of the traditional DVA under the same mass constraint. The general approach 20 

is illustrated using a benchmark cantilever beam as an example. The receptance theory is 21 

introduced to model the compound system consisting of the host beam and the attached beam-22 

based DVA. The model is validated through comparisons with the results from Abaqus as 23 

well as the Transfer Matrix method (TMM) method. Fixed-points theory is then employed to 24 

derive the analytical expressions for the optimum tuning ratio and damping ratio of the 25 

proposed beam absorber. A design guideline is then presented to choose the parameters of the 26 

beam absorber. Comparisons are finally presented between the beam absorber and the 27 

traditional DVA in terms of the vibration suppression effect. It is shown that the proposed 28 

beam absorber can outperform the traditional DVA by following this proposed guideline. 29 
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 1 

1. Introduction 2 

A Dynamic Vibration Absorber (DVA), also known as the tuned mass absorber, is a 3 

mechanical device designed to be attached to a primary dynamic structure in order to reduce 4 

its vibration or sound radiation. A traditional passive vibration absorber consists of a single 5 

degree-of-freedom (SDOF) mass-spring-damper system. The DVA can be used to reduce the 6 

unwanted vibration due to a resonant mode or the forced vibration of the primary structure. 7 

When properly tuned to deal with the vibration at the targeted frequency, the vibration energy 8 

can be transmitted efficiently from the primary structure to the DVA, leading to a reduction 9 

in the vibration of the primary structure. DVAs have been extensively applied in civil 10 

engineering [1-3] to strengthen the resistance of slender tall buildings subjected to wind loads 11 

or seismic excitation. 12 

Many criteria can be found in the literature for the optimal design of tuning frequency and 13 

damping ratios of the DVA to maximize its vibration suppression performance [4-7]. The 14 

most commonly used one is the H   criterion to minimize the maximum vibration 15 

amplitude of the primary structure. Common ways of achieving the H  optimal design of 16 

the traditional DVA is to apply the fixed-points theory proposed by Den Hartog in 1928 [4]. 17 

The theory states that there exist two fixed points, independent of the damping, in the 18 

frequency response spectrum of an undamped SDOF primary system connected with the 19 

traditional DVAs. The optimum tuning ratio is determined by making the two fixed points 20 

equally high in the spectrum and the optimum damping ratio is determined by making the 21 

two fixed points to be the highest points in the response spectrum. The H  design strategy 22 

works well for the narrow band control. To tackle the broadband problem like the random 23 

excitation, the 
2

H   optimization criterion can be applied. Warburton [5, 6] derived the 24 

optimum tuning ratio and damping ratio in order to minimize the mean square values of the 25 

vibration displacement or kinetic energy over a frequency band under various types of 26 

external excitations. Asami et al. [7] introduced the damped SDOF primary system and 27 

derived the series solution for the H  optimization and the analytical solution for the 2H  28 

optimization of the absorbers parameters. They confirmed that their solution of the optimal 29 

absorber parameters could be degenerated to the existing value by Den Hartog’s method [4] 30 

when the primary system’s damping is assumed to be zero.  31 
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There are many research works done to extend the fixed-points theory for global vibration 1 

control of continuous structures [8][9] and the optimimzation of variant design of DVA [10]. 2 

The limitations of the traditional mass spring DVA are mainly in three aspects. a) Their 3 

vibration suppression performance is limited once the mass ratio is fixed. Without sufficient 4 

absorber mass, the vibration suppression effect is not significant. Due to physical or practical 5 

constraints, the absorber mass is seldom larger than 20% of the mass of the primary structure. 6 

b) The stiffness of the spring can neither be too high or too low. The spring stiffness can’t be 7 

too low or else the static displacement will become very large, rendering it difficult to be 8 

implemented in practice. If the spring is too hard it can’t achieve vibration control at low 9 

frequency. c) Their vibration control performance is undermined if the resonance frequency 10 

deviates from the targeted value for which they are designed (also known as detuning effect). 11 

The solutions to the last question have been attempted by many researchers. The methods 12 

include developing active, semi-active or hybrid control devices [11-14] or adaptive vibration 13 

absorbers [15] whose stiffness varies with the excitation frequency. These devices are usually 14 

bulky and need external energy input. Acar and Yilmaz [16] developed a adaptive absorber 15 

consisting of a string-mass system equipped with negative stiffness tension mechanism.  16 

Their design allows the absorber’s natural frequency to be varied within a certain frequency 17 

range by using a small tuning actuator force. This kind of device provides a solution for the 18 

bulky and energy-consuming problem in the design of adaptive absorber. However, most of 19 

the adaptive absorbers with other physical mechanisms still have the size and energy 20 

problems. Meanwhile, strategies involving multiple tuned vibration dampers (MTVD) 21 

[17][18] are also investigated to overcome the detuning effect.  22 

As far as the authors know, there is still a lack of effort to address the challenges in a) and b). 23 

A beam type DVA which can have better vibration suppression performance under the same 24 

mass constraint as compared to the traditional spring mass DVA is proposed. Moreover, this 25 

type of DVA can easily control low frequency vibration by using a long beam as the absorber. 26 

Aida et al. [19] has reported the optimization of a beam type DVA connected to the host beam 27 

through spring and damping element. Under the same boundary constraints, the beam DVA 28 

and the host beam can be reduced to a 2-DOF system, and then the fixed-points theory is 29 

used to obtain the optimum tuning ratio and damping ratio. In their optimization method, the 30 

vibration control effect of the beam type DVA is still dependent on the mass ratio between 31 

the two beams. Moreover, the spring and damping element are required to be accurately 32 

manufactured to their optimum value. On the other hand, the proposed beam DVA of this 33 

paper doesn’t require any extra stiffness element and its vibration control effect is not solely 34 
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dependent on the mass ratio. The working principle of the proposed beam DVA is described 1 

in Sections 3 and 6 of this paper. 2 

The idea of the beam-based dynamic vibration absorber proposed in this paper was inspired 3 

by the work of Tso et al. [14] as shown in Fig. 1, in which a hybrid DVA capable of achieving 4 

the global control in a broadband vibration of a primary beam structure is established. This 5 

hybrid DVA has a passive control part consisting of a rotational beam structure with a lumped 6 

mass. Similarly, the passive dynamic vibration absorber used in this paper consists of a 7 

rotational beam structure with viscous damping which is optimized based on the fixed-points 8 

theory. This basic configuration lays the foundation for developing more complicated 9 

absorbers based on the continuous beam structure, by attaching a lumped mass at the free end 10 

of the beam, adding constrained damping layer to the beam, etc. 11 

 R s

 12 

Fig.1. A cantilever beam carrying the proposed HVA at the end of the beam [14] 13 

The layout of this paper is arranged as follows. In Section 2, the receptance theory is 14 

introduced to derive the receptance expression of a general structure attached with a general 15 

DVA. To illustrate the verification of the receptance theory, the detailed modeling of the L-16 

shaped compound system is presented in Section 3. The receptance of beam absorber, is 17 

defined as the ratio of the rotational angle from the attached point to the moment transferred 18 

to the primary beam. The continuous conditions at the connecting point include the 19 

equivalence of the rotation angle, shear force and moment at the connecting point. The 20 

receptance expression of the cantilever primary beam according to similar procedure in 21 

Section 2 can be derived. In Section 4, a specific case study is used to validate the modeling 22 

method by comparing the results with these from Abaqus and Transfer Matrix Method(TMM). 23 

In Section 5, the fixed points are shown to exist, which are independent of the damping ratio 24 

in the beam absorber. The fixed-points theory is then used to obtain the analytical formula of 25 

the optimum tuning ratio and damping ratio. In Section 6, the relationship of the tuning ratio 26 

with the physical parameters of the compound system is demonstrated. A guideline for 27 

designing the beam absorber is then given. In Section 7, a comparison of the beam absorber 28 
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and the traditional DVA in vibration suppression performance is conducted. It is shown that 1 

the beam absorber can outperform the traditional DVA when the geometry is properly 2 

designed. Conclusions are presented with future work being discussed in Section 8. 3 

 4 

2. Receptance theory of a general dynamic structure connected with a discrete 5 

DVA 6 

In this Section, a brief review of the receptance theory is presented first and then the 7 

receptance theory is applied to obtain the displacement response of a multimode system 8 

connected with a traditional DVA (i.e., mass-spring-damper) under external harmonic force 9 

excitation. 10 

2.1 Modal receptance of a dynamic structure 11 

When a system is subjected to a general harmonic unit excitation, its vibration response is 12 

called the receptance [20]. The so-called response can be defined as the complex harmonic 13 

displacement or rotation due to a unit real harmonic force or moment. 14 

Consider a multimode system subjected to a single harmonic force cosF t  at ( , )s sx y  15 

as shown in Fig. 2(a).  16 

jm

jk
jc

jQ

( , y )s sx
a general  2D structure

cosF t

 17 

Fig. 2 (a) The general structure subjected to a harmonic external concentrated force 18 

(b) The mass-spring-damper system in the thj  mode coordinate 19 

The generalized equation of motion in the thj  modal coordinate as shown in Fig. 2(b) is 20 

given by  21 
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 Re ( , )
j j j j j j j j s s

i tm q c q k q Q F x y e            (1) 1 

where , ,
j j j

m c k  are the modal mass, damping loss coefficient, and stiffness, respectively,  2 

corresponding to the thj   mode of the dynamic system. The right-hand side of Eq. (1) 3 

represents the real part of the complex dynamic response. ( , )
j

x y  is the thj  mode shape 4 

function. ( , )j s sF x y  is the magnitude of the general force 
j

Q  exerting on the thj  mode. 5 

The receptance of the thj  mode represents the complex displacement due to a unit real force 6 

in the decoupled thj  mode system written as 7 

 
2 2

1

( 2 )
jj

j j j j
m i


  


   

 (2) 8 

where , 2
j j j j j j j

k m c k m     are the thj  modal frequency and damping loss 9 

factor respectively. 10 

Thus, the displacement at any point  ,x y  writes 11 

 
  2 2 2

1 1

2 2
1

( , ) ( , ) ( , ) ( , )
, , Re Re

( 2 )

( , ) ( , )
Re Re ( , ) ( , )

( 2 )

i t i t
j j s s j j s s

j jj j j j j j j

i t
j j s s i t

j jj j s s
j jj j j j

e e

e
e

F x y x y F x y x y
w x y t

m c i k m i

F x y x y
F x y x y

k i

 




   
    

 
  

  

 

 





   
                   

 
        

 


1





 
 
  


  (3) 12 

 13 

2.2 The receptance of a dynamic structure connected with a DVA under external force 14 

Consider the case when a traditional DVA is connected to the primary structure at ( , )
s s

x y  15 

with a harmonic external force Re( ( ))eF e i t  exerted at  ,e ex y  of the structure as shown 16 

in Fig. 3.  17 
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sF

sF

general structure

m

eF

 ,e ex y  ,s sx y

k c

 1 

Fig 3. A dynamic structure connected with a mass-spring- damper  2 

 3 

The reaction force of the DVA on the primary structure is Re( exp )
s

F i t . Let 
aux

  and 4 

( , )
s s

W x y  represent the receptance of the DVA and the complex displacement at the 5 

connecting point ( , )
s s

x y , respectively. The displacement ( , )
s s

W x y  can be related to the 6 

magnitude of the reacting force 
s

F  as  7 

 ( , )
s s aux s

W x y F   (4) 8 

According to Eq. (2), the displacement of the primary structure at point ( , )x y  due to the 9 

reaction force of DVA, Re( )i t

s
F e  , and the external force Re( )i t

e
F e   can be written as  10 

 
1 1

( , ) ( , ) ( , ) ( , ) ( , )
j jj j s s s j jj j e e e

j j

W x y x y x y F x y x y F     
 

 

     (5) 11 

The complex displacement of the primary structure at the connecting point ( , )s sx y   is 12 

therefore written as 13 

 
1 1

( , ) ( , ) ( , ) ( , ) ( , )s s j s s jj j s s s j s s jj j e e e
j j

W x y x y x y F x y x y F     
 

 
     (6) 14 

Substituting Eq. (4) to Eq. (6) gives the complex displacement at point ( , )s sx y  written as 15 
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1 1

1

2

1

( , )
( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )

1 ( , )

s s
s s j s s jj j s s j s s jj j e e e

j jaux

j s s j e e jj
j

e
jj

j s s
j aux

W x y
W x y x y x y x y x y F

x y x y

F
x y

     


  






 

 








       


   

 





 (7) 1 

Substituting Eq. (7) to Eq. (6) gives the complex displacement at point ( , )x y  written as 2 

 

1 1

1

2

1

( , ) ( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , )
1 ( , )

s s
j jj j s s j jj j e e e e

j jauxe

kk
k s s k e e

k aux
j jj j s s j e e e

kk
k s s

j aux

W x y W x y
x y x y x y x y F F

F

x y x y

x y x y x y F
x y

   


 
   



 

 








             
 
 
 
    
   

 





 

 

1

2

1 1 1

2

1

{ ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) }

1 ( , )

e
j

kk kk
j j e e jj j jj j s s k s s k e e j jj j e e k s s

j k kaux aux

kk
k s s

k aux

F

x y x y x y x y x y x y x y x y x y

x y

          
 








  

  




 






  



 3 

  (8) 4 
 5 

From Eq. (8), it can be seen that the receptance of the primary structure connected with a 6 

DVA depends on both the modal characters of the primary structure and the receptance aux  7 

of the DVA.  It should also be noted that although the DVA is depicted as the traditional 8 

SDOF mass-spring-damper design in Fig.3, its design can be generalized to include the 9 

proposed continuous beam absorber as well. Hence, in the beam absorber case, the reaction 10 

force from the DVA is the turning moment. The receptance of Eq. (4) should become the 11 

rotational angle of the connecting point divided by the reactional moment from the DVA to 12 

the primary structure.  13 

 14 

3. Analytical model of the L-shape beam system 15 

Consider a L-shape beam system as shown in Fig. 4. The primary beam is excited by the 16 

distributed force ( )r t   covering area 
1

( )g x   of the beam. In the following analysis, 17 

subscripts 1 and 2 stand for the primary beam and the beam absorber, respectively. 18 
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Coordinates 
1

x  and 
2

x  are along the axial directions of the primary beam and the beam 1 

absorber, respectively.  2 

 1 1w x

 2 2w x

1x
2x


2( , )x t

   r t g x

 3 

Fig.4. The model of L shaped beam system 4 

The equation of motion of the primary beam is written as 5 

 1 1 1 1 1 1 1( ) ( )''''A w E I w r t g x     (9) 6 

Based on the damping mechanism of the beam [21], the beam with viscous damping is used 7 

to model the beam absorber as: 8 

 
4 2

2 2 2
2 2 2 2 2 2 2 24 2

2

( , ) ( , ) ( , )
( ) ( )

x t x t x t
E I c A c t x A t x

x t t
        

    
  

  (10) 9 

The general flexural displacement of the beam absorber is 10 

 2 2 2 2( , ) ( ) ( , )w x t t x x t     (11) 11 

where  t   is the rotational angle from the connecting point transmitted to the beam 12 

absorber and 2( , )x t  is the deflection due to strain deformation in the beam absorber. The 13 

beam absorber is modeled as a cantilever beam subjected to the rotational motion from the 14 

clamped end. The detailed modeling of the beam absorber is given in Appendix A. 15 

The continuous conditions at the connecting point between the primary structure and the 16 

beam absorber may be written as in [22]: 17 
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 

2

2 1 1

1 1 1 1 2 1 1

1 1 1 1

(0, ) 0

(0, ) ( , ) ( )

( , ) ( , )

( , )

w t

w t w L t t

E I w L t m w L t

E I w L t M t






  


 
  


  (12) 1 

where 2m  is the mass of the beam absorber and  M t  is the reaction moment exerted by 2 

the beam absorber on the primary beam. 3 

The mode shape functions of the primary cantilever beam structure satisfy the mass 4 

orthogonality and normalization principle. They can be written as  5 

  
   

1 1 1 1 1 1 1 1 1 1 1 1

1

( ) cos( / ) cosh( / ) sin( / ) sinh( / )

cos( ) cosh( ) / sin( ) sinh( )

i i i i i i i

i i i i i

x A b x L b x L r b x L b x L

r b b b b

    

   
  (13) 6 

 

1

1

1 1 1 1 1 1 10

2
1 1 1 1 1 1 10

1,
( ) ( ) , 1,2,3

0,

( ) ( )

L

i j ij

L

i j i ij

i j
A x x dx i j

i j

E I x x dx

   

  


   

   






  (14) 7 

where cos cosh 1i ib b   , and ib takes the values of 1.875, 4.694 and 7.855 for the first three 8 

modes of a cantilever beam. Using Eqs. (9), (12) and (14), the response of the primary 9 

structure can be projected to the modal coordinate: 10 

 

1
1 1

1 1

1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 10
1

1 1 1 1 1 1 1 1 1 1 1 10 0
1

( , ) ( ) ( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

LL L
j j i j i

i

L L

i j i j
i

E I w x t x E I w x t x E I x x dx q t

A x x dx q t r t g x x dx

   

   









     

 



 

  (15) 11 

Using the boundary conditions in Eq. (12), Eq. (15) can be written as 12 

 

 

1 1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0
1 1

2 1 1 1 1 1 1 1 1 1 1 10
1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

L L

i j i i j i
i i

L

i j i j j
i

E I x x dx q t A x x dx q t

m L L q t M t L r t g x x dx

    

   

 

 





  

  

  

 




  (16) 13 

Applying Laplace transformation to Eq. (16) and making use of the orthogonality and the 14 

normalization conditions in Eq. (14), Eq. (16) may be written as 15 

 
  12 2

1 1 1 1 1 1 10

2
2 1 1

(1 ) (s) ( ) ( ) ( ) ( )

( )

L

i i i i i

i i

s Q M s L R s g x x dx

m L

  

 

      




  (17) 16 
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where   ( ( ))M s Laplace M t   (18) 1 

The angular displacement of the DVA can be related to the reaction moment and written as 2 

    auxs M s     (19) 3 

where    ( ( ))s Laplace t   (20)4 

Substituting Eq.(19) to Eq.(17), the flexural displacement of the primary beam can be written 5 

as 6 

 

1

1

1 1 1 1 1 1 1 1 1 1 1 1
0

1 1

1 1 1 1 1 1 1 1 1 1
0

1 1

( s) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

L

j jj j j jj j
j j

L
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where 2 21 (1 )jj j j s         (22) 8 

The rotational angle at the attached point of the beam absorber can be written as  9 
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  (23) 10 

Substituting Eq. (23) to Eq. (21) gives  11 
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  (24) 12 

The term aux  depends on the specific physical configuration of the beam absorber. Using 13 

modal decomposition in Eq. (10) yields: 14 
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where 2 2( )i x   is the ith   mode shape of the cantilever beam and satisfies the mass 16 

orthogonality and normalization condition as follows 17 
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The modal damping ratio i  is defined as 3 

  2 22i ic A     (28) 4 

Applying Laplace transformation to Eq. (11), we may write 5 
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Applying Laplace transformation to Eq. (25), we may write  7 
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2
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The receptance of the beam absorber can be written as 10 
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 12 

 13 

4. Validation of the modeling method 14 

A numerical case is presented in the following to validate the accuracy of the proposed 15 

modeling method by comparing the results with the finite element analysis using Abaqus and 16 

the TMM method. The material and geometric properties of the primary beam and beam 17 

absorber are listed in Table 1.  18 

 19 

 20 
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Table 1. The material property and geometry size of the primary and beam absorber 1 

 Density/ 
kg/m3 

Young’s modulus/ 
Gpa 

Length/ 
mm 

Width/ 
mm 

Thickness/ 
mm 

Primary beam 7890 206 515.75 12.7 4 

Beam absorber 2766 69 177.8 12.7 3.05 

 2 

In this validation study, both the primary and absorber beam dampings are set to zero. So 3 

0i   in Eq. (32). The primary structure is subjected to a white noise signal at the middle 4 

of the span. So 1( ) ( 0.5 )g x x L    in Eq. (24). Consider the first three modes of the 5 

cantilever beam according to Eq. (24), the receptance at the end of the beam can be written 6 

as:  7 

 8 
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  (33) 10 

where 1 aux  is the summation of the first fifty terms in Eq.(32) and jj  is calculated 11 

according to Eq. (22). 12 

 13 

The receptance at the end of the primary beam is calculated by three different methods: 14 

Abaqus, TMM and the receptance theory in Section 3 and the numerical results are plotted 15 

in Fig. 5 for comparison. The receptance theory uses the first three modes in the primary 16 

beam and the first fifty modes of the beam absorber as shown in Eq. (33). In Abaqus analysis, 17 

B21 element is used to model the L-shaped beam system. The direct steady state analysis is 18 

conducted to get the displacement response at the end of the primary beam. The TMM 19 

method comes from the dynamic stiffness matrix method, which is briefly introduced in 20 

Appendix B. 21 

 22 

 23 
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 1 

Fig. 5. Receptance magnitude 1 1( , ) ( )W L s R s  at the end of the primary beam with and without 2 

absorber 3 

In this case, the first two natural frequencies of the primary beam are 12.4 Hz and 77.8 Hz. 4 

The first natural frequency of the beam absorber is 77.8 Hz. Fig. 5 shows the typical 5 

phenomenon with the fundamental DVA theory that the original second order resonance is 6 

suppressed at the cost of two newly appearing peaks. 7 

In Fig.5, the frequency responses by the three methods match very well at the resonant 8 

frequencies of the first and third vibration modes and also at the antiresonant frequency. The 9 

resonant frequency of the second mode is found to be 52Hz using the receptance theory, and 10 

54Hz by both the Abaqus and TMM methods. This difference may be due to the ignorance 11 

of the axial deformation and the coupling between the axial and flexural movements in the 12 

host beam and beam DVA when using the receptance theory. On the other hand, the TMM 13 

method and Abaqus both take the axial deformation and the coupling between axial and 14 

flexural movement into account. In conclusion, besides the small difference, the receptance 15 

theory can still be used to predict a good approximation of the frequency response of the 16 

compound beam system. 17 

 18 
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5. The optimum parameters of the fixed-points theory 1 

When the thN  order resonance frequency of the primary beam is close to the 
thr  order 2 

resonance frequency of the beam absorber, Eq. (24) can be simplified to describe the 3 

contribution from the thN  order mode of the primary beam and aux  to that from the thr  4 

order mode of the beam absorber. For the sake of convenience, all the receptance terms in 5 

Eqs. (22), (24) and (32) are transformed to the dimensionless form.  6 

 2 2 2 21 (1 ) 1 1NN N N N f                 (34) 7 
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where 10 

  2 2 1 , ,N N N N r Nf             (37) 11 
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The dimensionless form of the receptance in Eq. (36) can be written as 13 

 
 

    
2 2

2 2 2 2 2

2
( )

1 2 1

r

r

f i f
H f

f f ε f i f ε f

  

  

 
         

   (39) 14 

To study the effect of the damping r  on the receptance  H f , three values of r  (0, 0.3 15 

and  ) with , and Nε   calculated from Table 1 are used to calculate  H f  using Eq. 16 

(39) and its magnitude  H f  is plotted in Fig. 6.  It can be observed from Fig. 6 that the 17 



 

16 
 

dimensionless magnitude  H f   has two fixed points which are independent of the 1 

damping ratio. It shows that the fixed-points theory can be employed to obtain the optimum 2 

tuning ratio and damping ratio of the proposed DVA.  3 
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Thus the magnitudes of the two fixed points are made equal. 6 
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where  2 2u ε ε   (44) 9 

For convenience, the optimum damping ratio is chosen to be the root mean square value 10 

1

2
r f and 

2

2
r f using Eq. (43) and it can be written as  11 
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 1 

 2 

Fig. 6 Dimensionless magnitude of receptance  H f   versus frequency at different damping 3 

ratios. 4 

 5 

6. Design guideline of the beam absorber 6 

The optimum tuning ratio of the beam absorber in Eq. (41) and the damping ratio in Eq. (45) 7 

depend on the term   as shown in Eq. (38), which is different from the traditional discrete 8 

DVAs whose optimum tuning ratio and damping ratio depend solely on the mass ratio [4]. In 9 

order to show the relationship of these optimum parameters with the physical parameters (i.e., 10 

dimensions and material property of the beam absorber) the dimensionless mode shape 11 

functions ( )i   are introduced as 12 
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It should be noted that the dimensionless mode shape function ( )i   in Eq.(46) is different 14 

from the mode shape functions    1 1 2 2 and i ix x   defined in Eqs. (13), (14), (26) and (27). 15 
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These mode shape functions are normalized to the mass of the beam they belong to and thus 1 

they have the unit of kg-1/2. On the other hand, Eq. (46) is dimensionless. 2 
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The relationship of mass ratio N   and  can be derived by substituting of Eq.(47) and 6 

Eq.(49) to Eq. (48). 7 
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where 9 
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 10 

 11 
According to Eqs. (47) to (49)，once the close resonant frequency orders  and N r   are 12 

determined, N  is proportional to the mass ratio of the beam absorber.   is proportional 13 

to the ratio of EI L . From Eq. (48), the optimum tuning ratio square is dependent on the 14 

mass ratio, ratio of EI L  and the length ratio. The relationship of   and mass ratio is more 15 

pronounced in Eq. (50). Under the same mass ratio, Eq. (50) has different sets of solutions of 16 

  and 1 2L L  that can be achieved by choosing proper material and geometry parameters 17 

of the beam DVA. The proper design procedure should be setting   first according to the 18 
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vibration reduction request. Then choose the materials for both beams. After that, put a 1 

chosen value of the mass ratio to Eq.(48) and the length ratio is hence derived. The order of 2 

obtaining the length ratio and mass ratio can be changed. The three variables, namely the 3 

length, width and thickness of the beam absorber, can then be calculated by solving the linear 4 

algebraic equations (47), (48) and (49). The detailed derivation of Eqs. (47) to (49) is 5 

presented in Appendix C. 6 

 7 

7. Comparisons between the beam absorber and the traditional DVA 8 

In this Section, the proposed beam absorber is compared with the traditional single degree-9 

of-freedom spring-mass-damper system. The two types of absorbers are shown in Fig. 7. The 10 

same primary cantilever beam is used again here. The geometry of the beam absorber is 11 

designed according to the guideline established in Section 6. The dimensionless magnitude 12 

of the receptance of the primary beam attached to two types of absorbers are compared.  13 

The receptance of the primary beam attached with a beam absorber as illustrated in Fig. 7a 14 

is written as 15 
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  (51) 16 

The dimensionless response magnitude at the two fixed points can be shown to be 17 

   1 2

2

( 1)
H f H f

 
 


   (52) 18 

where  is the ratio of /EI L  between two beams as illustrated in Eq.(49). 19 

The receptance of the primary beam with a traditional DVA attached as illustrated in Fig. 7b 20 

is written as 21 
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  (53) 22 

where  23 
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  (54) 1 

andn   are resonance frequency and damping ratio of the traditional DVA, respectively. 2 

andN N    have the same definition as the case of beam absorber. Note andt tf   have 3 

different definitions from Eq. (37). 4 

The optimum tuning ratio and damping ratio of the traditional DVA can be derived using the 5 

fixed-points theory as a function of N  and written as [4] 6 
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  (55) 7 

The maximum response amplitude may be approximated by the amplitude at the two fixed 8 

points written as 9 

    1 2

2N
t t t t

N

H f H f


     (56) 10 

Using Eqs. (52) and (56), the condition required for the beam absorber to provide larger 11 

suppression than the traditional DVA in the targeted mode can be written as  12 

22
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Nε ε
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 (57) 13 

Define the ratio of the maximum amplitude of the two types of DVA as  , Nf ε   written as 14 

   2
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N
N

f ε
ε ε
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


 

  (58) 15 

When  , 1Nf ε   , the effect of vibration suppression of the beam absorber outperforms 16 

that of the traditional DVA. Eq. (47) shows that N  varies from 0.04 to 0.6 when the mass 17 

ratio varies from 1% to 15%. The contour plot of  , Nf ε    is presented in Fig. 8. It is 18 

evident that once the mass ratio is fixed, the traditional DVA has fixed optimum value 19 

whereas the beam absorber outperforms the traditional DVA by choosing ε  above the 20 

threshold value as shown by the curve of  , 1Nf ε   in Fig. 8. 21 

Take the primary beam in Table.1 as an example. The mass ratio is 0.1, then 0.4N  . From 22 

Fig. 8, the threshold of ε  is close to 0.3. Choose 0.3, 0.35, 0.4ε . The beam absorber has 23 



 

21 
 

the same material properties as in Table. 1. The related dimensions of the beam absorber and 1 

the parameters of the traditional DVA are shown in Table.2. The dimensionless magnitude of 2 

primary beam attached with the beam absorber and traditional DVA are shown in Fig. 9.  3 

The ratios of the maximum amplitude of the two types of DVA  , Nf ε   are calculated for 4 

the three sets of  = 0.3, 0.35, 0.4 using Eq. (58) to be 0.92, 0.84 and 0.77, respectively. It 5 

can be seen that the proposed beam absorber offers further reduction of the resonant vibration 6 

of the primary beam by 8%, 16% and 23% respectively, as compared to the traditional DVA. 7 

Eq. (50) shows that the higher   is, the more suppression can be achieved. Reviewing Eq. 8 

(48) or Eq. (50), it’s fair to say the mass ratio is not a crucial factor in the design of the beam 9 

DVA. A better performance of the proposed beam DVA at a fixed mass ratio can be achieved 10 

by choosing a higher value of   and satisfying Eq. (48).  Eq. (48) or Eq. (50) reflects the 11 

advantage of the proposed DVA. The mass ratio, length ratio and   of the beam DVA are 12 

related. Although the optimum tuning performance and parameters appear to be solely 13 

dependent on   as shown in Eq.(41), they are actually related to the mass ratio and length 14 

ratio as well. To some degree, the length ratio, the bending stiffness ratio and the mass ratio 15 

involved in Eq.(48) all contribute to the optimum tuning performance by the beam DVA. The 16 

presence of the other factors enhances the flexibility of the optimum tuning of the beam DVA. 17 

That’s why the beam DVA is superior to the traditional DVA under the same mass ratio 18 

constraint. Its optimum performance is not solely dependent on the mass ratio as in the case 19 

of the traditional DVA. 20 

A further remark is that theoretically there is no limit for the value of   when the mass ratio 21 

is fixed. However, from Eqs. (41) and (45) the higher the value of  , the higher the damping 22 

ratio and tuning ratio will be. So in practice, the choice of   depends on whether the tuning 23 

and the damping ratios can satisfy Eq.(48) and Eq.(45), respectively.  24 
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Fig. 7 (a) The primary beam connected with a beam absorber 6 

(b) The primary beam connected with a traditional DVA 7 

 8 

                      Fig. 8 The contour plot of  , Nf ε   9 
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Table 2 The optimum parameters of the beam absorber and the traditional DVA 2 

0.4N    Beam Absorber  Traditional DVA 

Length 

/ mm  

Width 

/ mm   

Thickness 

/ mm   

modal 
damping 
ratio opt  

Eq.(45)  

 , Nf ε    

Eq.(58) 

-1

0.0207 Kg,

2519.4 N/m,

4.725 N/(ms )

m

k

c







 
0.3ε    170.4 16.2 2.7 0.31 0.92 

0.35ε    180.6 13.4 3.1 0.33 0.84 

0.4ε    189.6 11.4 3.5 0.35 0.77 
 3 

 4 

Fig. 9 Dimensionless magnitudes of the receptance of the traditional DVA  tH f and that of the 5 

beam absorber  H f  with  = 0.3, 0.35,0.4 and N = 0.4.  6 
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8.  Conclusions 2 

A beam-based DVA is proposed and compared to the traditional discrete type of DVA (i.e, 3 

the mass-spring-damper system). The proposed beam absorber can achieve more vibration 4 

reduction under the same mass ratio than the traditional DVA due to the flexibility in the 5 

design of its geometry and physical properties. It can also address the vibration resonances 6 

at low frequency more conveniently by changing its geometry shape to attain the target low 7 

frequency. By combining the receptance theory with the fixed-points theory, analytical 8 

expressions of the optimum tuning ratio and damping ratio of the continuous beam-based 9 

DVA are derived to guide the absorber design. The traditional mass spring damper’s optimal 10 

performance is constrained by the mass ratio. However, this study shows that there exists a 11 

set of optimal material and geometry parameters which allows the beam absorber to 12 

outperform its mass-spring-damper counterpart under the same mass ratio constraints. A 13 

design guideline is established to choose the material and geometry parameters of the beam 14 

absorber. The proposed absorber may be applied to suppress resonant vibrations of flexible 15 

robotic arms in the future. 16 

 17 

  18 
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Appendix A 1 

This appendix develops the analytical model of cantilever beam with support rotation. 2 

The cantilever beam suffers from the support rotation is shown in Fig. A.1 and is modeled as 3 

an Euler-Bernoulli beam. E  is the elastic modulus, I  is the moment of the beam, m is the 4 

mass of per unit length, A  is the cross-Section area and l  is the length of the beam. The 5 

total displacement of one point on the cantilever beam under the base excitation is defined 6 

as: 7 

 ( , ) ( ) ( , )w x t t x x t     (A.1) 8 

where ( , )x t  is the deflection curve, ( )t  is the rotation angle from the ground. 9 

 10 

 11 

Fig.A.1. Cantilever beam under base rotation 12 

 13 

 14 

Fig.A.2. A small segment of beam 15 

 16 
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 1 

Fig.A.3. Force analysis on the cross Section 2 

As illustrated in Ref. [21], one types of damping force are taken into consideration: external 3 

damping force which is proportional to velocity and represented as 
w

c
t





. From material 4 

mechanics, the bending strain and the deflection of the beam is: 5 

 
2

2

( , )
b

x t
y

x
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 


  (A.2) 6 

Then the total bending moment of the small segment is: 7 
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The shear force and the moment has the following relationship: 9 
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  (A.4) 10 

According to the force balance of the whole small segment, the dynamics equation of the 11 

small segment can be derived: 12 
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  (A.5) 13 

Substituting the expression of ( , )w x t  in (A.1) into (A.5), the Eq. (A.5) becomes: 14 
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  (A.6) 15 

Substituting the expression ofV in (A.4) to (A.6) can yield the movement equation of the 16 

small segment under the base rotational excitation and it is shown as: 17 
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Appendix B 1 

This appendix presents the derivation of transfer matrix of Bernoulli-Euler Beam. 2 

The dynamic equation of motion of the beam may be written as 3 
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4 2
0

w w
EI A

x t
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 
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  (B.1) 4 

Assume that the solution of harmonic oscillation can be written as 5 

 ( , ) ( ) ei tw x t W x    (B.2) 6 

The non-dimensional characteristic equation of the equation is 7 
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Assume that the solution of  W  can be written as 9 
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where ir  is the root of the characteristic equation Eq. (B.5). 11 
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Similarly, the transfer matrix of axial vibration rod can be obtained. 17 

The dynamic equation of the axial vibration rod is 18 
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The axial force in the rod is 2 
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  (B.11) 3 

The same way as we derive the transfer matrix of the transverse vibration of the beam, we 4 

can obtain the transfer matrix of the axial vibration written as 5 
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So we can get the transfer matrix of an Euler-Bernoulli beam by taking axial deformation 7 

into consideration. 8 
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 11 

 12 

 13 

 14 

Fig.B.1 the displacement and force relationship of the two beams at the connecting point 15 

In the 90 degree rotational angle，the displacement and force of the two beam satisfies the 16 

following: 17 
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 1 

So the whole transfer matrix in the L-shaped beam can be written as: 2 
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So we can get the displacement response at any point of the beam using Eq. (B.15). 4 

 5 

 6 
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Appendix C 1 

This appendix presents the detailed derivation of Eqs. (47) to (49). 2 
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ib correspond to 1.875, 4.694 and 7.855 for the first three modes. 5 
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Assume that the mode shape function without coefficient can be written in the following form: 8 
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Eq. (C.2) and Eq. (C.4) can be rewritten into the following form: 10 
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( ) ( )i i j ijA L A d           (C.7) 12 

  1 2
1 1 1 1 0

1 ( )i iA A L d        (C.8) 13 

  1 2
2 2 2 2 0

1 ( )i iA A L d        (C.9) 14 

From Eq. (17), we can derive N  based on N ： 15 
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From Eq. (31), ig can be written based on i : 17 
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    2 1 12 2
2 2 2 2 2 2 2 2 2 2 2 20 0 0

( ) ( )
L

i i i ig A x x dx AL d AL d             
  (C.11) 1 

    1 2
1 1 1 1 1 1 0

( ) ( )k k kx x L L A L d           (C.12) 2 

    12 2
2 2 2 2 2 2 0

( ) ( )r r rx x L L A L d           (C.13) 3 

The thN  order natural frequency of the primary beam and the thr  order natural frequency 4 

of the beam absorber can be written as: 5 
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From Eq. (38),  is obtained based on ,k r   : 7 
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From Eq. (48), we can derive the tuning ratio: 9 
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