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Abstract: We study the nonlinear frequency up-conversion in a plasmonic thin film 
sandwiched between one-dimensional photonic crystals (PCs) of different Zak phases by 
rigorous numerical time-domain nonlinear hydrodynamic calculations. We show that the 
proposed hetero-structure can support robust fundamental and high-order topological edge 
modes that simultaneously enhance the third-harmonic generation. Numerical simulations 
also show that femtosecond pulses can excite double topological edge modes through optical 
tunneling in band gaps, leading to a large nonlinear response. The obtained third harmonic 
generation (THG) conversion efficiency of the hetero-structure is three orders of magnitude 
larger than that of a single plasmonic film. The results presented here may open new avenues 
for designing high-efficiency nonlinear photonic devices. 
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1. Introduction 
Over the past decades, nonlinear optical effects aroused extensive research activities [1–4]. 
Unfortunately, as optical nonlinearities are inherently weak, there is a pressing need to find 
efficient physical mechanisms that could improve the ability to increase the effective 
nonlinear optical response and design high-efficiency nonlinear optical devices. Photonic 
surface modes that has been theoretically or experimentally demonstrated in the photonic 
crystal structures have drawn more and more attention. With the help of plasmonic effects 
excited at the interface [5–9], an increased effective nonlinear optical response could be 
achieved [10–12]. There are good reasons to use multilayer structures for enhancing the 
nonlinear effects. On one hand, plasmonic excitations bring up strong electromagnetic field 
localization enhancing nonlinear optical process. On the other hand, multilayer structures 
containing a plasmonic film are easy to fabricate. 

It would be even more interesting if the multilayer structures can be used to support 
topological robustness for nonlinear optics. Topological photonics, originally developed from 
condensed matter theory, has led to many new discoveries and potential applications [13–16]. 
In 1-D periodic systems, the SSH model was firstly discovered by Su, Schrieffer and Heeger 
to explain the existence of edge modes in polyacetylene [17]. Recently, Zak phase and 
topological surface modes, in 1-D photonic crystals were theoretically investigated and 
experimentally measured [18,19]. Furthermore, it has been shown that 1D binary PC can be 
designed in a way such that topological edge modes can be supported in any photonic 
bandgaps [20]. Based on our previous work, a topological approach is applied to guarantee 
simultaneous creation of robust topological edge modes and enhancement of the light-matter 
interaction at both excitation and emission frequencies of frequency conversion processes. 

In this work, we have performed the first attempt to use a pair of topological edge modes 
at different frequencies to enhance nonlinear frequency conversion in a thin plasmonic film. 

2. Nonlinear plasmonic structure and time-domain simulation 
We consider a nonlinear thin plasmonic film sandwiched between two binary PCs. As shown 
in Fig. 1(a), the thickness of the plasmonic thin film Md  is set to be 5nm , that is slightly 

larger than the skin depth of plasmonic film and thin enough to contribute less influence on 
the transmission spectrum compared with the PC structure depicted in Fig. 1(b). A detailed 
structure is given as follows. 6.3Aε = , 2.25Bε = , 7.13Cε = , 1A B Cμ μ μ= = = . The period 
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Λ 1000nm=  of a unit cell is determined by Λ A Bd d= + , and the thickness of the dielectric 

layer A , B , and C  is shown in Fig. 1, 0.396ΛAd = , 0.604ΛBd =  in PC X  and 

0.342ΛCd = , 0.658ΛBd =  in PC Y ′ . It is a fairly complicated task to describe the inherent 

nonlinear responses of the plasmonic film. Along with phenomenological models, based on 
experimental retrieval of nonlinear susceptibilities, a hydrodynamic model, treating the 
electron plasma by means of a charged fluid, is shown to give a qualitative description of the 
nonlinear interaction [21–28].The mesoscopic hydrodynamic model has been applied to 
simulate the nonlinear response of the hetero-structure and to provide a full picture of the 
nonlinear physical process. 

Here, we briefly describe our model and algorithm. We use a set of self-consistent 
hydrodynamic Eqs. (1)-(4) to describe the interaction between the electromagnetic fields (E 
and H) and electron gas in the plasmonic films as [25], 
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where ε  and μ  are the permittivity and permeability, respectively, e  and m  are the electron 

charge and electron effective mass respectively. In the region where only dielectric is 
considered, the free electron density n  will be set to zero, and ε  and μ  become the 

permittivity and permeability of the media. In Eq. (4), γ  denotes the damping rate and the 

Fermi pressure p  is given by [27], 
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Equations (1) and (2) are the macroscopic Maxwell’s equations while Eqs. (3) and (4) are the 
electron fluid equations that represents the dynamics of electrons in a plasmonic system, 
representing conservation of mass and momentum. n  is the electron number density and u  is 
the mean electron velocity. 

In Eq. (2) the term neu  represents the current density and is the bridge between 

Maxwell’s equations and electron fluid equations. The convection term ( )⋅∇u u , magnetic 

term ×u H  and quantum effect term p∇  will contribute to the nonlocal and nonlinear effects. 

Equations (1)-(5) constitute a self-consistent electromagnetic-hydrodynamic model that can 
describe the behaviour of electron gas considering both nonlocal and nonlinear effects in 
plasmonic systems. 
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Fig. 1. (a), (b) Schematic view of the 1-D binary PCs model constructed by connecting two 1-
D PCs X  and Y ′  with (a) and without (b) a thin plasmonic film at the centre, where X  and 
Y ′  contain N  unit cells with the period Λ 1000nm= . The parameters of PC X  are given 

by 0.396ΛAd = , 2.51An = , 0.604Λ 1.5B Bd n= ⋅ = , 1A Bμ μ= =  and the parameters of 

PC Y ′  are given by 0.342ΛCd = , 2.67Cn = , 0.658ΛBd = , 1.5Bn = , 1c Bμ μ= = . The 

thickness of the plasmonic film 5nmMd = . (c) Transmission spectrum of the 1-D binary PC 

with (blue dashed line) and without (green solid line) a 5nm  plasmonic film, when the 
number of unit cells 4N =  on both sides. 

In the simulation, the initial electric density and damping rate is set to be 
28 3

0 3.5 10 mn −= ×  and 13 14.6 10 sγ −= ×  respectively. The effective mass 0.65 em m= , where 

em  is the free electron mass [23-24]. In order to confine the electron fluid to the nano-film, 

the so-called slip boundary condition is applied that the normal component of the current 
density vanishes at the plasmonic film’s surface 0⋅ =n u , while electron motion tangential to 
the plasmonic film’s surface is allowed. Mur absorbing boundary condition is used along the 
propagating direction as shown in Fig. 1(a). 
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The FDTD method [25,26] is applied to solve the above set of self-consistent partial 
differential equations (PDEs) (1)-(5) in space and time. The numerical scheme can be 
summarized as follows, 

In our FDTD simulation, we discretize Eqs. (1)-(5) with the standard grid, leapfrog in 
time approach. The incident wave is polarized in the z  direction and propagates along the x -
axis. The electric field components xE , zE , and electron density n  are at the integer-grids. 

The magnetic component yH , mean electron velocity components xu , and zu  are at the half-

grids in the FDTD scheme. After employing the central difference scheme for the time 
stepping, the set of PDEs can be made into a set of algebraic equations. Using the initial 
electron density and damping rate, all the unknowns can be calculated at each time step. 
Explicit time domain simulations that allow the visualization of electron gas fluid and 
dynamic variation of electromagnetic fields, will open up new understanding in these 
simulations. Hence, the FDTD simulation solver for the hydrodynamic model is a useful tool 
in the study of nonlinear topological photonic systems. The proposed time-domain model 
takes both linear and nonlinear dynamics of the electron gas into consideration and does not 
rely on the experimentally measured bulk and surface nonlinear susceptibilities. With the help 
of the classical time-domain FDTD approach, the hydrodynamic equations are solved 
nonperturbatively. 

3. Band gap and edge states 
The schematic of our system is illustrated in Fig. 1. Firstly, we analyse the characteristics of 
the X Y ′+  PCs shown in Fig. 1(b) without a plasmonic film inserted at the centre of the 
interface between two PCs. The thickness of a single dielectric layer is specified by Eq. (6) 
as, 

 ,A A B Bn d n dαΛ = +  (6) 

where 1.9α =  is the ratio of optical path length of a unit cell to its period. The period 
Λ 1000nm=  of a unit cell is determined by Λ A Bd d= + , and the detailed thickness of the 

dielectric layer A , B , and C  is shown in Fig. 1. For each photonic passband m , we define 
the Zak phase (i.e., the topological invariant) as [18–20], 

 ( ) ( ) ( )Zak *
, ,unit cell

,m m K K m Ki z u z u z dz dK
π

πθ εΛ
−

Λ

 = ∂     (7) 

Where ( ) ( ) ( )*
, ,unit cell m K K m Ki z u z u z dzε ∂  is the berry connection, ( )zε  is the function of 

permittivity, and ( ),m Ku z  is the periodic-in-cell part of the Bloch electric field eigenfunction 

of a state on the thm  band with a Bloch wave vector K . 
Figures 2(b) and 2(c) show the photonic band structure of PC X  and PC Y ′  from the 0th  

gap to the 15th  gap, where the Zak phase of each passband is labelled at the center of its own 
band. In Fig. 2(a), topological edge modes can be observed at all photonic bandgaps in the 
transmission spectrum of X Y ′+  PCs calculated by the transfer matrix method. As the 

difference of the sums of the Zak phases Zakm

ii
θ , for PC X  and PC Y ′ , are 3π , except 

that the first bandgap has the difference of π  only, it implies that topological edge modes 
will exist at every bandgap. Relevant discussion is detailed in [20]. Furthermore, the proposed 
X Y ′+  PCs could support robust topological edge states and be applied to enhance nonlinear 

light-matter interactions such as second harmonic generation (SHG), third harmonic 
generation (THG), and four-wave mixing (FWM), and so on. It could be predicted that the 
simultaneous topological edge modes bring up with the significant strong electromagnetic 
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field localization at the interface for both fundamental frequency and higher harmonics. As a 
result, high nonlinearity conversion efficiency can be achieved. 

 

Fig. 2. (a) The transmission spectrum of X Y ′+  PCs, where the number of unit cells 4N =  

on both sides. The parameters of PC X  are given by 2.51An = , 1.5Bn = , 0.396ΛAd = , 

0.604ΛBd = , and the parameters of PC Y’ are given by 1.5Bn = , 2.67Cn = , 

0.658ΛBd = , 0.342ΛCd = , where Λ 1000nm=  is the unit length of the PCs. Red 

arrows indicate that there are fundamental and third harmonic topological edge modes. (b), (c) 
Real part of complex band structure (solid blue curve) of PC X  and PC Y ′ , and the Zak 
phase of each individual band is also labelled in (b) and (c). 

Based on the X Y ′+  PCs’ structure discussed previously, we choose the parameters 
similar to silver, which is appealing for potential use in nonlinear optical applications at 
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visible and ultraviolet wavelength, for the thin plasmonic film at the centre of the X Y ′+  
PCs. The detailed hetero-structure is illustrated in Fig. 1(a). A TM polarized plane wave from 
free-space incidents normally on the 1-D binary PCs containing a plasmonic film of thickness 

5nmMd =  . As shown in Fig. 1(c), the transmission spectrum in the linear optics regime 

obtained by the FDTD method, based on the (nonlinear) hydrodynamic model. It should be 
noted that the input amplitude for the results in Fig. 1 is far less than the nonlinear threshold 
of the plasmonic materials, so that the nonlinear terms in the hydrodynamic model do not take 
effect and the proposed the hetero-structure is equivalent to a linear system. Due to the 
insertion of the plasmonic film, the transmittance is reduced a little at the passbands. 
However, it can be observed in Fig. 1(c) that the thickness of the plasmonic film is thin 
enough to introduce slight influence on the 1-D binary PCs, especially at the bandgaps. 

In this work, we chose the fundamental and third harmonic topological edge modes 
(indicated by red arrows) at the 3rd  and 15th  bandgap to provide the double-resonance and 
obtain the nonlinear enhancement. At the 3rd  bandgap, for the fundamental topological edge 
mode, the normalized frequency is slight blue shift from 1.307  (PCs without the plasmonic 
film indicated by green solid line) to 1.318  (PCs with the plasmonic film indicated by blue 
dashed line). Meanwhile, At the 15th  bandgap, for the third harmonic topological edge mode, 
the normalized frequency is almost the same at 3.96 , and nearly three times the normalized 
frequency for the fundamental topological edge mode in the hetero-structure. As a result, the 
double topological edge modes can be excited in the hetero-structure to guarantee effective 
third harmonic generation. 

4. Harmonic generation and nonlinear enhancement 
Here, we investigate the nonlinear response from the 1-D hetero-structure illuminated by a 
sine-modulated Gaussian pulse based on the numerical solver presented in the previous 
section. The simulation domain is the same as in Fig. 1(a) while the incident wave become a 
Gaussian pulse with inc

zE  polarized in the z  direction and propagates along the x -axis. Its 

profile is defined by, 

 ( ) ( )2

0inc
0 0 2

4
sin 2 exp ,z

t t
E E f t

π
π

τ
 −

= − 
  

 (8) 

where 0E  is the peak electric field and 0 3t τ=  is the temporal offset with the temporal width 

600fsτ = . The maximal peak intensity of 14 2
0 4.247 10 w / mI = ×  is selected to ensure a 

stable and significant high order harmonic generation. The spatial and temporal step sizes are 

set to be 1nmxΔ =  and 171
10 s

3
t −Δ = ×  according to the Courant-Friedrichs limit (CFL) 

condition. The fundamental frequency 0 395.4THzf = , corresponding to the normalized 

frequency 1.318 , so that the fundamental topological edge mode will be excited. 
In Fig. 3(a), the time-dependent transmitted electric field through the hetero-structure is 

Fourier transformed and the third harmonic frequency component is detected. By varying the 
incident pump power, the power-dependent third harmonics are also plotted. It can be 
observed that with the help of the double topological edge modes supported by the hetero-
structure, significant third harmonic generation phenomena will occur. As the increase of the 
incident peak electric field amplitude from 00.1E  to 0E , the detected third harmonics 

intensity is also increased. In Fig. 3(b), it is demonstrated that the relationship between the 
peak intensity of the third harmonics and the cubic power of the fundamental intensity is 
almost linear. It implies that higher incident pump power produce more significant third 
harmonics. 
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Fig. 3. (a) Nonlinear transmission spectrum for the 1-D binary PC containing a thin plasmonic 
film with different input pump power. (b) The peak intensities of the third harmonics vs. the 
third power of the fundamental intensities. 

In the proposed 1-D binary PCs containing a thin plasmonic film structure, the 
fundamental topological edge mode creates a strong boost in the intensity field of incident 
far-red pulse ( 0 0395.4THz, 758.7nmf λ= = ). Consequently, ultraviolet pulses 

( THG 01186.2THz, 253nmf λ= = ) can be detected by means of high-harmonic generation 

through the light-matter interaction at the interface between the plasmonic film and the 
dielectric. In Fig. 4(a), the comparison between the hetero-structure and the single plasmonic 
film about the nonlinear transmission spectrum is provided. When the maximal peak intensity 
is 0I , even fifth-order harmonic generation can be detected in the hetero-structure. The robust 

double topological edge modes that supported by the hetero-structure make it a good 
candidate for high-order harmonic generation enhancement. In particular, we obtain 
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conversion efficiency of the hetero-structure 9~ 2.23 10η −× , and the conversion efficiency is 

significant improved, compared with that of the single plasmonic film 12~ 2.81 10η −× . In Fig. 

4(b), we provide the input intensity versus the conversion efficiency. It can be concluded that 
taking advantage of the nonlinear enhancement via double topological edge modes, the third 
harmonic generation conversion efficiency can be increased by three orders of the magnitude. 

5. Conclusion 
We show by performing rigorous time-domain hydrodynamic calculations that a 1-D binary 
PCs supporting robust topological edge harmonic modes can simultaneously enhance odd-
order harmonic generation at both excitation and emission frequency. By introducing a thin 
plasmonic film into such topological PCs, it is found that the third harmonic generation 
(THG) conversion efficiency becomes three orders of magnitude larger than that of the 
original single plasmonic film. Our study may suggest a new approach to achieve robust 
topological nonlinear plasmonic devices. 

 

Fig. 4. (a) Nonlinear transmission spectrum for the hetero-structure 1-D binary PC containing a 
thin plasmonic film (blue dashed line) and a single plasmonic film (green solid line). (b) The 
conversion efficiency of the hetero-structure 1-D binary PC containing a thin plasmonic film 
(blue line with square) and a single plasmonic film (green line with circle) vs. the input 
intensities, when the normalized central frequency is 1.318. 
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