1	Advances and challenges in alkaline anion exchange membrane fuel
2	cells
3	Z.F. Pan ^a , L. An ^a *, T.S. Zhao ^b *, Z.K. Tang ^c
4	^a Department of Mechanical Engineering, The Hong Kong Polytechnic University,
5	Hung Hom, Kowloon, Hong Kong SAR, China.
6	^b Department of Mechanical and Aerospace Engineering, The Hong Kong University of
7	Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
8	^c Department of Physics, The Hong Kong University of Science and Technology, Clear
9	Water Bay, Kowloon, Hong Kong SAR, China.
10	*Corresponding authors.
11	^a Email: <u>liang.an@polyu.edu.hk</u> (L. An)
12	^b Email: <u>metzhao@ust.hk</u> (T.S. Zhao)
13	Abstract
14	The last several decades have witnessed the rapid development of alkaline anion
15	exchange membrane fuel cells (AAEMFCs) that possess a series of advantages as
16	compared to acid proton exchange membrane fuel cells, such as the enhanced
17	electrochemical kinetics of oxygen reduction reaction and the use of inexpensive non-
18	platinum electrocatalysts, both of which are rendered by the alkaline medium. As an
19	emerging power generation technology, the significant progress has been made in
20	developing the alkaline anion exchange membrane fuel cells in recent years. This
21	review article starts with a general description of the setup of AAEMFCs running on

22	hydrogen and physical and chemical processes occurring in multi-layered porous
23	structure. Then, the electrocatalytic materials and mechanisms for both hydrogen
24	oxidation and oxygen reduction are introduced, including metal-based, metal oxide-
25	based, and non-metal based electrocatalysts. In addition, the chemistries of alkaline
26	anion exchange membranes (AAEMs), e.g. polymer backbone and function groups, are
27	reviewed. The effects of pre-treatment, carbonate, and radiation on the performance of
28	AAEMs are concluded as well. The effects of anode and cathode ionomers, structural
29	designs, and water flooding on the performance of the single-cell are explained, and the
30	durability and power output of a single-cell are summarized. Afterwards, two
31	innovative system designs that are hybrid fuel cells and regenerative fuel cells are
32	presented and mathematical modeling on mass transport phenomenon in AAEMFCs are
33	highlighted. Finally, the challenges and perspectives for the future development of the
34	AAEMFCs are discussed.
35	Keywords: Fuel cells; alkaline anion exchange membranes; electrocatalysts; single-
36	cell designs; power density
37	
38	
39	
40	

41 **1. Introduction**

We have to adopt new energy supply technologies that utilize renewable energy sources 42 43 [1-8], due to the current energy and environmental issues we are facing today. Among 44 them, fuel cells have been considered as one of the most promising clean and efficient power generation technologies for a sustainable future [9-15]. Hence, tremendous 45 46 efforts have been made on the development of fuel cells [16-22]. Alkaline fuel cells (AFCs) that use potassium hydroxide (KOH) solution as the liquid electrolyte have 47 48 shown much success since the 1960s, particularly working as the energy supply devices 49 powering the Gemini and Apollo spacecraft, due to the fact that the electrochemical 50 kinetics of the oxygen reduction reaction (ORR) is much enhanced resulting from the 51 alkaline environment, allowing the absence of expensive noble metals in preparing the 52 electrocatalysts and thus reducing the cost of the fuel cell system [23-25]. Despite its 53 compelling merits, however, this fuel cell technology has not made sufficient progress 54 in market presence yet. One significant factor preventing widespread 55 commercialization is the use of the alkaline liquid electrolyte, which may cause two 56 problems [26]. One is the carbonate, the product of the side reaction between hydroxide 57 ions in the liquid electrolyte and carbon dioxide in the air, reducing the concentration 58 of hydroxide ions and potentially blocking the pores of the porous electrode via the precipitation of the metal carbonate [27-29]. The other is electrode flooding and drying 59

problems, which are more likely to arise if the liquid electrolyte is not well controlled[30,31].

62 To address the issues caused by involving the liquid electrolyte, ion exchange 63 membrane fuel cells that employ solid electrolyte have received ever-increasing attention [32-36]. The use of solid electrolyte membranes in fuel cells can remove the 64 65 carbonate problem and avoid the liquid electrolyte management. Hence, extensive efforts have been devoted to developing alkaline AAEMFCs and remarkable 66 achievements have been made [37-39]. In addition, many other advantages of the 67 68 AAEMFCs are summarized as follows: (1) faster electrochemical kinetics of the ORR 69 in alkaline media [40,41], (2) absence of noble metal electrocatalysts [42,43], (3) 70 minimized corrosion problems in the alkaline environment [44,45], and (4) 71 cogeneration of electricity and valuable chemicals [46-48]. Currently, compressed 72 hydrogen and liquid alcohol are the most common fuels used in AAEMFCs. The liquid 73 alcohols, e.g. methanol, ethanol, formate, and small polyalcohols, are convenient to 74 handle, store, and transport [49-51]. Another advantage is that they are easy to be 75 acquired from the abundant biomass, suggesting that the process is carbon-neutral and 76 the sources are sufficient [52]. Borohydrides with high energy density are also recognized as a suitable fuel for AAEMFCs due to the fact that they are easy to handle, 77 store, and transport as well. In addition, the products in the anode effluent can be 78

converted back to borohydrides, which is beneficial for a sustainable future [18]. In consideration of degree of commercialization, this article will focus on the AAEMFCs running on hydrogen that is the maturest in commercialization. The objective of this review is to provide a general description of this type of fuel cell, introduce electrocatalytic materials for hydrogen oxidation and oxygen reduction reactions, summarize the alkaline anion exchange membranes (AAEM) and single-cell performance, as well as highlight the remaining challenges and future directions.

86 **2. General description**

87 In principle, the structure of AAEMFCs is just borrowed from proton exchange 88 membrane fuel cells (PEMFCs), with the main difference that the solid membrane is an 89 AAEM instead of a proton exchange membrane (PEM). In AAEMFCs, the charge 90 carrier is OH⁻ transporting through the AAEM from the cathode to the anode, while H⁺ 91 works as charge carrier transporting through the PEM from the anode to the cathode in 92 PEMFCs. Hence, AAEMFCs have been considered as an alternative to PEMFCs and garnered renewed attention recently due to the above-mentioned advantages. Currently, 93 94 many researchers have put their focus on the synthesis of polymeric alkaline anion 95 exchange membranes with high ionic conductivity and excellent chemical stability, as 96 well as novel electrocatalysts that are favorable and low cost [53-63].

97 Like other fuel cells, a single AAEMFC consists of three main components, i.e. an

98	anode, a cathode, and an AAEM, so-called membrane electrode assembly (MEA), as
99	shown in Fig. 1. Specifically, the integrated multi-layered porous structure is constituted
100	sequentially by an anode gas diffusion layer (GDL), an anode catalyst layer (CL), an
101	AAEM, a cathode CL, and a cathode GDL. The GDLs in the anode and cathode that
102	are both composed of two layers, a backing layer (BL) based on carbon paper or carbon
103	cloth and a micro-porous layer (MPL) that is comprised of carbon powders mixed with
104	hydrophobic polymer (typically PTFE). The CLs are usually made of electrocatalysts
105	mixed with ionomer, resulting in the formation of triple-phase boundaries (TPBs) for
106	the electrochemical reactions, i.e., hydrogen oxidation reaction (HOR) and ORR.
107	Particularly, the GDL provides the support for the corresponding CL, distributes the
108	reactants uniformly, and transports electrons to the current collector. Recently, Li et al.
109	[64] proposed a metal foam-based electrode integrating the flow field, BL, MPL, and
110	CL into a whole, which facilitates the mass and charge transport and extends the TPBs.
111	The anode and the cathode are separated by an AAEM, preventing the hydrogen
112	crossover to the cathode, which causes the fuel loss and mixed potential. Meanwhile,
113	the pathway for conducting hydroxide ions is built up. The external circuit provides the
114	channel for the electrons to form the loop.
115	On the anode, humidified hydrogen is fed to the anode flow channel and transported

116 through the anode GDL, finally to the anode CL, where hydrogen reacts with hydroxide

117 ions to produce water and electrons. The anodic reaction is:

118
$$H_2 + 20H^- \rightarrow 2H_2O + 2e^- E_a^0 = -0.83V$$
 (1)

119 On the cathode, humidified oxygen supplied by the cathode flow channel is transported 120 through the cathode GDL to the cathode CL, where oxygen is reduced in the presence 121 of water to produce hydroxide ions:

122
$$\frac{1}{2}O_2 + H_2O + 2e^- \rightarrow 2OH^ E_c^0 = 0.40V$$
 (2)

123 Then, the generated hydroxide ions are conducted through the AAEM for the HOR.

124 Therefore, the overall reaction combining the HOR given by equation (1) and the ORR125 given by equation (2) is expressed as follows:

126
$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$
 $E^0 = 1.23V$ (3)

127 It should be noted that the theoretical cell voltage cannot be realized due to a series of 128 irreversible losses, such as overpotentials caused by activation, ohmic, and mass-129 transport processes. In addition, it is worthwhile to note that the hydrogen and oxygen 130 gases need humidification before fed into the fuel cell in order to achieve better performance. The major reasons can be summarized as follows: (1) one of the main 131 deficiencies of AAEMs is that the conductivity of AAEMs is sensitive to relative 132 133 humidity. Hence, the humidified gases that are supplied to the channel can humidify the 134 membrane, enhancing the ionic conductivity and thus reducing the internal resistance; (2) in consideration of the electrochemical reaction on the cathode, humidified oxygen 135

136 provides the essential water molecular that will react with oxygen to form hydroxide ions. In the following section, the electrocatalytic materials for HOR, including metal 137 138 electrocatalysts and metal oxide electrocatalysts, are reviewed and discussed. 139 3. Electrocatalytic materials and mechanisms for hydrogen oxidation reaction in alkaline media 140 141 Platinum (Pt) is generally used as the electrocatalysts for hydrogen oxidation in 142 AAEMFCs, which negates a prime advantage of alkaline fuel cells, which is potentially 143 free from Pt-based electrocatalysts. The anodic reaction in acid media is expressed: $H_2 \rightarrow 2H^+ + 2e^-$ 144 (4) 145 while, the product of the anodic reaction in alkaline media is water: $H_2+20H^-\rightarrow 2H_20+2e^-$ 146 (5) 147 Particularly, the HOR activity on the platinum group metals (PGM) decreases with 148 increasing the pH value. Sheng et al. [65] reported that the electrochemical kinetics of 149 the HOR were at least two orders of magnitude slower in alkaline media than that in acid media. Similarly, Durst et al. [66] demonstrated that the exchange current densities 150 151 on Pt/C, Pd/C, and Ir/C in acidic media (pH=0) were all declined by about two orders 152 of magnitude when the pH increased to 13. The oxophilicity did not contribute to

154 activity was associated with the hydrogen binding energy (HBE). It was explained by

153

enhancing the HOR activity in high pH. They suggested that the pH-dependent HOR

155	Sheng et al. [67] that HBE is likely the sole descriptor for the HOR/HER activity on Pt
156	in pH-buffered electrolytes. The results from the rotating disk electrode test and cyclic
157	voltammetry test showed that the HOR/HER activity decreased and HBE linearly
158	increased with the increasing pH, respectively. It was proposed that the adsorbed OH
159	species did not participate in the reaction, but influenced the HBE, leading to the reduce
160	of HOR/HER activity. However, Ledezma-Yanez et al. [68] argued that the pH-
161	dependent HBE change did not account for the HER overpotential on Pt(111). They
162	observed that both the HER and H-underpotential deposition (H-UPD) were slower in
163	alkaline media even if the thermodynamic driving force was the same, implying that
164	hydrogen adsorption was a kinetically hindered step. Therefore, it was elucidated that
165	at the potential of H-UPD and HER, the interfacial water network interacted with the
166	strong interfacial electric field in alkaline media, resulting in the water network more
167	rigid and more difficult to reorganize during the charge transfer through the electrical
168	double layer. Consequently, the rate of hydrogen adsorption was severely influenced
169	by the energetic barrier derived from the strength of the interfacial electric field. To
170	overcome this constrain, many efforts have been made to develop non-platinum
171	catalysts for HOR with high activity at a lower cost [69-84]. This section will describe
172	some types of electrocatalyst, including metals and metal oxides.

3.1. Metals

174	Many efforts have been made to increase the metal electrocatalyst activity aiming at
175	reducing the amount of Pt, even replacing Pt [53,69,70,74,77,79-81]. Since palladium
176	(Pd) is similar to Pt in electronic properties, the HOR on the Pd surface may follow the
177	same mechanism. In addition, Pd/C and Pt/C exhibited comparable HOR activity
178	examined by the thin-film rotating disk electrode in acid environment [78]. Hence,
179	many efforts have been conducted to improve the electrocatalytic activity of Pd
180	[53,69,79-81]. Bakos et al. [53] studied the synergetic activity of Pd/Ni for the HOR in
181	alkaline media. Fig. 2 illustrated the surface and size distribution of the Pd/Ni. It was
182	shown that 17% of a Ni film covered by a Pd layer of around 1.5 nm thickness exhibited
183	the highest HOR activity than other Pd coverages. For the Pd coverage lower than 17%,
184	the current density increased linearly with the coverage, and then reached a plateau
185	upon further increase, which is attributed to the diffusion limit for the HOR process.
186	Similarly, Alesker et al. [69] used Pd nanoparticles to grow onto Ni nanoparticles as the
187	HOR electrocatalyst, resulting in a peak power density of 400 mW cm ⁻² in an AAEMFC
188	fabricated with Pd (1.5 mg cm ⁻²) as anode electrocatalyst and Ag (3 mg cm ⁻²) as cathode
189	electrocatalyst with dry hydrogen fed at a flow rate of 200 standard-state cubic
190	centimeter per minute (sccm) and the air fed at a flow rate of 1000 sccm. It was
191	indicated that the HOR activity was enhanced, which was evidenced by the negative
192	shift of the HOR onset potential. In addition, it was believed that the high activity was

193	ascribed to the presence of the OH _{ads} on the Ni surface, providing a faster reaction route
194	for the HOR. In addition, the nickel-based electrocatalysts for the HOR have also been
195	investigated [74-76]. Hu et al. [74] studied the feasibility of tungsten doped nickel (Ni-
196	W) as the anode electrocatalyst for AAEMFCs. The results showed that the equilibrium
197	potential of the HOR on Ni-W was established in 200 s, indicating that the electronic
198	surface of Ni was tuned and the oxidation tolerance of Ni surface was significantly
199	enhanced. It was shown that the highest power density reached 40 mW cm ⁻² with
200	humidified hydrogen and oxygen both at a flow rate of 50 sccm at 60°C, when Ni-W
201	(17.5 mg cm ⁻²) and CoPPY/C (2 mg cm ⁻²) were employed as anode and cathode
202	electrocatalysts, respectively. To further improve the HOR activity, Sheng et al. [75]
203	synthesized noble-metal-free electrocatalyst via electro-depositing a ternary metallic
204	CoNiMo on a polycrystalline gold (Au) disk electrode. It was shown that the HOR
205	activity of CoNiMo was 20 times higher than pure Ni in alkaline media, which is
206	attributed to the weakened hydrogen binding energy on CoNiMo. Zhuang et al. [76]
207	prepared a composite electrocatalyst, nitrogen-doped carbon nanotubes supporting
208	nickel nanoparticles (Ni/N-CNT), to replace Pt for an efficient HOR. Although the N-
209	CNT did not directly contribute the HOR activity, it could significantly improve the
210	catalytic activity of Ni nanoparticles, meaning that the mass activity and exchange
211	current density of the Ni/N-CNT were increased 33 and 21 times than that of bare Ni

212	nanoparticles, respectively. It was indicated that the high HOR activity was ascribed to
213	the synergetic effect of N atom and Ni. Ohyama et al. [70] synthesized small ruthenium
214	nanoparticles by liquid phase reduction of RuCl3 by NaBH4 under pH control and
215	characterized the structure of the Ru/C via X-Ray diffraction (XRD), transmission
216	electron microscope (TEM), and X-ray absorption fine structure (XAFS) spectroscopy.
217	The results indicated that the diameter of Ru particles was 3nm under pH control
218	(pH=7), which was much smaller than that without pH control (pH=2). The peak power
219	densities of a H_2/O_2 fuel cell fed with humidified H_2 and O_2 both at a flow rate of 500
220	sccm employing Tokuyama A201 as AAEM, Pt/C (0.5 mg cm ⁻²) as cathode
221	electrocatalyst, and 3 nm Ru/C, 3 nm Pt/C, and 11 nm Ru/C as anode electrocatalysts
222	are 250, 185, and 134 mW cm ⁻² , respectively. In addition, the cell performance with
223	using Ru/C was increased with the cycle of fuel cell operation, primarily because the
224	Ru species was reduced during fuel cell operation, resulting in the highly active sites
225	for hydrogen adsorption and oxidation. Recently, Alia et al. [77] synthesized copper
226	(Cu) nanowires (NWs) supported Pt (Pt/CuNWs) with a 100-nm diameter and a 25-40
227	μm length for HOR in alkaline media. It was indicated that compared to Pt/C, the area
228	and mass exchange current densities of Pt/CuNWs were promoted by 3.5 and 1.9 times,
229	respectively. Therefore, the improved performance was attributed to compressive strain
230	on Pt and more adsorption of hydroxyl species provided by inclusion of Cu. In summary,

the novel HOR metal electrocatalysts that exhibit comparable performance with Pt are
mainly based on Pd, Ni, and Ru. Although the great progress has been made recently,
attentions also should be paid to developing other substrate materials that are more costeffective.

3.2. Metal oxides

236 Although the metal electrocatalysts are promising, metal oxide electrocatalysts that are inexpensive as well have been extensively studied [71-73,82,83]. Lu et al. [71] 237 synthesized Cr-decorated Ni (CDN) nanoparticles and tested the effect of modulation 238 239 on the surface reactivity toward oxygen via XRD and X-ray photoelectron spectroscopy (XPS). It was indicated that CDN can be easily activated by gaseous hydrogen at room 240 241 temperature, resulting in the employment of CDN as anode electrocatalyst. They showed that a peak power density of 50 mW cm⁻² was achieved when CrO_x/Ni (5 mg 242 cm⁻²) and Ag/C (1 mg cm⁻²) were used as anode and cathode electrocatalysts, 243 244 respectively, as well as a quaternary ammonium polysulphone membrane with H₂ 245 (relative humidity (RH) = 100%) in the anode and O_2 (RH = 100%) in the cathode at 60°C. Lu et al. [72] also indicated that the CrO_x was believed to weaken the binding of 246 247 oxygen to the Ni nanoparticles, resulting in the mild deactivation of Ni via oxidation. Miller et al. [73] demonstrated that Pd nanoparticles deposited by CeO₂ showed 248 excellent HOR activity. The single fuel cell fabricated with $Pd/C-CeO_2$ (0.3 mg cm⁻²) 249

250	as anode electrocatalyst and Ag (3 mg cm ⁻²) as cathode electrocatalyst yielded a
251	maximum power density of 500 mW cm ⁻² , when dry hydrogen was fed into the anode
252	at a flow rate of 200 sccm and air was fed into the cathode at a flow rate of 1000 sccm.
253	While pure Pd was employed as anode electrocatalyst, the peak power density was
254	decreased to 100 mW cm ⁻² . CeO ₂ , one of the most oxygen deficient compounds, is
255	known for the rapid saturation with hydroxide ions [82] and spillover of hydroxide ions
256	to support metal nanoparticles [83]. It was demonstrated that the Pd-H bonds were
257	weakened and the supply of the OH_{ad} was enhanced, accelerating the overall HOR.
258	Recently, Miller et al. [84] studied the effect of Pd loadings on the performance of Pd/C-
259	CeO ₂ . The results from the single fuel-cell test showed that the Pd/C-CeO ₂ with 10 wt.%
260	Pd loading yielded the highest power density of 500 mW cm ⁻² with Pd/C-CeO ₂ (0.3 mg
261	cm ⁻²) as anode electrocatalyst and Ag (3 mg cm ⁻²) as cathode electrocatalyst when dry
262	hydrogen was fed into the anode at a flow rate of 200 sccm and air was fed into the
263	cathode at a flow rate of 1000 sccm. While 6 wt.% Pd and 20 wt. % Pd loadings in the
264	single fuel cell exhibited 390 and 460 mW cm ⁻² under the same conditions, respectively.
265	Meanwhile, the stability of Pd/C-CeO ₂ was superior than Pd/C under harsh potential
266	cycling.

In summary, great progress has been made in the development of HOR electrocatalystswith high catalytic activity and low cost to replace Pt in AAEMFCs. Although

numerous investigations have been reported in recent literature, the stability of nonplatinum electrocatalysts is still the major limiting factor for the commercial applications, which is derived from the morphological changes during the process of electrocatalyst operation. Therefore, the future research direction could be focused on enhancing the durability of the newly synthesized electrocatalysts without sacrificing the HOR activity.

4. Electrocatalytic materials and mechanisms for oxygen reduction reaction in alkaline media

Extensive studies have been conducted on the oxygen reduction reaction in alkaline media. The electrocatalytic reduction of oxygen proceeds either two-electron pathway or four-electron pathway [85]. Fig. 3 (a) generally illustrated the ORR process in alkaline media. The subscripts of sa, a, b, and *denoted strongly adsorbed, weakly adsorbed, bulk, and the vicinity of the electrode, respectively. All reactions could be concluded as follows:

$$O_{2,a} + e^- \rightarrow O_{2,a}^- \tag{6}$$

284
$$O_{2,a}^{-}+H_2O+e^{-}\leftrightarrow HO_{2,a}^{-}+OH^{-}$$
 (7)

$$0_{sa} + e^{-} \rightarrow 0_{sa}^{-} \tag{8}$$

286
$$O_{2,sa}^{-}+H_2O+e^{-}\rightarrow HO_{2,sa}^{-}+OH^{-}$$
(9)

$$HO_{2,sa}^{-} + e^{-} \leftrightarrow O_{sa}^{-} + OH^{-}$$
(10)

288
$$0_{sa}^{-} + e^{-} + H_2 0 \rightarrow 20 H^{-}$$
 (11)

289
$$20_{2,a}^{-} + H_2 0 \rightarrow 0_{2,a} + H 0_{2,a}^{-} + 0H^{-}$$
 (12)

290
$$2HO_{2,a}^{-} \rightarrow 2OH^{-} + O_{2,a}$$
 (13)

$$HO_{2,sa} \rightarrow OH^{-} + O_{sa}$$
(14)

292
$$O_{2,sa}^{-} \rightarrow O_{sa} + O_{sa}^{-}$$
(15)

293 It should note that only one electron was involved in the above mentioned reactions. In the direct four-electron pathway, the first step was the formation of weakly adsorbed 294 295 species via the diffusion of bulk oxygen. Then the weakly adsorbed species became the 296 strongly adsorbed species through chemisorption, which were the key intermediate in 297 the process. As the strongly adsorbed species were chemisorbed, the reactions 298 associated with them were mainly irreversible processes (k₃, k₄, k₁₂, k₁₃,). In the two-299 electron pathway, the weakly adsorbed species were the critical intermediate. The 300 difference of the strongly adsorbed species and the weakly adsorbed species lied on the 301 ability to desorb directly and go into solution. Since the weakly adsorbed species were 302 more likely to be physisorbed, adsorption-desorption equilibrium with corresponding 303 species in solution was established as shown in k₂ and k₋₂, k₂₀ and k₋₂₀, as well as k₂₅ and k-25. It was believed that a superoxide ion $HO_{2,a}^{-}$ could be formed after the oxygen 304 305 molecule received an electron. Subsequently, as the weakly bound superoxide ion was unstable in aqueous solution, thus it could rapidly go through either a chemical pathway 306

307	decomposing into $HO_{2,a}^{-}$ and oxygen or a electrochemical pathway receiving an
308	electron and a proton to form $HO_{2,a}^{-}$. Analogously, the $HO_{2,a}^{-}$ possessed two reaction
309	routes: one was to be chemisorbed producing $HO_{2,sa}^{-}$, and the other was to diffuse into
310	the bulk solution. It can be seen from Fig. 3 (b) that the formation of peroxide
311	intermediate species, HO2 ⁻ and H2O2, is more energetically favorable during the ORR
312	due to the lower overpotential. Thus, the ORR kinetics are dramatically more sluggish
313	in acid media than that in alkaline one, which can be explained by the stabilization
314	effect of the peroxide intermediate of HO_2^- caused by the negative charge [86]. When
315	the fuel cell is discharging, the cathode potential is higher than the potential of zero
316	charge, resulting in the positive charge on the electrode Hence, it is HO ₂ ⁻ rather than the
317	neutral molecule of H ₂ O ₂ that can be adsorbed on the cathode derived from the
318	electrostatic attraction and further to be reduced on the active sites. As the ORR
319	obstruction has been unveiled, a gate of synthesizing variety of electrodes has been
320	opened. We herein summarize the property and performance of the electrocatalysts
321	reported in recent literatures, including precious metal electrocatalysts, non-precious
322	metal electrocatalysts, and non-metal electrocatalysts.

323 4.1. Precious metals

324 Undoubtedly, Pt/C is still the most commonly used electrocatalyst, which is also the325 performance criterion of newly developed materials. However, the high cost and rarity

326	have hindered the utilization of Pt in fuel cells, resulting in numerous research efforts
327	led to the development of non-Pt noble metal electrocatalysts with high activity for
328	AAEMFCs [55,87-93]. Fortunately, Ag- and Pd-based electrocatalysts, more abundant
329	noble metals than Pt, have exhibited promising ORR activity via various modification
330	methods, including dispersing nanoparticles evenly on functionalized support,
331	establishing core-shell structure, and inserting other elements. Vinodh et al. [55]
332	synthesized carbon supported silver (Ag/C) with different metal loadings via wet
333	impregnation method. The schematic representation of cathode was illustrated in Fig. 4
334	(a). The characteristics of the electrocatalysts were investigated by XRD,
335	thermogravimetric analysis (TGA), UV-visible diffuse reflectance spectra (DRS-UV),
336	and Raman spectroscopy. The results indicated that the Ag particles in a range of 5 to
337	11 nm were well distributed and stable at 800°C as well as the maximum cell voltage
338	and power density of 0.69 V and 109 mW cm ⁻² were obtained with 10 wt.% metal
339	electrocatalysts, respectively. The higher ORR activity was attributed to the larger
340	surface area, enhanced electrical conductivities, and high densities of surface defects.
341	Maheswari et al. [90] investigated the electrochemical kinetics of Pd/C, Pt/C, and Au/C
342	as cathode electrocatalysts via steady-state performance test and linear sweep
343	voltammetry (LSV). It was reported that the Pd/C showed higher performance (55 mW
344	cm ⁻²) than Pt/C (40 mW cm ⁻²) and Au/C (1 mW cm ⁻²) with both humidified hydrogen

345	and oxygen fed at a rate of 500 sccm, resulting from the Pd surface exhibiting the
346	optimum balance between the kinetics of O=O bond breaking and electrocatalytic
347	reduction of the oxygenated intermediates or O-H formation. However, the carbon
348	support will face two main challenges that interfere the performance of electrocatalysts.
349	One is that carbon support may suffer from drastic corrosion and oxidation during fuel
350	cell operation. The other is that the completion of four-electron ORR may be hindered
351	due to the fact that the two-electron outer-sphere electron transfer is promoted. Hence,
352	Zhang et al. [92] proposed that the graphene oxide (GO) had the potential to serve as
353	support material due to the abundant oxygen containing functional groups that offer
354	large surface area. Alloyed Pd-Au nanochains networks were uniformly anchored on
355	reduced graphene oxide (Pd-Au NNs/RGO) via a one-pot wet-chemical co-reduction
356	method with the assistance of caffeine. The results from cyclic voltammetry (CV)
357	demonstrated that the Pd-Au NNs/RGO exhibited much more positive onset potential
358	and half-wave potential than those achieved by using Pd black and Pd/C, indicating that
359	the ORR activity was significantly improved. Meanwhile, it was shown from the ORR
360	polarization curves that no obvious degradation occurred after the Pd-Au NNs/RGO
361	modified electrode underwent 1000 times tests. It is worthy to note that there are various
362	support materials for nanoparticles, including Ti, Ni foam, carbon nanotubes (CNTs),
363	carbon nitride, and carbon nanofibers. Similarly, bimetallic core-shell nanostructures

364	possess the enhanced ORR activity, primarily due to the rough and porous surfaces.
365	Recently, Fu et al. [93] synthesized Au@Pd core-shell nanothorns (CSNTs) via a facile
366	co-chemical reduction method with poly(allylamine hydrochloride) (PAH) and ethylene
367	glycol (EG) as agents at room temperature. The results from CV showed that the
368	Au@Pd CSNTs had a positive shift of 34 mV and 30 mV of onset and half-wave
369	potentials, respectively, compared with Pd black, demonstrating that the ORR activity
370	was more competitive. It was concluded that the improved ORR activity could be
371	attributed to: (1) the high electrochemically active surface area (ECSA) resulted in
372	sufficient active sites, (2) the electron and oxygen transport was facilitated by the
373	unique porous construction, (3) the coverage of the active sites by the hydroxyl and
374	superhydroxyl groups was suppressed due to the core-shell structure. Inserting other
375	elements into noble metal electrocatalysts is another way to improve the ORR
376	performance of the alloy electrocatalysts. Generally, the 3d transition metals have been
377	widely used as the alloying elements to promote the activity and stability of the
378	electrocatalysts. Maheswari et al. [91] synthesized PdCo electrocatalysts in varying
379	atomic ratios of Pd to Co, namely 1:1, 2:1, and 3:1, and investigated the structure,
380	dispersion, electrochemical characterization and surface area of PdCo/C via XRD, TEM,
381	and CV, respectively. It was confirmed that the alloy formation and lattice contraction
382	existed between Pd and Co. The TEM images indicated that the nanoparticles were

383	crystallized and uniformly dispersed on carbon. It was also shown that when Co content
384	in the alloy increased, the mean particle size decreased due to the increased average Pd-
385	Pd bond distance. The results from the single fuel cell test indicated that Pd/Co (3:1)
386	possessed higher performance (85 mW cm ⁻²) with both humidified H_2 and O_2 fed at
387	rates of 500 sccm at atmospheric pressure than PdCo (2:1)/C (75 mW cm ⁻²), PdCo
388	(1:1)/C (26 mW cm ⁻²) as well as Pd/C (56 mW cm ⁻²), which was attributed to the higher
389	ORR activity and selectivity of PdCo (3:1)/C than PdCo (2:1)/C, PdCo (1:1)/C as well
390	as Pd/C. In summary, the precious metal electrocatalysts show comparable ORR
391	electrocatalytic activity with Pt. One of the future directions is to enhance the durability
392	of the existing electrocatalysts, while the other is to excavate the potential precious
393	electrocatalysts with high ORR activity.

394 4.2. Non-precious metals

Though the precious metal electrocatalysts catalyze the ORR efficiently, the high cost and insufficient durability shadow their future utilization. Hence, further to reduce the cost, tremendous efforts have been made to develop non-precious metal electrocatalysts [94-97]. However, the abundant 3d transition metals do not show ORR activity due to the affinities with oxygen. Fortunately, a breakthrough has been reported that metal macrocycle compounds exhibit promising ORR activity, in which the N-metal bond plays an essential role in the progress [94]. On one hand, the formidable anchoring

402	effect between the metal and surrounding N elevates the stability of the compounds. On
403	the other hand, the redox potential can be relocated by the metal-N bond that serves as
404	the bridge for the π -conjugated ligands on the outer periphery. Recently, Kruusenberg
405	et al. [94] synthesized Co and Fe phthalocyanine electrocatalysts employing multi-
406	walled carbon nanotubes (MWCNTs) as support materials via a simple thermal method.
407	The results from the rotating disk electrode (RDE) tests showed that the onset potentials
408	of CoPc/MWCNT and FePc/MWCNT electrocatalysts was -0.1 V and -0.15 V,
409	respectively, indicating that the CoPc/MWCNT possessed high ORR electrocatalytic
410	activity than FePc/MWCNT. The single fuel cell test demonstrated that the peak power
411	densities were 100, 60, and 120 mW cm ⁻² with CoPc, FePc, and Pt (0.6 mg cm ⁻²) as
412	cathode electrocatalysts and Pt (0.4 mg cm ⁻²) as anode electrocatalyst with humidified
413	H_2 fed into the anode at a rate of 200 sccm and humidified O_2 fed into the cathode at a
414	rate of 400 sccm at 45°C. Li et al. [95] synthesized non-precious metal electrocatalysts
415	(denoted as CoFeN/C-H, CoFeN/C-HL, and CoFeN/C-HLH) consisting of carbon,
416	nitrogen and transition metal via different post-treatment methods. They investigated
417	the post-treatment methods on the performance of electrocatalysts for ORR in alkaline
418	media via RDE technique. It was reported that the heat treatment played a crucial role
419	in generating highly active catalytic sites. It was also shown that a peak power density
420	of 177 mW cm ⁻² and open circuit voltage (OCV) of 0.97 V were obtained when

421	CoFeN/C-HLH (4 mg cm ⁻²) has been employed as cathode electrocatalyst and Pt (0.4
422	mg cm ⁻²) as anode electrocatalyst with humidified H_2 fed into the anode at a rate of 200
423	sccm and humidified O ₂ fed into the cathode at a rate of 400 sccm at 50°C. While for
424	Pt electrocatalyst, the peak power density was 196 mW cm ⁻² and the OCV was 1.04 V,
425	showing that the CoFeN/C-HLH electrocatalyst had the possibility to replace expensive
426	Pt. Song et al. [96] prepared carbon black based Fe- N_x/C electrocatalysts for the ORR.
427	It was demonstrated that the activity order of different active sites is $Fe-N_{4/2}-C > Fe_4-C$
428	N-C > N-C >> Fe ₄ -C \approx C and the one with Fe 10 wt. % and N 1.57 wt. % exhibited
429	the best performance (107 mW cm ⁻²). In addition, the Fe-N/C electrocatalysts could be
430	synthesized by direct pyrolysis of precursors, which was cost-efficient and batch
431	manufacturing, giving the possibility of Fe-N/C electrocatalysts for large-scale
432	commercial applications. He et al. [97] synthesized a new nanocomposite
433	electrocatalyst containing high loading cobalt oxide (24.7 wt. %, Co) via incorporating
434	CoO onto nitrogen-doped reduced GO as shown in Fig. 4 (b). They reported that a
435	synergistic effect between rGO and CoO, resulting from the unique rGO(N)-Co(II)-O-
436	Co(II)-rGO(N) structure, might facilitate the ORR in alkaline media and enhance the
437	four-electron selectivity as well. Furthermore, abundant defects and nitrogen doping
438	resulted in the accommodation of graphene-based supports for a high Co loading. The
439	fuel cell test results showed that the performance of the CoO/rGO(N) did not exhibit

significant difference with Pt up to 400 mA cm⁻². While the power density of the 440 CoO/rGO(N) experienced a large drop compared to Pt (248 mW cm⁻² vs 387 mW cm⁻ 441 ²), which was ascribed to the relatively low electron conductivity. In conclusion, 442 443 compared to precious electrocatalysts, the use of non-precious metal electrocatalysts 444 has further reduced the cost. However, the electrocatalysts suffer severe corrosion and degradation during the fuel cell operation, especially at high current densities. Hence, 445 446 the stability of the electrocatalysts in harsh environment needs to be enhanced. 4.3. Metal oxides 447 In recent years, great attention has been paid into a different class of metal oxides 448 449 electrocatalysts so-called perovskite electrocatalysts for ORR, which are considered as 450 alternatives to precious metal electrocatalysts due to the ORR activity and low cost [98-106]. Generally, the perovskite electrocatalysts can be denoted as A1-x-vA'xA"vB1-x-451 452 $_{\rm v}$ B[']_xB^{''}_vO₃, in which A always represents rare-earth elements (La, Pr, and Gd) or alkaline 453 earth metal elements (Sr and Ba) and B always refers to transition-metal elements (Mn, Co, Ni, and Fe). Suntivich et al. [98] indicated that the ORR activity of perovskite 454 electrocatatlysts was primarily related to σ^* -orbital (e_g) occupation and the extent of B-455 456 site transition-metal-oxygen covalency, which could serve as the design principle for synthesizing perovskite electrocatalysts with promising ORR activity. The principle 457 could be claimed that the perovskite electrocatalysts that possessed an e_g -filling (σ^* -458

459	orbital occupation) close to 1 exhibited the highest ORR activity. Moreover, enhancing
460	the covalency between the metal 3d and oxygen 2p orbitals also contributed to
461	improving the ORR activity. In a recent publication by Sunarso et al. [99], the ORR
462	activity of La-based perovskite electrocatalysts was investigated via a thin-film rotating
463	ring-disk electrode test. The Fig. 4 (c) showed the results that LaCrO ₃ performed largest
464	ORR current density and most positive onset potential among the LaMO ₃ (M=Ni, Co,
465	Fe, Mn, and Cr). Notably, when half of the Ni in LaNiO ₃ was substituted with Co, Fe,
466	Mn, and Cr, a more positive shift of onset potential was observed for all the newly
467	obtained electrocatalysts, which could be explained by the valence state change of
468	transition-metal cation. The Koutecky-Levich analysis implied that the ORR proceeded
469	for-electron pathway on all the perovskite electrocatalysts, which was consistent with
470	that little hydroperoxide ion was detected during the negative scan from 0.5 V to -0.75
471	V. Jin et al. [100] prepared an urchin-like La _{0.8} Sr _{0.2} MnO ₃ (LSM) perovskite oxide as
472	electrocatalyst for both ORR and OER via a co-precipitation method with urea as a
473	precipitator. The results from the SEM and BET analysis showed that the morphology
474	was spherical particles with thorns radially distributed on the surface and the specific
475	surface area was 48 m ² g ⁻¹ . It was indicated that the four-electron pathway was dominant
476	during ORR and a maximum cathodic current density was 5.2 mA cm ⁻² at -1.0 V vs.
477	Ag/AgCl with 2500 rpm. Stoerzinger et al. [101] found that the (001)-oriented

478	LaMnO ₃ -based (LMO) perovskite films have intrinsic ORR activities comparable to
479	those of high-surface-area LMO powder catalysts, which was attributed to (001) surface
480	being the the activity dominant facet. When the thickness of LMO film grown on Nb-
481	doped SrTiO3 (NSTO) reduced, the ORR activity decreased. This phenomenon was
482	explained by the barrier rooted in interfacial band bending that hindered electron
483	transfer at the electrode-electrolyte junction and the increased eg orbital occupancy due
484	to the charge transfer from the NSTO to LMO. Recently, Risch et al. [102] utilized
485	pulsed laser deposition to synthesize well-defined surfaces consisting of
486	$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta} (BSCF) \text{ on thin film } La_{0.8}Sr_{0.2}MnO_{3-\delta} (LSMO) \text{ grown on } (001)-$
487	oriented NSTO as a bifunctional electrocatalyst. The combined overpotentials from
488	both OER and ORR kinetics on BSCF LSMO NSTO could be as low as 0.7 V, which
489	rivaled the intrinsic activities of state-of-the-art catalysts in the literature. Additionally,
490	the surface stability of the LSMO NSTO was promoted by the decoration of BSCF. A
491	hybrid electrocatalyst composed of NiCoMnO4 nanoparticles that were anchored on N-
492	doped graphene nanosheets with high efficiency and low cost was proposed [103]. It
493	was demonstrated that the NiCoMnO ₄ /N-rGO exhibited excellent ORR activity (E_{onset} =
494	1.5 V vs. RHE and high current density of 14 mA cm ⁻²) and catalyzed ORR mostly
495	through four-electron process.

496 In summary, the unique perovskite structure provides a great flexibility to design and

497	synthesize a large amount of electrocatalysts with controlled electronic and geometric
498	structures for efficient ORR. It is believed that a near unity e_g orbital occupancy in
499	transition metal cation, closer transition metal d-band and oxygen p-band center relative
500	to the Fermi level, high covalency of the metal-oxygen bond, and oxygen deficiency
501	are favorable for the ORR activity of the perovskites. Future research direction can be
502	elucidating the active sites and the relevant ORR mechanism that are essential to
503	provide valid guidance to tune the structures of perovskite allowing enhanced O ₂
504	adsorption and subsequent disassociation. In addition, the other research focus can be
505	integrating perovskite electrocatalysts with ORR-active nanocarbons to significantly
506	improve mass activity by increasing the active surface areas and enhance charge/mass
507	transport due to its low electrical conductivity [104].
508	4.4. Non-metals

A non-metal electrocatalyst, also called metal-free electrocatalyst, does not include any metal element. To further reduce the cost and increase the ORR activity, considerable progress has been made in the synthesis of metal-free electrocatalysts. Recently, it has been reported that the carbon doped with nitrogen shows good ORR activity [107-113]. Higgins et al. [107] synthesized three types of nitrogen doped carbon nanotubes (N-CNTs), denoted as ethylenediamine (ED-CNTs), 1,3 diaminopropane (DAP-CNTs), and 1,4 diaminobutane (DAB-CNTs), via a simplistic single injection chemical vapor

516	deposition (CVD) setup. Then thin and free standing films, fabricated with the N-CNTs,
517	were tested as the ORR electrocatalyst in a single fuel cell with hydrogen and oxygen
518	both fed at a rate of 300 sccm. It was indicated that the ED-CNT film displayed the
519	significantly higher performance in alkaline media than commercial carbon supported
520	platinum (25.5 mW cm ⁻² vs 19.1 mW cm ⁻²), which was ascribed to the high extent of
521	nitrogen doping, resulting in the distinct structural properties of N-CNTs and enhanced
522	electronic properties. Similarly, Rao et al. [108] prepared nitrogen doped aligned carbon
523	nanotubes via an alumina template technique. It was depicted from microscopic images
524	that the nanotubes exhibited an outer diameter of 100 nm and length of 60 μ m. The
525	OCV of the AAEMFC employing the N-CNT (5 mg cm ⁻²) as the cathode electrocatalyst
526	was ~0.87 V, which was comparable to that achieved by using the commercial Pt/C (0.5
527	mg cm ⁻²) as the cathode electrocatalyst. In addition, a peak power density of 37.3 mW
528	cm ⁻² was achieved with the humidified H ₂ (95% RH, flow rate = 500 sccm) as fuel at
529	the anode and humidified O_2 (95% RH, flow rate = 1000 sccm) as oxidant at the cathode.
530	Though the performance was a little inferior in comparison to that of the AAEMFC
531	fabricated with Pt/C electrocatalyst (61.7 mW cm ⁻²), it exhibited potential to replace the
532	precious metal electrocatalysts. Ding et al. [109] proposed a novel method to synthesize
533	pyridinic- and pyrrolic-doped graphene for the ORR with the aid of layered
534	montmorillonite (MMT). A high yield of planar N that was catalytically active toward

535	the ORR was observed, as shown in Fig. 4 (d). The fuel cell fabricated with the
536	NG@MMT (4 mg cm ⁻²) as cathode electrocatalyst and Pt (0.3 mg cm ⁻²) as anode
537	electrocatalyst showed a peak power density of 320 mW cm ⁻² with hydrogen and
538	oxygen supplied to the anode and the cathode at flow rates of 150 and 200 sccm,
539	respectively. Notably, the performance, which was comparable to that of single fuel cell
540	employing commercial Pt as anode electrocatalyst (451 mW cm ⁻²), could be further
541	enhanced by reinforcing the oxygen transport. Lu et al. [113] synthesized nitrogen-
542	doped reduced graphene oxide (N-RGO) via facial treatment of grapheme employing
543	urea as agents at different temperatures. It could be seen from CV results that the N-
544	RGO based electrode showed a specific cathodic peak at -0.4 V in the presence of
545	oxygen, indicating that the N-RGO electrocatalyst possessed the excellent ORR activity.
546	In addition, it was demonstrated that the peak potential of the N-RGO was more positive
547	than the bare RGO, which means that the doped nitrogen plays an important role in
548	enhancing the ORR activity. Nevertheless, the reduction current reached the maximum
549	value when the mass ratio of urea and GRO was increased to 1:10.
550	In summary, the most attractive advantage of AAEMFCs is the absence of noble metal
551	electrocatalysts on the cathode, thereby reducing the cost. Though it has not been
552	practically realized, tremendous efforts have been made to develop substitute
553	electrocatalysts, including non-precious metal electrocatalysts, and non-metal

electrocatalysts for the ORR in alkaline media. The fuel cell, fabricated with Pt-based anode and NG@MMT based cathode, results in the highest power density (320 mW cm⁻²). The future research direction is suggested to study the mechanisms of catalysis and the structure of electrocatalysts and then to synthesize non-PGM catalysts with the high ORR activity.

559 5. Alkaline anion exchange membranes (AAEMs): Chemistries and performance Anion exchange membrane is typically composed of a polymer backbone onto which 560 fixed cationic sites are tethered. It is the cationic groups that contribute to the mobility 561 of hydroxide ions from cathode to anode through membrane. Recently, great attention 562 563 has been paid to the development of solid polymer electrolytes served as a thin 564 membrane of a few tens of micrometers in thickness, which alleviates the carbonate 565 problem caused by the use of alkaline aqueous electrolyte [26]. However, the carbonate 566 problem still cannot be completely eliminated, as the AAEMFCs are still sensitive to the CO₂ atmosphere. Additionally, the AAEMs are also facing two more challenging 567 issues. One is to further promote the ionic conductivity, resulting in a better 568 performance. Since the diffusion coefficient of OH⁻ is much lower than H⁺, a higher ion 569 570 exchange capacity (IEC) is needed so that a similar conductivity could be achieved. Nevertheless, higher IEC leads to the sacrifice of mechanical properties due to the 571 excessive polymer swelling. The other is to continue to improve the stability of the 572

AAEMs in the harsh environment and at elevated temperatures. The polymer backbones
and functional groups related to the conductivity, mechanical and chemical stability can
be easily attacked by the OH⁻ and radicals [30]. Hence, tremendous research has been
conducted on improving the conductivity as well as enhancing the thermal and chemical
stability of AAEMs [114-118].

578 **5.1. Polymer backbone**

579 **5.1.1. Poly(vinyl alcohol)**

580 Poly(vinyl alcohol) (PVA) is a polyhydroxy polymer, which is very common in practical applications because of its easy preparation and biodegradability. Moreover, 581 PVA shows a good chemical stability and hydrophilicity due to the hydroxyl groups. 582 583 Qiao et al. and his group synthesized three types of polymer electrolyte membranes 584 using PVA as matrix crosslinked with potassium hydroxide, poly(acrylamide-co-585 diallyldimethylammonium chloride), and poly(diallyldimethylammonium chloride), denoted as PVA-KOH [58], PVA-PAADDA-GA [119] and PVA/PDDA-OH⁻ [120,121], 586 respectively. Analogously, all the prepared membranes exhibited excellent chemical 587 and thermal stability, as well as good ionic conductivity. It was indicated that the 588 hydroxide-ion conductivities of these membranes were substantially boosted from 589 2.75×10⁻⁴ S cm⁻¹ to 0.02 S cm⁻¹ at room temperature. Zhang et al. [115] investigated the 590 591 effect of molecular weight on the performance of the membranes, which were

592	developed employing PVA as polymer matrix and poly(diallyldimethylammonium
593	chloride) (PDDA) as anion charge carriers. They claimed that PVA/PDDA-HMw
594	membrane possessed the maximum OH^2 conductivity of 0.027 S cm ⁻¹ , the best
595	mechanical property, highest tensile strength of 15.3 MPa and tensile elongation of
596	16.8%, and excellent thermal stability, high onset degradation temperature above 170°C,
597	which was ascribed to the most compact and dense network structure. Peak power
598	densities of 35.1, 28.5, 23.4, and 18.2 mW cm ⁻² were obtained in a H_2/O_2 fuel cell
599	fabricated with Pt (0.5 mg cm ⁻²) both at anode and cathode with humidified hydrogen
600	fed at a rate of 100 sccm and humidified oxygen fed at a rate of 70 sccm at room
601	temperature employing PVA/PDDA-HMw, PVA/PDDA-MMw, PVA/PDDA-LMw,
602	and PVA/PDDA-ULMw, respectively. Merle et al. [114] fabricated AAEMs based on
603	PVA crosslinked with poly(ethylene glycol) diglycidyl ether (PEGDGE) for alkaline
604	fuel cells via simply blending the cheap materials. It was shown that the membranes
605	exhibited high long-term ionic conductivity and high chemical stability, as shown in
606	Figs. 5 (a) and 5 (b). In addition, a maximum power density of 72 mW cm ⁻² was achieved
607	in an alkaline fuel cell fabricated with Pt (4 mg cm ⁻²) both at anode and cathode
608	employing PVA membrane with 15 wt. % acrylic acid, which was the only candidate
609	for the application due to the denser structure with hydrogen (RH=100%) supplied at a
610	flow rate of 40 sccm and oxygen supplied at a flow rate of 80 sccm. Lu et al. [122]

611	synthesized	PVA-poly(vinylbenzyl	chloride)	(PVBC)	membrane	with	a
612	macromolecu	lar crosslinker, in which l	PVBC acted	as conduct	ing polymers	and PVA	4c
613	containing di	methylamino groups wo	rked as cros	sslinker and	l the supporti	ng matr	ix
614	simultaneousl	ly. The results from Fouri	er transform	infrared (I	T-IR) and XF	PS show	ed
615	that the PVB	C and PVAc were crossli	nked succes	sfully. In ac	ddition, it was	indicat	ed
616	that hydroxid	e-ion conductivity was la	rger than 0.0	01 S cm ⁻¹ a	t room tempe	rature ai	nd
617	swelling ratio	(SR) was suppressed wh	en the temp	erature was	elevated. A p	eak pow	er
618	density of 124	4.7 mW cm ⁻² was obtained	l in an AAEI	MFC fabric	ated with Pt (().4 mg ci	m⁻
619	²) both at an	ode and cathode employ	ring the cros	sslinked me	embrane with	hydrog	en
620	(RH=100%) s	supplied at a flow rate of	40 sccm and	d oxygen sı	upplied at a fl	ow rate	of
621	70 sccm at 40	°C.					

622 5.1.2. Poly(arylene ether)s

Poly(arylene ether)s possesses excellent stability and water resistance that are 623 624 preferable properties of AAEMs. Thus, some AAEMs based on poly(arylene ether)s have been reported [116,117,123]. Tanaka et al. [123] synthesized aromatic multiblock 625 copolymer membrane, poly(arylene ether)s containing quaternized ammonio-626 substituted fluorene groups, via block copolycondensation of fluorene-containing 627 hydrophilic oligomers and linear hydrophobic oligomers, chloromethylation, 628 629 quaternization, and ion-exchange reactions. It was reported that this membrane

630	exhibited considerably high hydroxide-ion conductivities, reaching 144 mS cm ⁻¹ at
631	80°C, and retained the high conductivity for 5000 h. They claimed that introducing
632	highly ionized hydrophilic blocks into multi-block structure was an efficient way to
633	promote the ionic conductivity. Jasti et al. [116] proposed a facial synthesis of aminated
634	multiblock poly(arylene ether)s with hydrophilic blocks via nucleophilic substitution
635	poly condensation followed by quaternization and alkalization reactions. It was shown
636	that hydrophilic/hydrophobic phase separation due to the interconnected ion transport
637	pathway, resulting in a high ionic conductivity of 150 mS cm ⁻¹ at 80°C. In the presence
638	of two vicinal quaternary ammonium groups, the membrane exhibited promising
639	alkaline stability, because nucleophilic attack was hindered, as well as the degradation
640	was avoided. Li et al. [117] prepared functionalized quaternary ammonium
641	poly(arylene ether)s (QBMPAEs) containing tetramethyl triphenyl methane moieties
642	via polycondensation, benzylic bromination, quaternization, and alkalization. It was
643	demonstrated that the IECs could be adjusted from 0.90 to 1.73 mmol g ⁻¹ by controlling
644	the conditions of the bromination reaction. In addition, the water uptake (WU) and SRs
645	of the QBMPAEs membranes were moderate and could be adjusted by controlling their
646	degree of bromination (DBM) values. One of the synthesized membranes, QBMPAE-d
647	membrane, possessed excellent long-term alkaline stability for 30 days. It was indicated
648	that the QBMPAE-d membrane resulted in the highest conductivity of 46.6 mS cm ⁻¹ at

649 80°C and a peak power density of 20.1 mW cm⁻² was achieved in a H₂/air single fuel 650 cell with hydrogen (RH=100%) supplied at a flow rate of 300 sccm and air supplied at 651 a flow rate of 800 sccm along with 0.1 mg cm⁻² Pt on the anode and 0.2 mg cm⁻² Pt on 652 the cathode at 70°C.

653 **5.1.3.** Poly(2,6-dimethyl-1,4-phenyleneoxide)

Poly(2,6-dimethyl-1,4-phenyleneoxide) (PPO) has outstanding physical properties, 654 including high dimensional stability, excellent mechanical properties, high thermal 655 stability, low moisture uptake, low flammability, and exceptional electrical properties, 656 including a low dielectric constant and a low dielectric dissipation factor. Moreover, 657 another superiority of PPO is the safety. The toxicity of many other materials has 658 659 restricted their development for AAEMFC applications. In view of these characteristics, 660 PPO has been regarded as an excellent candidate for high-frequency substrates. Ong et al. [124] synthesized PPO based membranes via bromination/amination serial reactions, 661 which reduced the number of involved toxic chemicals and reaction time. Though the 662 synthesis route was relatively simple, the obtained membrane, prepared from 5 wt% 663 PPO, bromine/PPO molar ratio at 10, nitrogen-free atmosphere, with hydroxylation 664 treatment and N-methyl-2-pyrrolidone (NMP) as the membrane casting solvent, 665 possessed competitive ionic conductivity of 1.64×10^{-2} S cm⁻¹ at 60°C. The peak power 666 density increased from 3 mW cm⁻² to 19.5 mW cm⁻² with the temperature going up from 667

668	25°C to 70°C with hydrogen (RH=100%) supplied at a flow rate of 5 sccm and oxygen
669	supplied at a flow rate of 10 sccm along with Pt (0.65 mg cm ⁻²) both at anode and
670	cathode. Further increasing the temperature, a dramatic degradation occurred primarily
671	due to the thermal degradation of AAEM. Lin et al. prepared PPO based AAEMs
672	containing pendant guanidinium groups [125], benzimidazolium (BIm) groups [126],
673	and 1,2-dimethylimidazolium (DIm) functional groups [127], denoted as GPPO,
674	BImPPO, and DImPPO, respectively. It was indicated that the GPPO membrane
675	possessed high anion conductivities resulting from the high basicity of guanidinium
676	groups, and short-term thermal and long-term alkali stabilities due to the π electron
677	conjugated system. Meanwhile, a peak power density of 16 mW cm ⁻² was achieved at
678	50°C when the GPPO membrane was fabricated into a H_2/O_2 fuel cell utilizing Pt (0.4
679	mg cm ⁻²) both at anode and cathode with both humidified hydrogen and oxygen fed at
680	rates of 600 sccm. In comparison with the analogous PPO membranes containing the
681	classical pendant quaternary ammonium and imidazolium cations, the BImPPO
682	membrane showed advantages in ionic conductivity, dimensional, thermal, and
683	mechanical stabilities. Furthermore, the peak power density was 13 mW cm ⁻² at 35°C
684	in the case of the utilization of optimal BIm-PPO-0.54 AAEM. In addition, the DImPPO
685	membrane also exhibited comparative conductivity, in the ranges of 10-40 mS cm ⁻¹ and
686	18-75 mS cm ⁻¹ at 30°C and 60°C, respectively. Nevertheless, the power density
687	employing DImPPO membrane was much higher than that of other PPO membrane,
-----	--
688	reaching 56 mW cm ⁻² , whereas it decreased dramatically to 31 mW cm ⁻² after three-
689	time repetition of the test, suggesting the poorer stability. Li et al. [128] synthesized
690	quaternized PPOs materials containing clicked 1,2,3-triazoles for AAEMs via CuI-
691	catalyzed "click chemistry". It was shown that the obtained membranes possessed
692	higher WU, hydroxide-ion diffusion coefficient and anion conductivities due to the
693	formation of efficient and continuous hydrogen-bond networks. A hydroxide-ion
694	conductivity of 27.8-62 mS cm ⁻¹ was achieved at 20°C in water, which was several
695	times higher than that of a typical PPO-based AAEM (TMA-20). An improved peak
696	power density of 188.7 mW cm ⁻² was obtained in a H_2/O_2 fuel cell fabricated with Pt
697	(0.5 mg cm^{-2}) both at anode and cathode with hydrogen (RH=100%) supplied at a flow
698	rate of 200 sccm and oxygen supplied at a flow rate of 200 sccm at 50°C employing the
699	membrane with alkyne-functionalized quaternary ammonium (QA). A recent
700	publication by Dang et al. [129] demonstrated that the position of QA cations in the
701	polymer structure, ring size, the presence of an additional heteroatom, and ring
702	substitution pattern played a crucial role in the performance of the PPO based AAEMs.
703	The results are beneficial for selecting optimal QA groups to enhance the lifetime and
704	performance of the AAEMs. Wang et al. [130] proposed a strategy of supramolecular
705	modalities for strengthening the mechanical stability of the PPO based AAEMs

substantially. A secondary amide was introduced into the AAEMs to serve as a hydrogen-bonding crosslinking motif, which was evidenced by the 101% elongation at break, whereas the AAEMs without hydrogen-bonding crosslinking showed the elongation at break in the range of 10%~20%.

710 **5.1.4.** Poly(tetrafluoroethylene)

Poly(tetrafluoroethylene) (PTFE) has been widely used in chemical industry and other 711 712 related industries due to its unique properties, which can be conclude as follows: (1) 713 high chemical stability; (2) excellent thermal stability; (3) minimal water absorption; 714 and (4) no toxicity. Due to the high thermal and chemical stability, as well as low WU, PTFE has been introduced to synthesize AAEMs [61,131-134]. Wang et al. [61] 715 716 synthesized a thin (30 µm) composite membrane by impregnating quaternary 1,4-717 diazabicyclo-[2.2.2]-octane polysulfone (QDPSU) solution in PTFE. The results from 718 the scanning electron microscope (SEM) exhibited that the obtained membrane 719 possessed a dense and homogenous structure. It was shown that the composite 720 membrane exhibited better mechanical strength (a 32 MPa maximum load), lower WU $(61 \pm 3\%)$ and less swelling degree $(17 \pm 2\%)$ than pristine QDPSU membrane. 721 Furthermore, a considerable peak power density of 146 and 103 mW cm⁻² were 722 achieved with Pt (0.5 mg cm⁻²) both at anode and cathode along with hydrogen (80 723 sccm, RH=100%) and oxygen or air (100 sccm, RH=100%) as oxidant, respectively. 724

725	Zhao et al. reported that the quaternized polyvinyl benzyl chloride (QPVBC) could
726	provide sufficient ionic exchange group, but it became brittle after casting membrane
727	[132]. Hence, they prepared quaternary ammonia polysulfone (QAPS)/PTFE composite
728	membrane by employing porous PTFE membrane as the substrate and QAPS polymer
729	as the anionic conductor [133]. It was indicated that the obtained membrane possessed
730	better mechanical strength, lower SR and WU than the previous QAPS alkaline AAEM.
731	The fuel cell fabricated with the 20 μ m thickness membrane and Pt (0.4 mg cm ⁻²) both
732	at anode and cathode with hydrogen (RH=100%) supplied at a flow rate of 100 sccm
733	and oxygen supplied at a flow rate of 200 sccm resulted in a peak power density of 315
734	mW cm ⁻² at 50°C. Nevertheless, the QAPS was inclined to leach out gradually during
735	the operation of the fuel cell, resulting from the poor interaction between the QAPS
736	guest and the PTFE host. As consequence, Li et al. [134] proposed a new approach for
737	making ultrathin composite membranes of alkaline polymer electrolytes (APEs), which
738	could avoid the leach out problem. They impregnated the APE ionomer TQAPS into a
739	porous PTFE film, followed by a self-crosslinking process, forming a semi-
740	interpenetrating network. It was indicated that the obtained membrane (xQAPS@PTFE,
741	25 μm thick) showed low area resistance (0.09 Ω cm²), a low swelling degree (3.1% at
742	60°C) and high mechanical strength (31 MPa). A peak power density of 550 mW cm ⁻²
743	was achieved in a H_2/O_2 AAEMFC fabricated with Pt (0.4 mg cm ⁻²) both at anode and

cathode employing the membrane with both humidified hydrogen and oxygen fed at
rates of 120 sccm at 60°C.

5.1.5. Polysulfones

747	Poly(arylene ether sulfone) exhibits promising mechanical and thermal stability, as well
748	as hydrolysis resistance. Recently, some attempts have been made to the synthesis of
749	membranes based on poly(arylene ether sulfone) [135-137]. Zhou et al. [135] prepared
750	the poly(arylene ether sulfone) based membranes, containing fluorenyl groups
751	(QAPSF), functionalized with benzyltrimethylammonium groups via the
752	polycondensation, chloromethylation, and amination reactions. It was reported that the
753	QAPSF membranes were stable at pH 11 and showed slow degradation at pH>14. A
754	peak power density of 4.1 mW cm ⁻² was obtained in an AAEMFC fabricated with Pt (1
755	mg cm ⁻²) both at anode and cathode operating on H_2 (6 sccm, RH=100%) supplied to
756	anode and O ₂ (3 sccm, RH=100%) and CO ₂ (6 sccm, RH=100%) supplied to cathode.
757	Surprisingly, the addition of CO ₂ resulted in a promotion of power density, from 2.2 to
758	3.2 mW cm ⁻² , because CO_2 was involved in the chemical progress and transported
759	through the AAEM. Yang et al. [136] synthesized a series of poly(arylene ether sulfone)
760	containing bulky imidazole groups (PSf-Im-x) based on a novel monomer 2,2'-bis-(2-
761	ethyl-4-methyl-imidazole-1-ylmethyl)-biphenyl-4,4'-diol (EMIPO), followed
762	quaternization by n-bromobutane. The attached bulky groups around the imidazolium

763	ring reduced the access of OH ⁻ to imidazolium, which leaded to the enhancement of
764	alkaline stability, showing an OH ⁻ conductivity of 0.014 S cm ⁻¹ at 30°C and retaining
765	the 80% of the conductivity for 144 h. It was revealed that some inorganic materials
766	could be added into polymer matrix, improving the mechanical, thermal and chemical
767	properties. Li et al. [137] synthesized a series of cross-linked multiblock copoly(arylene
768	ether sulfone) ionomer (CLQCPAES)/nano-ZrO2 composite AAEMs via block
769	copolymerization, bromomethylation, ultrasonication blending, self-crosslinking,
770	quaternization, and alkalization. It was shown that the CLQCPAES/nano-ZrO $_2$
771	composite membranes were complex cross-linking networks of hydrophobic
772	domains/hydrophilic domains/nano-ZrO2 with a clear zonal distribution of uniform
773	nano-sized particles in the hydrophilic domains. The WU, mechanical properties,
774	hydroxide conductivity, and alkaline stability were enhanced significantly by the
775	modification with block-ionomer structure, cross-link treatment and the introduction of
776	nano-ZrO ₂ particles. Particularly, the CLQCPAES/7.5% ZrO ₂ membrane showed an
777	IEC value of 1.23 mmol g ⁻¹ , hydroxide-ion conductivity of 55.2 mS cm ⁻¹ at 80°C, and
778	tensile strength of 32.0 MPa, which possessed almost the best comprehensive properties.
779	Polysulfone membrane exhibits prime mechanical, biological, and chemical stability,
780	and has a wide operating range at temperature (>80°C), which attracts worldwide
781	attentions. Zhang et al. [138] prepared a porous polysulfone AAEM filled with (3-

782	acrylamidopropyl)trimethylammonium chloride and N,N'-methylenebisacrylamide
783	with a grid-plug microstructure via phase-inversion, interfacial diffusion, and in-situ
784	polymerization. It was indicated that the PSU-PATC(1.2) membrane with optimal
785	content of PATC performed best (55 mW cm ⁻²) in a single fuel cell fabricated with Pt
786	(2 mg cm ⁻²) both at anode and cathode with H ₂ (800 sccm, RH=100%) supplied to
787	anode and O ₂ (600 sccm, RH=100%) supplied to cathode due to the maximum ionic
788	conductivity. He et al. [139] suggested that one of the obstacles for the application of
789	AAEMs was the poor ionic conductivity, which was partially attributed to the poorly-
790	defined morphologies of AAEMs, resulting in the tortuous ion transport pathways. As
791	a consequence, they proposed a novel strategy, grafting hydrophilic poly(ethylene
792	glycol) side-chains along a model benzyltrimethylammonium polysulfone-based
793	AAEM to form nanoscale (5 to 10 nm diameter) anion transport channels, to enhance
794	the ionic conductivities of AAEM. It was indicated that the IEC-normalized hydroxide
795	conductivity increased by 100% from 20.2 to 40.3 mS g cm ⁻¹ mmol ⁻¹ and the power
796	density increased by 50% from 118 mW cm ⁻² to 180 mW cm ⁻² in a fuel cell fabricated
797	with Pt (0.5 mg cm ⁻²) at anode and Pt (2 mg cm ⁻²) at cathode with humidified H_2
798	supplied to anode at a flow rate at 150 sccm and humidified O ₂ supplied to cathode at
799	a flow rate at 200 sccm, simultaneously. Vinodh et al. [140] synthesized a quaternized
800	polysulfone/ZrO ₂ composite membrane via solution casting method and determined its

801 characteristic properties via XRD, TGA, and electrochemical impedance spectroscopy 802 (EIS). The results from the tests indicated that the ZrO_2 nano fillers were distributed 803 homogeneously, showing no obvious agglomeration. In addition, the composite 804 membrane exhibited long-term thermal and chemical stability. Typically, a peak power 805 density of 250 mW cm⁻² was obtained in a single H₂/O₂ fuel cell fabricated with Pt 806 (0.375 mg cm⁻²) at anode and Pt (0.125 mg cm⁻²) at cathode at 60°C as the QPSU/10% 807 ZrO₂ has been employed.

- 808 **5.2. Functional groups**
- 809 **5.2.1. Quaternary ammonium (QA)**

810 QA groups are more thermally and chemically stable than tertiary ammonium (TA) and primary ammonium (PA), resulting in the most common utilization of quaternary 811 812 ammonium as hydroxide ions transfer carriers. Varcoe et al. [141] developed a novel alkaline polymer, employing N,N,N',N'-tetramethylhexane-1,6-diamine as the cross-813 814 linking agent and poly-(vinylbenzyl chloride) as the polymer backbone. After the treatment of KOH exchange, the obtained polymer was coated on the electrodes 815 816 working as the AAEM, which not only increased the power density of a single fuel cell 817 using Pt (0.5 mg cm⁻²) both at anode and cathode with H₂ (2000 sccm, RH=100%) fed to anode and O₂ (2000 sccm, RH=100%) fed to cathode from 1.6 to 55 mW cm⁻² at 818 50°C, but also avoided undesirable carbonate precipitation. Pan et al. [142] replaced a 819

820	part of the QA in QAPS with a TA, and the two substances crosslinked two nearest
821	neighboring chains generating xTQAPS membrane upon solidification. It was found
822	that the self-crosslinked membrane did not show any obvious degradation of
823	mechanical stability and IEC in pure water at 90°C for 500h, which suggested the
824	membrane exhibited extraordinary both physical and chemical stability, breaking the
825	contradiction between the IEC and dimensional stability. This phenomenon could be
826	attributed to the stereo-hindrance effect of the two benzyl groups in proximity
827	suppressing the Hofmann elimination reaction. Zhou et al. [143] prepared AAEMs with
828	varying amounts of QA groups (0.51, 0.70, and 0.90 mmol g ⁻¹) grafted onto a SEBS
829	block copolymer and investigated the impacts of AAEMs with various IECs on the
830	performance of H_2/O_2 fuel cells. The peak power density of the AAEMFCs utilizing Pt
831	(0.5 mg cm ⁻²) both at anode and cathode with H ₂ (200 sccm, RH=100%) supplied to
832	anode and O ₂ (200 sccm, RH=100%) supplied to cathode employing these AAEMs with
833	IEC of 0.51, 0.70, and 0.90 mmol g^{-1} were 169, 222, and 285 mW cm ⁻² , respectively. It
834	was indicated that a higher content of QA groups in the membranes leaded to higher
835	ionic conductivity, resulting in the lower overpotential and higher power density. They
836	revealed that the transportation resistance of the OH ⁻ ions was a controlling factor when
837	fewer functional groups were contained in the membrane or the cell voltage was higher.
838	Li et al. [144] reported highly stable, anion conductive and comb-shaped copolymers

839	containing long alkyl side chains pendant to the nitrogen-centered cation via a
840	Menshutkin reaction to form comb-shaped structures. It showed that the membrane
841	with long alkyl chain of up to 16 carbon atoms, which had the longest hexadecyl chain,
842	exhibited higher hydroxide-ion conductivity, more distinct ionic domains, and lower
843	WU than that with a hexyl side chain. The peak power density of fuel cell fabricated
844	with Pt (0.5 mg cm ⁻²) both at anode and cathode using both humidified $H_2 O_2$ fed at
845	flow rates at 200 sccm with C16D40 membrane was 77 mW cm ⁻² , which was slightly
846	higher than that using C6D60 (67 mW cm ⁻²). Increasing the flow rates of hydrogen and
847	oxygen, the peak power density of C6D60 could reach 145 mW cm ⁻² when the flow
848	rates of anode and cathode were both at 2000 sccm. However, the C16 membrane was
849	inferior in the film-forming ability due to the poor compatibility between long alkyl
850	side chain and polymer backbone. Ren et al. [145] reported highly conductive AAEM
851	with styrenic diblock copolymer, a quaternary ammonium-functionalized hydrophilic
852	block and a cross-linkable hydrophobic block, which possessed high ionic conductivity
853	at 98 mS cm ⁻¹ and controlled membrane swelling with WU at 117 wt. % at 22°C. It was
854	ascribed to the reduced tortuosity of the ionic conduction pathways. Moreover,
855	excessive WU was suppressed because the mechanical integrity of the membrane was
856	maintained due to the hydrophobic network. A peak power density of 168 mW cm ⁻² was
857	obtained in a H ₂ /air fuel cell fabricated with Pt (1 mg cm ⁻²) both at anode and cathode

858	using newly developed AAEM (C30D70-1.7) with H_2 (250 sccm, RH=95%) supplied
859	to anode and air (250 sccm, RH=95%) supplied to cathode at 50°C.

5.2.2. Imidazolium

861	Though the QA groups are more thermally and chemically stable than TA and PA groups,
862	the AAEMs with QA groups are still facing the facile degradation and excessive
863	swelling problems. Hence, a resurgence of exploring substituted functional groups has
864	occurred. Imidazolium salts (IMSs) are well-known as a type of ionic liquid, which can
865	act as electrolytes due to their high chemical stability and low vapor pressure. It seems
866	that imidazolium chemistry is more amenable to AAEM fabrication through post-
867	functionalization, resulting in the formation of ion clusters for efficient transport of OH ⁻ .
868	Recently, Lu et al. [146] synthesized imidazolium-functionalized AAEMs via
869	functionalization of chloromethylated poly(ether sulfone) (PES) with 1-alkylimidazole.
870	It was revealed that the WU, SR and solubility of AAEMs increased but the OH-
871	conductivity decreased with the increment of the alkyl line length on the imidazolium
872	group. They claimed that the ionic conductivity was determined by the ionic
873	concentration, which was affected by IEC and SR. Accordingly, the quotient of IEC
874	divided by SR (IEC/SR) could be regarded as an indirect indicator of the ionic
875	concentration. Moreover, a peak power density of $\sim 30 \text{ mW cm}^{-2}$ was obtained in a
876	H_2/O_2 AAEMFC fabricated with Pt (0.4 mg cm ⁻²) both at anode and cathode employing

877	the fabricated AAEM and anion exchange ionomers (AEIs) with H ₂ (50 sccm,
878	RH=100%) supplied to anode and air (100 sccm, RH=100%) supplied to cathode at
879	45°C. Zhang et al. [147] reported a polysulfone-imidazolium AAEM (PSf-ImOH) via
880	functionalization of chloromethylated polysulfone with methylimidazole, added
881	different degrees of chloromethylation of PSf to control the membrane properties. They
882	found that the membranes possessed comparable IEC, conductivity, and thermal
883	stability with the conventional AAEMs. In spite of the low power density (16 mW cm ⁻
884	²), a new route for non-QAAAEM design and fabrication was offered. Ran et al. [148]
885	developed imidazolium-type AAEMs (Im-AAEM) based on bromomethylated
886	poly(2,6-dimethyl-1,4-phenyleneoxide) (BPPO) polymer chains via solution casting of
887	NMP solutions. Additionally, a favorable conductivity up to 100 mS cm ⁻¹ was obtained
888	at 80°C, resulting from the nano-scale phase-separated construction by the solution
889	casting method. It was indicated that different IECs ranging from 1.1 to 2.4 mmol g^{-1}
890	could be obtained by tuning the molar ratio of 1-methylimidazole to CH ₂ Br groups in
891	the starting polymer. A peak power density of 30 mW cm ⁻² was achieved in a single fuel
892	cell using Pt (0.5 mg cm ⁻²) both at anode and cathode with Im-AAEM with both
893	humidified hydrogen and air fed at flow rates of 600 sccm at 50°C.

5.3. Other chemistries

895 In addition to the above-mentioned AAEMs, extensive other types of AAEMs based on

896	various materials have been synthesized and reported [149-163]. Xing et al. [149] found
897	that the conductivity of KOH-doped polybenzimidazole (PBI) was remarkable,
898	reaching to 9×10^{-2} S cm ⁻¹ at 25°C, which was much higher than that of preciously
899	obtained on acid-doped PBI. In addition, the H2/O2 fuel cell using this polymer
900	electrolyte exhibited the same performance as those based on Nafion 117 membrane.
901	Li et al. [150] reported that grafting long side-chain cations onto PBI was an effective
902	way to improve the OH ⁻ conductivity, mechanical and thermal stability, as well as
903	reduce swelling ratio. Wan et al. [151] synthesized different solid polymer electrolyte
904	membranes using chitosan as matrices incorporated with potassium hydroxide as ionic
905	carrier. After hydration for 1 h, the conductivity of the membrane was about 10 mS cm ⁻
906	¹ . When being integrated into the fuel cells, the maximum current density reached 35
907	mA cm ⁻² and the open circuit voltage of 1 V was achieved. Additionally, they also
908	proposed two approaches to improve the fuel cell performance [152]. One was to add
909	an alkaline and ionic-conductive interfacial gel, and the other was to decrease the
910	thickness of the membrane. Luo et al. [153] synthesized a novel high molecular weight
911	copolymer quaternized poly(methyl methacrylate-co-butyl acrylate-co-vinyl
912	benzylchloride) (denoted as QPMBV) composed of methyl methacrylate (MMA), butyl
913	acrylate (BA), and VBC. It was reported that polymer electrolytes could be designed
914	bottom-up through mini-emulsion polymerization by selecting desirable monomer

915	[154]. Furthermore, the conductivity reached 8.2 mS cm ⁻¹ at 80°C. The results from the
916	fuel cell performance evaluation demonstrated that the peak power density of 25 mW
917	cm ⁻² was achieved in a single fuel cell fabricated with Pt (0.5 mg cm ⁻²) both at anode
918	and cathode with H_2 (80 sccm, RH=80%) supplied to anode and air (80 sccm, RH=80%)
919	supplied to cathode at 60°C, suggesting that the preparation concept of these
920	membranes was feasible [155]. Moreover, the conductivity and the mechanical strength
921	were balanced by utilizing the designed hydrophobic and hydrophilic segments [154].
922	Hence, they concluded the membrane properties as follows [156]: (1) higher molecular
923	weight resulted in the improvement of the mechanical strength as well as reduction of
924	the WU; (2) higher concentration of the conductive sites resulted in the enhancement
925	of conductivity but simultaneously impairment of the mechanical properties; (3) higher
926	glass transition temperature resulted in the promotion of the membrane durability; and
927	(4) the water hydrophilicity of the mechanical support played an important role in the
928	WU. Wu et al. [157] prepared a high ion-conduction alkaline membrane by sulfonation
929	with lower cost using non-woven polypropylene/polyethylene (PP/PE). It was shown
930	that the ionic conductivity was improved from 8.8 to 17.5 mS cm ⁻¹ , while the decline
931	of thermal resistance (4%) and mechanical strength (21%) was reduced. Sollogoub et
932	al. [158] developed an AAEM using a poly(epichlorhydrin) as matrix and incorporated
933	two cyclic diamines, namely 1,4-diazabicyclo-[2,2,2]-octane (DABCO) and 1-

934	azabicyclo-[2,2,2]-octane (Quinuclidine), into the matrix to ensure anionic conduction
935	properties. They illustrated that the transport number is usually 0.99 and the peak power
936	density was nearly 100 mW cm ⁻² when the membrane was assembled in a H_2/O_2 fuel
937	cell utilizing Pt (0.17 mg cm ⁻²) as both anode and cathode electrocatalysts. Hibino et al.
938	[159] developed a series of hydroxide-ion conducting antimony (V)-doped Tin
939	pyrophosphate electrolyte, Sn _{1-x} A _x P ₂ O ₇ (A=V, Nb, Ta, and Sb) compounds, for
940	intermediate-temperature alkaline fuel cells. It was indicated that Sn _{0.92} Sb _{0.08} P ₂ O ₇
941	exhibited the highest electrical conductivity in the temperature range of 50-200°C.
942	Additionally, the peak power densities of 76 mW cm ⁻² , 94 mW cm ⁻² , 114 mW cm ⁻² , 130
943	mW cm ⁻² , 132 mW cm ⁻² and 147 mW cm ⁻² were obtained with Pt (2 mg cm ⁻²) both at
944	anode and cathode and humidified hydrogen and air at rates of 50 sccm at 75°C, 100°C,
945	125°C, 150°C, 175°C, and 200°C, respectively [160]. Zhao et al. [161] reported a series
946	of pore-filled AAEMs via thermal polymerization of chloromethyl monomer in a
947	porous PE substrate followed by amination with trimethylamine. It was indicated that
948	a hydroxide conductivity of 0.057 S cm ⁻¹ was obtained at 30°C, in deionized water and
949	the synthesized membrane possessed long term alkaline stability. A peak power density
950	of 370 mW cm ⁻² was achieved in a H_2/O_2 fuel cell utilizing Pt (0.5 mg cm ⁻²) both at
951	anode and cathode with hydrogen (100 sccm, RH=100%) fed to anode and oxygen (200
952	sccm, RH=100%) fed to cathode at 50°C. Kim et al. [162] fabricated

953 pentamethylguanidinium functionalized perfluorinated hydroxide-ion conducting 954 ionomers for AAEM. It was shown that the alkaline stability of the ionomers largely 955 depended on the adjacent group that connected the cation. Meanwhile, the phenylguanidinium functionalized ionomer exhibited better stability than sulfone 956 guanidinium functionalized ionomer due to the charge delocalization of the formed 957 resonance structure. When the membrane was fabricated into a H₂/O₂ fuel cell using Pt 958 (3.4 mg cm⁻²) on the anode and Pt (6.5 mg cm⁻²) on the cathode with supplied 959 humidified hydrogen and oxygen, a peak power density of 577 mW cm⁻² was obtained. 960 Recently, Chen et al. [163] found that both introducing ionic liquids and adding nano-961 TiO₂ into the AAEMs contributed to improving the OH⁻ conductivity. The ionic liquids 962 963 dispersed in the membrane functioned active sites for secondary OH⁻ conduction, and 964 the nano-TiO₂ particles could significantly alleviate the ionic liquid loss and stabilize 965 the ionic liquid monomer in the membrane.

The effects of the cations chemistries, the length of alkyl chain of the diamines, the reaction conditions of chloromethylation, and the parameters of polymers on the AAEMs have been extensively investigated [164-169]. Einsla et al. [164] tested the stability of cations for anion exchange membrane fuel cells and illustrated that the stability of benzyltrimethylammonium hydroxides was much better than that of phenyltrimethylammonium hydroxides under similar conditions. Furthermore, they

972	showed the degradation of stability of the cation when the concentration of the
973	ammonium hydroxides was increased. Arges et al. [165] studied the influence of
974	different cation chemistries, 1,4-dimethylpiperazinium (DMP+), trimethylammonium
975	(TMA+), and trimethylphosphonium (TMP+), on ionic conductivity and alkaline
976	stability of AAEMs. They concluded from the obtained experimental evidence as
977	follows: (1) phosphonium cations with similar or greater basicity degraded more rapidly
978	than ammonium cations; (2) phosphonium cations degraded through a fundamentally
979	different mechanism (ylide formation) than ammonium cations (direct nucleophilic
980	substitution); (3) as long as the issue of significant WU did not come into play, the fuel
981	cell performance was enhanced with higher IEC AAEMs. Park et al. [166] investigated
982	the effect of the length of alkyl chain of the diamines on ionic conductivity and thermal
983	characteristics via employing TMA as a monoamine and N,N,N',N'-
984	tetramethylmethanediamine (TMMDA), N,N,N',N'-tetramethylethylenediamine
985	(TMEDA), N,N,N',N'-tetramethyl-1,3-propandiamine (TMPDA), N,N,N',N'-
986	tetramethyl-1,4-butanediamine (TMBDA) and N,N,N',N'-tetramethyl-1,6-
987	hexanediamine (TMHDA) as various diamines. The results showed that the mixture of
988	TMA and TMHDA had a better hydroxyl ion conductivity and thermal stability than
989	others, suggesting that a longer alkyl chain resulted in higher performance. Wang et al.
990	[167] demonstrated that the parameters, including reaction time, reaction temperature,

991	concentration of polymer, concentration of chloromethylation agent, and the amount of
992	catalyst, possessed significant impacts on chloromethylation. When these parameters
993	were well controlled, the gelation could be avoided. Among the parameters, the
994	concentration of the chloromethylation agent played a dominant role in enhancing the
995	attachment of chloromethyl functional group onto the polymer. Luo et al. [168]
996	investigated the effects of polymer composition drift, molecular weight, and polymer
997	crosslinking on the properties of quaternized poly(methylmethacrylate-co-vinylbenzyl
998	chloride) (QPMV)-based AAEM. It was indicated that the initial monomer ratio and the
999	resulted copolymer composition could influence the hydrophobic/hydrophilic portions
1000	in the membrane. They demonstrated that decreasing initiator potassium persulfate
1001	(KPS) and increasing surfactant sodium dodecyl sulfate (SDS) could increase the
1002	molecular weight, simultaneously improving the mechanical properties. It was believed
1003	that crosslinking method could alleviate the WU problem due to the less distinct phase
1004	separation feature. Pan et al. [169] proposed two strategies for developing advanced
1005	APEs which were highly resistant to swelling and showed conductivities comparable
1006	with Nafion: self-crosslinking and self-aggregating designs. It was indicated that a
1007	short-range cross-linker, tertiary amino groups, was grafted onto the QAPS and the
1008	membrane swelled by less than 3% at 80°C. In self-aggregating design, long alkyl side-
1009	chains were attached to the QAPS, which produced enlarged and aggregated ionic

1010 channels.

1011 **5.4. AAEM performance**

1012 **5.4.1. Effect of pre-treatment**

1013 Before being integrated into the fuel cell, the membrane would be immersed into water 1014 or alkaline electrolyte to improve the conductivity. Under pure water operation, the characterization of membrane has been extensively conducted [170,171]. Li et al. [170] 1015 prepared AAEMs with significant ionic conductivities over the order of 10^{-2} S cm⁻¹ in 1016 1017 DI water at room temperature. The fuel cell using Pt (0.5 mg cm^{-2}) both at anode and cathode yielded an OCV of 1.028 V and a peak power density of 33 mW cm⁻² with 1018 hydrogen (50 sccm, RH=100%) supplied on the anode and oxygen (100 sccm, 1019 1020 RH=100%) supplied on the cathode in the absence of liquid electrolyte, such as KOH 1021 and NaOH, at 30°C, suggesting the possibility of the membrane for AAEMFCs 1022 application. Mamlouk et al. [171] studied the effect of anion functional groups on the conductivity and performance of AAEMs. It showed that TMA functionalized 1023 1024 membrane possessed the highest conductivity among amine/sulphide-based functional groups with conductivities values up to 0.25 and 0.043 S cm⁻¹ in plane and through 1025 plane, respectively. The highest power density of 478 mW cm⁻² was achieved when 1026 TMA functionalized electrodes fabricated with Pt (0.4 mg cm⁻²) were employed, 1027 followed by the second highest power density of 236 mW cm⁻² achieved by the 1028

1029	TMHDA electrodes. Trimethylamine (TEA) and DABCO electrodes showed analogous
1030	power densities of 100 and 116 mW cm ⁻² , respectively. Finally, the dimethyl sulfide
1031	(DMS) functionalized electrodes performed the lowest power density of 58 mW cm ⁻² .
1032	As a consequence, it was demonstrated that the ionomer functional groups affected the
1033	oxygen permeability, the activation energy and the exchange current density for oxygen
1034	reduction and anode flooding. Thus, the type of functional groups used for the ionomer
1035	can severely restrict cell performance.
1036	When the pure water changes to alkaline electrolyte, the performance has also been
1037	studied [58,119,121]. Fu et al. [58] demonstrated that the ionic conductivity of the
1038	membrane was promoted to 0.473 mS cm ⁻¹ after alkali (2-4 M) doping due to the KOH
1039	penetrated into the polymer. However, there was no significant contribution to the
1040	conductivity when the concentration of the KOH was larger than 4 M, which was
1041	attributed to the weak ionic mobility. Similarly, Zhang et al. [121] found that the
1042	conductivity of the AAEM reached to a maximum value of 0.025 S cm ⁻¹ after the KOH
1043	(2 M) doping. Qiao et al. [119] claimed that this phenomenon could be explained by
1044	the two following reasons: one was that the QA groups would decompose in such harsh
1045	basic environment, and the other was that the ionic mobility became weak due to the
1046	increase of the viscosity or the formation of ion-pairs. Jiang et al. [172] designed an air-
1047	breathing cell for fast screening of electrolytes as shown in Figs. 6 (a) and 6 (b), which

1048	was suitable for using various liquid electrolytes, thus reproducible data could be
1049	obtained. Subsequently, the effects of different electrolytes, i.e. 1.0 M
1050	tetramethylammonium hydroxide (TMAOH), 1.0 M tetraethylammonium hydroxide
1051	(TEAOH), 1.0 M tetrapropylammonium hydroxide (TPrAOH), 1.0 M KOH, and 0.5 M
1052	H ₂ SO ₄ , on the performance of fuel cells were investigated. First, the inorganic
1053	electrolytes were evaluated at various temperatures. The results showed that the
1054	performance of the fuel cell utilizing Pt (0.5 mg cm ⁻²) both at anode and cathode with
1055	1.0 M KOH increased from 13 to 29 mW cm ⁻² with the temperature rising from 20 to
1056	80°C when hydrogen (250 sccm, RH=95%) was fed on the anode and air (250 sccm,
1057	RH=95%) was fed on the cathode. In contrast, the fuel cell employing 0.5 M H_2SO_4
1058	yielded an increasing power density of 17 to 28 mW cm ⁻² with temperature elevating
1059	from 20°C to 60°C. Further increasing the temperature to 80°C, there was no obvious
1060	performance promotion occurring, which was probably attributed to the electrocatalyst
1061	passivation in H ₂ SO ₄ at high temperatures. Second, it could be seen from the
1062	performance tests that the peak power densities of fuel cells employing 0.5 M H ₂ SO ₄ ,
1063	1.0 M TMAOH, and 1.0 M KOH as electrolytes were 17, 14, and 13 mW cm ⁻² at 20°C,
1064	respectively. It was suggested that electrolyte concentration could change the cell
1065	impedance, resulting in the change of cell performance. Finally, the effects of organic
1066	molecular size on the performance have been studied [172]. It was shown that the

smaller organic molecular size resulted in the higher power density due to the more
active sites on the electrode surface. Moreover, when the organic alkaline electrolyte
was used, the cell performance decreased significantly caused by CO₂ and acid.

1070 **5.4.2. Effect of carbonate**

1071 The absorption of the CO₂ on the membrane, denoted as carbonate effect, has negative effects on the performance of the AAEMFCs. Due to the formation of carbonates within 1072 1073 the CL and AAEM, the conductivity will decrease significantly, resulting in a large 1074 performance drop [173,174]. Hence, the carbonate effect has been extensively studied [175-182]. Fukuta et al. [175] found that the maximum power density of the alkaline 1075 fuel cell in the case of pure air was 290 mW cm⁻², which was as twice as that in the case 1076 1077 of ambient air. It was determined that the OH⁻ form membrane could easily absorb CO₂, 1078 change to HCO₃⁻ form, then through the self-purging phenomenon, finally return to OH⁻ form. Vega et al. studied the effects of CO_2 , HCO_3^- , and CO_3^{2-} on the AAEMFC 1079 operation [176-179]. They found that a 26% conductivity decrease occurred when the 1080 1081 membrane was exposed to hydroxide ions due to the nucleophilic attack degradation 1082 mechanisms and Hofmann elimination, while the effect of exposure to carbonate 1083 environments was not significant because the carbonate was weaker nucleophiles. However, the overall conductivity of the membrane exposed to hydroxide ions was 1084 higher, which was attributed to the carbonate adsorption on the electrode, reducing the 1085

1086	active area. Inaba et al. [180] and Matsui et al. [181] showed that the membrane
1087	resistance decreased due to the self-purging mechanism at high current densities, while
1088	the cell voltage was reduced significantly. It was demonstrated that a high anodic
1089	overpotential occurred because of the accumulation of carbonate/bicarbonate ions at the
1090	anode, while the overpotential of the cathode was hardly changed, suggesting that it
1091	was important to suppress the accumulation. Suzuki et al. [182] investigated the effect
1092	of CO ₂ dissolution into anion exchange membrane on fuel cell performance. They
1093	found that the conductivity of AAEM and potential difference decreased with an
1094	increase in carbonate ion species. It was indicated that the increment of ohmic resistance
1095	was noticeable by the supply of CO_2 to cathode, but not obvious by the supply of CO_2
1096	to anode. They demonstrated that the formation and exclusion of carbonate ion species
1097	and/or carbonic acid in the vicinity of TPB played the dominant role for the electrode
1098	overpotential.

1099 **5.4.3. Effect of radiation**

Recently, the radiation-grafted AAEMs have attracted worldwide attention, which is attributed to several advantages [183,184]: (1) Radiation grafting is one of the most versatile techniques for preparing membrane materials; (2) No film formation process is required due to the use of pre-formed polymer films; (3) The degree of monomer grafting is tunable, which can be achieved by optimizing the grafting parameters; and

1105	(4) Simple preparation procedures and absence of highly reactive chemical initiators
1106	and catalysts result in reduction of cost. Hence, a large amount of radiation-grafted
1107	AAEMs have been synthesized [185-191]. Varcoe et al. [185] synthesized an alkaline
1108	AAEM based on ethylene-co-tetrafluoroethylene (ETFE), which was physically strong,
1109	quaternary-ammonium-functionalized, and radiation-grafted. The results from H_2/O_2
1110	fuel cell fabricated with Pt (0.5 mg cm^{-2}) both at anode and cathode showed that a peak
1111	power density of 130 mW cm ⁻² has been achieved with both humidified hydrogen and
1112	oxygen fed at flow rates of 2000 sccm at 60°C. They stated that the performance was
1113	substantially limited by the mass transport in the electrodes. In addition, Poynton et al.
1114	[186] synthesized various ETFE AAEMs via e-beam irradiation. Afterwards, it was
1115	found that the conductivities of the thinnest membrane (17 μ m, denoted as S20) reached
1116	to 60 mS cm ⁻¹ , and the fuel cell fabricated with S20 membrane and Pt (0.5 mg cm ⁻²)
1117	both at anode and cathode yielded a peak power density of 230 mWcm ⁻² along with
1118	both humidified hydrogen and oxygen at flow rates at 2000 sccm at 50°C. The
1119	improvement in the performance was attributed to the better mass transport. Similarly,
1120	Nikolic et al. [187] prepared three different types of modified PVA based membranes,
1121	namely plain PVA, γ -PVA cross-linked using gamma irradiation, and PVA doped with
1122	Mo (PVA-Mo). The results from the power output tests showed that the peak power
1123	density of the fuel cell fabricated with Pt (0.2 mg cm ⁻²) both at anode and cathode

1124	employing modified γ -PVA and PVA-Mo membranes were 6.4 and 6.8 mW cm ⁻² , which
1125	were better than that using plain PVA membrane (5.0 mW cm ⁻²) due to larger absorption
1126	of alkaline solution. Deavin et al. [188] prepared radiation-grafted alkaline AAEMs
1127	containing pendent groups with either benzyltrimethylammonium (BTM) or
1128	benzylmethylimidazolium (BMI) and made comparison of two AAEMs. It was
1129	indicated that, though the BMI-AAEM possessed comparable conductivity to the BTM-
1130	benchmark AAEM, the BMI-AAEM showed severe in-situ degradation due to the
1131	intrinsically poor chemical stability in strong alkaline media. It was demonstrated that
1132	there was no real advantage in using anion-exchange polymer electrolytes containing
1133	pendent imidazolium groups in strong alkaline systems. Fang et al. [189] developed
1134	radiation-grafted ETFE-based membrane via quaternization and crosslinking with
1135	DABCO, alkylation with p-Xylylenedichloride (DCX), and quaternization again with
1136	TMA, of which the ionic conductivity is 3.9 \times 10 ⁻² S cm ⁻¹ at 20°C in DI water.
1137	Importantly, the conductivity increases to 7.4 \times 10 ⁻² S cm ⁻¹ at 80°C. Meanwhile, the
1138	conductivity could be retained for 120 h after being treated in KOH solution at 60°C.
1139	An OCV of 1.034 V and a peak power density of 48 mW cm ⁻² were obtained under 100%
1140	relative humidity with H_2 and O_2 both fed at rates of 100 mL min ⁻¹ . The performance
1141	was derived from good leak tightness of electrodes and enhanced electrochemical
1142	reaction kinetics. Recently, Wang et al. [190] utilized 30 kGy absorbed dose, 5 vol%

1143	VBC monomer, and water as diluent to synthesize a ETFE-based radiation-grafted
1144	AAEM. When comparing to the prior state-of-the-art protocol, this new method was
1145	closer to a commercially-relevant roll-to-roll process. The obtained AAEM exhibited a
1146	similar IEC of 2.1 mmol g ⁻¹ , a higher Cl ⁻ anion-conductivity of 68 mS cm ⁻¹ vs. 48 mS
1147	cm ⁻¹ at 80°C, and a better mechanical stability. Meanwhile, they employed a non-
1148	fluorinated polymer film (low-density polyethylene (LDPE)) as precursor to prepare
1149	radiation-drafted AAEM [191]. As a result, the LDPE-AAEM showed a OH ⁻ anion
1150	conductivity of 145 mS cm ⁻¹ at 80°C with 95% RH and a Cl ⁻ anion conductivity of 76
1151	mS cm ⁻¹ at 80°C when fully hydrated. It was indicated that the LDPE-AAEM
1152	outperformed the ETFE-AAEM in an AAEMFC, which was attributed to higher anion
1153	conductivity and enhanced in situ water transport. It was worthwhile to note that the
1154	LDPE-AAEM was more mechanically robust than ETFE-AAEM, resulting in the
1155	ability to routinely evaluate them in fuel cells at 80°C, whereas the ETFE-AAEM was
1156	limited to operation at 60°C.

1157 In summary, various materials based AAEMs have been synthesized, and the 1158 performance of the fabricated MEAs have been evaluated in H_2/O_2 fuel cells 1159 subsequently. Meanwhile, novel structures in the MEA have been proposed, which 1160 possess superior properties than conventional MEAs. Though significant progress has 1161 been made in developing AAEMs with high performance as well as low cost, it should

1162 be noted that the AAEMs are still facing variety of challenges, including hydroxide-ion

1163 conductivity, as well as mechanical, chemical, and thermal stability.

- 1164 **6. Single-cell: Designs and performance**
- 1165 **6.1. Effect of anode ionomers**

In the anode, novel ionomers and fine microstructures have been proposed for the 1166 1167 enhancement of the mass transport and current collection [192-196]. Recently, Sun et al. [192] prepared pendant quaternary ammonium-based ionomers employing styrene-1168 1169 ethylene/butylene-styrene (SEBS) as the starting material, which were dimensionally 1170 stable without drastic sacrifice of the ionic conductivity as compared to the polysulfone (PSf)-based ionomers. It was indicated that a peak power density of 210 mW cm⁻² was 1171 obtained in a single cell using Pt (1.28 mg cm⁻²) both at the anode and cathode with 1172 1173 hydrogen (RH=100%) and oxygen (RH=100%) fed at a rate of 200 sccm at 50°C. They 1174 demonstrated that the superior performance of the ionomers was attributed to the lower 1175 internal resistance and charge transfer resistance owing to the excellent dimensional stability and the balanced conductivity-hydrophobicity. Matsumoto et al. [193] 1176 described a novel structure composed of CNTs and KOH-doped PBI, forming a 1177 1178 nanometer thickness wrapping layer, on which the Pt nanoparticles were loaded, as shown in Figs. 7 (a) and 7 (b). It was shown that the CNTs and the KOH-doped PBI 1179 layer functioned as electron and hydroxide conductive pathways, respectively. The 1180

1181	sufficient formation of the interfacial structure resulted in the excellent mass transport
1182	around the TPBs. A peak power density of 256 mW cm ⁻² was achieved with the newly
1183	developed electrode fabricated with Pt (0.45 mg cm ⁻²) both at the anode and cathode
1184	when hydrogen (RH=95%) and oxygen (RH=95%) were supplied at flow rates of 100
1185	and 200 sccm, respectively, which is much higher than that of the AS-4 cell primarily
1186	due to the better mass transport. Yang et al. [194] reported that the ionomer content
1187	played an important role in the cell activation, ohmic and concentration losses and
1188	resulted in a high-performance electrode with fine microstructure synthesized by 20
1189	wt. % ionomer content and the proper dispersion solvent, including solutions and
1190	colloid. It was indicated when the n-butyl acetate (NBA) worked as solvent and ionomer
1191	content was kept at 20 wt.%, the colloidal electrode increased the pore volume and pore
1192	diameter, serialized ionomer networks and decreased ohmic and concentration losses,
1193	resulting in a peak power density of 407 mW cm ⁻² in an AAEMFC fabricated with Pt
1194	(0.4 mg cm ⁻²) both at anode and cathode with hydrogen (RH=100%) fed at a flow rate
1195	of 100 sccm and oxygen (RH=100%) fed at a flow rate of 200 sccm at 50°C. Ewing et
1196	al. [195] synthesized dendritic nano-sized nickel nanoparticles via a hydrazine
1197	reduction method in ethylene glycol from a nickel chloride precursor. They
1198	characterized the resulting particles by XRD, TEM, and SEM. The results showed that
1199	the single nickel particles gradually connected to form nickel chains, and subsequently

1200	the chains connected to form the dendritic structures. Furthermore, the nickel particle
1201	was amorphous, which provided more active sites. In addition, they used the dendritic
1202	nickels with a network structure as the anode for an AAEMFC, resulting in a current
1203	density of 11.5 mA cm ⁻² . Kucernak et al. [196] proposed porous silver membranes as
1204	potential substrates for gas transport electrodes in alkaline fuel cells. The silver
1205	membrane possessed three integrated functions, including electrocatalytic function,
1206	mechanical support and current collection. An OCV of 1.05 V and a maximum power
1207	density of 60 mW cm ⁻² were obtained in an alkaline AAEMFC constructed with these
1208	electrodes with Pt (0.05 mg cm ⁻²) both at anode and cathode with hydrogen (RH=75%)
1209	and oxygen (RH=75%) at 50°C. It was indicated that the gas transport layers were as
1210	three times expensive as carbon-based layers, but especially considering their
1211	significantly reduced thickness, 700-fold superior electrical conductance, and thermal
1212	conductivity, the Ag electrode still had the potential to be used in AAEMFCs.
1213	In summary, the ionomers play an important role in enhancing the mass transport and
1214	lowering internal resistance that further leads to superior power output. In addition, the
1215	well-dispersed electrocatalysts result in the sufficient TPBs, which is beneficial to
1216	improving the cell performance.

6.2. Effect of cathode ionomers

1218 In the cathode, novel ionomers and structures have been reported recently [197-202].

1219	Ünlü et al. [197] synthesized AEIs with different quaternary ammonium density and
1220	evaluated the performance via impedance spectroscopy and voltammetry. The obtained
1221	results indicated that the limited cell performance on the cathode was the low catalyst
1222	utilization, which was primarily attributed to the low ionic conductivities and high WUs
1223	of the AEIs. Hence, tremendous efforts have been devoted into synthesizing various
1224	ionomers with high hydroxide ions conductivity and low WU for promoting the mass
1225	transport in order to enhance the catalyst utilization. Gu et al. [198] reported a
1226	phosphonium based ionomer (TPQPOH) and simply used it to prepare the catalyst layer
1227	with Ag. The Ag-phosphonium ionomer interface yielded a high peak power density of
1228	208 mW cm ⁻² , which was more than double of that of the Ag-ammonium ionomer
1229	interface and slightly higher than that of the Pt based electrode. Ünlü et al. [199] used
1230	an ionomer impregnation method to elevate the performance by tailoring the ionomer
1231	distribution and balancing the ionic, electronic, and reactant transport within the
1232	catalyst layer as shown in Figs. 8 (a) and 8 (b). It was shown that the maximum power
1233	density was promoted from 44 mW cm ⁻² to 120 mW cm ⁻² via the ionomer impregnation
1234	method, and further increased to 315 mW cm ⁻² via adding hydrophobic additive with
1235	Pt (0.5 mg cm ⁻²) both at anode and cathode at 70°C due to the higher catalyst utilization
1236	and free volumes close to diffusion layer. Zhou et al. [200] prepared a series of partially
1237	fluorinated copoly(arylene ether) alkaline ionomers (QAPAE) via chloromethylation of

1238	copoly(arylene ether) followed by amination with trimethylamine. The WU of QAPAE
1239	was significantly reduced because of the presence of the hydrophobic octafluoro-
1240	biphenyl groups in the backbone. It was demonstrated that the QAPAE-4 and QAPSF
1241	ionomers employed as cathode in a hybrid AAEM/PEM fuel cell fabricated with Pt (0.5
1242	mg cm ⁻²) both at anode and cathode utilizing humidified hydrogen as fuel and oxygen
1243	as oxidant yielded the peak power density of 315 mW cm ⁻² and 215 mW cm ⁻² at 60°C,
1244	respectively. The interfacial adhesion of MEAs still remained a challenge because the
1245	hydrocarbon ionomer possessed low binding ability. Kubo et al. [201] reported the
1246	effect of hydroxide-ion conducting layered double hydroxides (LDHs) on the ORR.
1247	Two types of LDH were prepared, denoted as Ni-Al CO ₃ ²⁻ LDH and Mg-Al CO ₃ ²⁻ LDH.
1248	It was indicated that the addition of LDHs to the catalyst layer increased the reduction
1249	current for ORR due to the introduced OH ⁻ conducting paths and the increased TPB
1250	region. In addition, the Ni-Al CO ₃ ²⁻ LDH possessed better performance than the Mg-
1251	Al CO ₃ ²⁻ LDH. Tamain et al. [202] came up with a hypothesis that the limited power
1252	output was mainly attributed to limitation of the mass transport of reactant water to the
1253	cathode reaction sites, which kept the membrane hydrated for sufficient conductivity.
1254	Hence, the hydrophobic binder, PTFE, was replaced by Toray carbon paper, aiming at
1255	improving the characteristics of the water transport. The H ₂ /O ₂ fuel cell with the
1256	cathode fabricated from Toray carbon paper and Pt/C catalyst (20 wt. % Pt on Vulcan

1257 XC-72R carbon support) resulted in a peak power density of 125 mW cm⁻², which was

1258 25% to 36% more than the power output compared to the that of the fuel cells fabricated

1259 with the PTFE-containing cathodes.

1260 In summary, the ionomers on the cathode play an important role in the property of the

1261 cathode. It should be noted that lower WUs, higher ionic conductivities, and higher

1262 catalyst utilizations result in the improvement of the power output. In addition, since

1263 water is consumed in cathode, humidification of oxygen is necessary in cathode.

- 1264 Otherwise, the ORR is difficult to proceed in the absence of water at the cathode.
- 1265 **6.3. Effect of structural designs**

1266 The performance of the AAEMFC lies on three primary parameters as follows: (1) the

1267 electrocatalysts for HOR and ORR that determine the electrochemical kinetics; (2) the

1268 structure of MEA that influences the transport of mass, ions, and electrons; and (3) the

1269 operation conditions that affect the electrochemical and transport behaviors and thus

1270 the power output.

1271 In addition to the development of novel electrocatalysts for the HOR and ORR, the 1272 effects of structural designs also have been investigated [16,203,204]. It is widely 1273 believed that a superior design of flow field, anode, and cathode leads to a better 1274 performance, resulting from the enhanced mass transport and the sufficient TPBs. It 1275 should be noted that the mass transport also plays an important role in the fuel cell

1276	performance. For the mass transport in the anode, it is vitally important to design the
1277	flow field and diffusion layer to lead hydrogen to distribute as even as possible,
1278	maximizing the cell voltage. On the cathode, the critical mass transport issues can be
1279	concluded as follows: (1) it is necessary to design the flow field and diffusion layer; (2)
1280	it is critical to enhance the transport of oxygen in the through-plane direction; (3) in the
1281	in-plane direction, the distribution of oxygen needs to be uniform over the CL. For the
1282	mass transport through the membrane, the key issue is to suppress the hydrogen
1283	crossover so that the mixed potential problem can be alleviated and hydrogen will not
1284	be wasted. The reduction of crossover can be achieved when the design of the MEA is
1285	optimal, particularly the cathode backing layer and microporous layer. Mamlouk et al.
1286	[203] studied the effects of ionomer content, anode and cathode CL thicknesses, and
1287	membrane thickness on the performance of an AAEMFC. It was indicated that an
1288	optimum ionomer content depended on a balance between the OH- ion/water mobility
1289	and the oxygen solubility/diffusivity through it. When the ionomer content in the CL
1290	was too high, the mass transport through the ionomer could be impeded. Moreover, the
1291	electrocatalyst and carbon particles could be electron-isolated. When too low, the
1292	insufficient ECSA resulted in the lower utilization of the electrocatalysts. In addition,
1293	the limiting OH ⁻ mobility leaded to the larger ohmic loss. It was suggested that thick
1294	anode CL was necessary because the flooding problem could be avoided when the fuel

1295	cell was operated at high current densities, meaning that more water was produced in
1296	the anode CL. Meanwhile, the effect of the cathode CL on the performance have been
1297	studied. It was indicated that an optimum of the cathode CL thickness depended on the
1298	operating conditions, including oxygen partial pressure and ionomer used. A thicker CL
1299	with smaller particle size might suffer from the oxygen starvation problem, when the
1300	oxygen supply was inadequate. While a thinner layer with larger particle size might not
1301	possess the enough ECSA. The AAEM, the key component of the AAEMFC, worked
1302	as the barrier separating the anode and cathode, as well as the pathway for OH ⁻ transport
1303	Thus, the optimal membrane thickness lay on the equilibrium of the OH ⁻ transport and
1304	gas permeability. The single fuel cell tests showed that the membrane with hydrated
1305	thickness of 57 μ m resulted in a peak power density of 337 mW cm ⁻² with the air at
1306	60°C.

1307 **6.4. Effect of water flooding**

Additionally, water management is critical to achieve better performance and durability. In AAEMFCs, water is produced in the anode and consumed in the cathode. Therefore, the flooding problem that limits the cell performance is more likely to arise in the anode. To achieve a better power output, it is essential to undertake water management to mitigate the flooding problem. Zhang et al. [16] confirmed that the direction of water movement was from the anode to the cathode via a water collection method, which 1314 indicated the diffusion water was much larger than the electro-osmosis water. At high 1315 current densities, much more water moved from the anode to cathode, which not only 1316 alleviates the flooding problem at the anode but also reduces membrane resistance. 1317 Oshiba et al. [204] proposed two methods to suppress the anode flooding. One was to increase the anode flow rate: when the RH at the anode outlet reached 100%, the current 1318 1319 density increased with the anode flow rate, indicating that the anode flooding problem was alleviated. The other was to reduce the membrane thickness: when the membrane 1320 1321 became thinner, the water produced in the anode was easily permeated to the cathode. 1322 Recently, Omasta et al. [205] pointed out that the amount and balance of water was a 1323 critical issue to obtain high performance that could be achieved by tuning the cell water 1324 to optimize the dynamic balance between membrane hydration and electrode 1325 flooding/dry-out. It was indicated that the cell water was able to be actively manipulated 1326 via several variables, including gas feed dew points, catalyst layer hydrophobicity, 1327 anode and cathode gas flow rates, flow channel design, catalyst layer engineering, and the physicochemical properties of the AAEM and AEIs. 1328

1329 **6.5. Single-cell durability**

1330 Durability of fuel cells is one of the critical issues in realizing the commercialization 1331 [206-208]. Hence, Slade et al. [206] demonstrated that the AAEMs must be evaluated 1332 in H_2/O_2 , H_2/air , and methanol/air fuel cells for several thousand hours to ensure

1333	adequate in-situ membrane stability. Though some synthesized AAEMs exhibited
1334	exceptional fuel cell performance, the poor durability has still not been solved yet. Luo
1335	et al. [207] proposed two strategies to improve the durability of QPMBV membranes.
1336	The first was to increase glass transition temperature and molecular weight via
1337	eliminating butyl acrylate from the monomers. The second was to reduce the WU and
1338	SR via crosslinking to lock the functionalized QPMV into a poly (divinylbenzene)
1339	(PDVB) polymer network. It was indicated that the fuel cell employing crosslinked
1340	QPMV-PDVB AAEM could continuously work for 420 h at 50°C and 146 h at 70°C,
1341	which was eight and three times longer than that in previous study, respectively, as
1342	shown in Figs. 9 (a) and 9 (b). Fujimoto et al. [208] investigated the backbone stability
1343	of benzyl-trimethyl ammonium (BTMA) functionalized polyaromatics in two
1344	structurally differing polymer architectures: quaternized poly(aryleneether) (PAE) and
1345	PP. It was indicated that the cleavage of aryl-ether linkages substantially impacted the
1346	mechanical properties and moderately the hydroxide conductivity. The results showed
1347	that the PAE MEA experienced failure at 55 h due to the degraded mechanical stability
1348	while the PP MEA exhibited stable performance during 300-h operation.

1349 **6.6. Single-cell performance**

1350 Herein, we summarize the peak power densities reported in the recent literatures. Tables

1351 1-4 show the selected hydrogen/oxygen fuel cell performance with different HOR

1352	electrocatalysts, ORR electrocatalysts, AAEMs, and MEA structures, respectively. It
1353	can be seen from Tables that power density has been boosted from ~ 0.4 mW cm ⁻² to
1354	1450 mW cm ⁻² in recent years, suggesting that the AAEMFC is a promising energy
1355	technology and tremendous efforts have been paid into this field
1356	[70,74,97,190,191,194,205,209,210]. Hu et al. [74] fabricated an AAEMFC, which
1357	exhibited the highest power density of 40 mW cm ⁻² with humidified hydrogen and
1358	oxygen both at a flow rate of 50 sccm at 60°C, when Ni-W (17.5 mg cm ⁻²), CoPPY/C
1359	(2 mg cm ⁻²), and xQAPS were employed as anode electrocatalyst, cathode
1360	electrocatalyst and AAEM, respectively. Carmo et al. [209] developed an AAEMFC
1361	with 20 wt. % Pt/C (0.8 mg cm ⁻²) and 25% FAA-3 ionomer in the catalyst layer for both
1362	the cathode and anode. It was indicated that a peak power density of 223 mW cm ⁻² was
1363	obtained using hydrogen (100% humidity) as fuel at 200 sccm and oxygen (100%
1364	humidity) as oxidation at 200 sccm. In addition, the platinum requirement could be
1365	decreased to 0.5 mg cm ⁻² without sacrificing the performance. Recently, Ohyama et al.
1366	[70] developed a fuel cell employing 0.5 mg cm ⁻² Ru/C (3 nm) as anode electrocatalyst,
1367	0.5 mg cm ⁻² Pt/C as cathode electrocatalyst, and an AAEM (Tokuyama A201), resulting
1368	in an excellent peak power density of 250 mW cm ⁻² . The significant enhancement was
1369	substantially attributed to the larger surface area per unit weight of Ru/C, which resulted
1370	in the higher limiting current density. He et al. [97] reported a novel cathode
1371	electrocatalyst, CoO/rGO(N). The results from the fuel cell tests showed that the peak
------	---
1372	power density reached 387 mW cm ⁻² with the hydrogen (62% RH) fed to the anode at
1373	a rate of 250 sccm and the oxygen (100% RH) fed to the cathode at a rate of 200 sccm,
1374	when the Pt and CoO/rGO(N) are employed as anode electrocatalyst and cathode
1375	electrocatalyst, respectively, as well as an AAEM (Tokuyama A201). Yang et al. [194]
1376	fabricated high-performance electrodes with fine microstructure by changing the
1377	content of the ionomer and selecting the appropriate dispersion solvent. A maximum
1378	power density of 358 mW cm ⁻² was achieved when the ionomer content is 20 wt. %
1379	(CCM-I20) with humidified H_2 in the anode at a rate of 100 sccm and humidified O_2 in
1380	the cathode at a rate of 200 sccm at 50°C, which is three and five times of CCM-I25
1381	and CCM I10, respectively. Importantly, the peak power density increased remarkably
1382	to 407 mW cm ⁻² when the dispersion solution changed to NBA. Recently, Wang et al.
1383	[210] found that the highest power density of 1000 mW cm ⁻² was obtained when Pt-Ru
1384	(0.4 mg cm ⁻²) is utilized as anode electrocatalyst, Pt (0.4 mg cm ⁻²) is used as cathode
1385	electrocatalyst, and H ₂ and O ₂ were fed at flow rates at 400 sccm at 60°C, which was
1386	400 mW cm ⁻² higher than the performance of a fuel cell running under the same
1387	conditions apart from the unitary anode electrocatalyst Pt as shown in Fig. 9 (c). It has
1388	been revealed that the enhancement in the kinetics of the HOR was attributed to
1389	weakening the Pt-H _{ad} interaction rather than the ever reported oxophilic effect.

1390	Breakthroughs in power output has been reported vary recently [190,191,205], as
1391	shown in Figs. 9 (d) (e) and (f). A peak power density of 1.4 Wcm ⁻² was achieved with
1392	hydrogen and oxygen both at a flow rate of 1000 sccm at 60°C, when PtRu (0.67 mg
1393	cm ⁻²) and Pt (0.53 mg cm ⁻²) were employed as anode electrocatalyst and cathode
1394	electrocatalyst, respectively [205]. More importantly, the dew points for the electrode
1395	configuration was optimized to 54/57°C, which was the same thing as RHs equal to
1396	75%/85%. The spectacular performance was primarily attributed to the optimal balance
1397	between necessary membrane hydration and electrode flooding/dry-out. To date, 1.4 W
1398	cm ⁻² was the highest peak power density at 60°C. As Wang et al. [191] developed a
1399	LDPE-AAEM that possessed the ability to be routinely evaluated in fuel cells at 80°C,
1400	the H_2/O_2 AAEMFC fabricated with this AAEM, a PtRu/C anode (0.4 mg cm ⁻²), and a
1401	Pt/C cathode (0.4 mg cm ⁻²) exhibited a peak power density as high as 1.45 W cm ⁻² . It
1402	was claimed that avoiding anode flooding and enhancing supply of H ₂ O to the cathode
1403	reaction sites contributed to the splendid power output. Since the reactant diffusion
1404	limitations in anode and cathode at high current densities were more serious at 80°C
1405	than 60°C, the effects of the water management on the performance were more
1406	significant.

- **7. Innovative system designs**
- **7.1. Hybrid fuel cells**

1409	Recently, some innovative structures have been proposed with the purpose of improving
1410	the fuel cell performance [211-216]. Ünlü et al. [211] developed a novel hybrid polymer
1411	electrolyte fuel cell, as shown in Fig. 10 (a), in which the hybrid membrane was
1412	composed of a proton exchange membrane sandwiched by two AAEMs, denoted as
1413	AAEM/PEM/AAEM fuel cell, simplifying water management and avoiding CO
1414	poisoning. The hybrid fuel cell fabricated with Pt (0.5 mg cm ⁻²) both at anode and
1415	cathode exhibited a peak power density of 55.6 mW cm ⁻² with H ₂ (RH = 100%) and O_2
1416	(RH = 100%) supplied at a rate of 360 and 480 sccm, respectively. The peak power
1417	density increased to 78.3 mW cm ⁻² at 0% RH under the same conditions. They claimed
1418	that the unpredictable phenomenon was attributed to the superior water management
1419	configuration. However, Shen et al. [212] developed a type of non-flooding hybrid
1420	polymer fuel cell, in which a PEM and an AAEM were pressed together. They found
1421	that the performance was improved with increasing the temperature and relative
1422	humidity, which was opposed to the results reported by Ünlü et al [211]. Zhang et al.
1423	[213] developed a hybrid system consisting of an alkaline fuel cell and a heat-driven
1424	cycle as shown in Fig. 10 (b), which reused the waste heat to improve the maximum
1425	equivalent power output. The hybrid system showed superior performance, which was
1426	1.4 times higher than that achieved by a single AAEMFC. Ünlü et al. [214] proposed a
1427	novel hybrid anion and proton exchange membrane fuel cell, denoted as AAEM

1428	cathode/PEM anode and PEM anode/AAEM cathode, as shown in Fig. 10 (c), which
1429	exploited the electrochemical advantages of the high-pH operation due to at least one
1430	electrode being at high pH. They illustrated that the AAEM cathode/PEM anode
1431	junction failed at high current densities resulting from the inadequate flux of water to
1432	the AAEM/PEM interface where water dissociated into hydrogen ions (which migrates
1433	to the cathode) and hydroxide ions (which migrates to the anode). On the contrary, the
1434	PEM anode/AAEM cathode junction was shown to be an available configuration.
1435	Despite the modest power density, the type of structure exhibited steady performance
1436	with 0% relative humidity at 65°C for a three-day continuous operation, whereas the
1437	conventional fuel cell experienced severe degradation over the same time without
1438	humidification. They also evaluated the effect of RH, ionomer content in the anion-
1439	conductive electrode and the inlet gas flow rates on the performance of the hybrid fuel
1440	cells, as shown in Fig. 10 (d) [215]. The results showed that the ionomer fraction of the
1441	high-pH cathode played an important role in the performance, which was limited by the
1442	availability of oxygen in the active sites resulting from the flooding in the cathode.
1443	When the gases were fed at high flow rates, the water removal from cathode was
1444	enhanced and the flooding problem was eliminated. Fukuta et al. [216] tested the
1445	optimization of MEA construction employing newly developed membrane and ionomer
1446	by Tokuyama, which was one of the leading developers of electrolyte materials for

1447	AAEMFCs, to improve the power density. They suggested that the optimized MEA was
1448	fabricated with ionomer: AS-X (Pt/C:AS-X = 70:30), membrane: A901, and Pt (0.5 mg
1449	cm ⁻²) both at the anode and cathode, exhibiting a peak power density of 450 mW cm ⁻²
1450	with humidified hydrogen at a flow rate of 1000 sccm and pure oxygen at a flow rate
1451	of 2000 sccm. In summary, several novel structure designs that are mainly associated
1452	with the MEA construction have been proposed. As a result, the performance is
1453	promoted due to the superior water management, the use of preferable pH value, and
1454	the low degradation rate of membrane.

1455 **7.2. Regenerative fuel cells**

Regenerative fuel cell (RFC) is not only an energy conversion device, but an energy storage machine, which typically employs hydrogen as a flexible energy carrier, as shown in Fig. 11. It is the concept that the fabricated electrodes, which exhibit catalytic activities for both ORR and oxygen evolution reaction (OER), can be used as either electrolyzer or a fuel cell. When the AAEM-RFC is working as an electrolyzer, water reacts with electrons to produce hydrogen and hydroxide ions at the cathode according to:

1463
$$4H_2O+4e^- \rightarrow 4OH^-+2H_2$$
 (16)

1464 The hydroxide ions are transported through the AAEM to the anode catalyst layer where 1465 the hydroxide ions are oxidized to release electrons, oxygen and water according to: 1466

$$40H^{-} \rightarrow 2H_{2}0 + 4e^{-} + 0_{2}$$
 (17)

1467 Hence, the Eq. (16) and the Eq. (17) result in the overall reaction:

$$1468 \qquad \qquad 2H_2 O \rightarrow 2H_2 + O_2 \tag{18}$$

1469 The produced hydrogen is stored on site after the electrolysis, and can be used as fuel 1470 in the fuel cell anode subsequently when the electricity is needed. The reactions of the 1471 fuel cell mode have been mentioned earlier take place. Though the RFC is a particular 1472 candidate for storing renewable electricity, the high cost still is the primary impediment 1473 for the commercialization. The main reason for the high cost is ascribed to the use of 1474 platinum group metal catalysts. Ng et al. [217] developed a bifunctional Ni based on carbon black (Ni/C) electrocatalyst for the H₂ electrode because the Ni possessed 1475 1476 catalytical activity for the hydrogen evolution reaction (HER) and the HOR. It was 1477 shown that the Ni/C electrocatalyst exhibited comparable activity to the Pt/C 1478 electrocatalyst at low potentials, while the activity began to decrease at high potential 1479 due to the Ni oxidation. Meanwhile, they synthesized a precious-metal free and carbonfree O₂ electrode via electrodeposition of manganese oxide (MnO_x) on a stainless steel 1480 (SS) substrate followed by high-temperature calcination at 480°C [218]. It was revealed 1481 1482 that the fabricated electrode possessed comparable oxygen reduction and water oxidation activities and durability to the precious-metal based electrode, which was 1483 attributed to avoiding the carbon corrosion. Wu et al. [219] prepared four nanometer 1484

1485	size $Cu_xMn_{0.9-x}Co_{2.1}O_4$ samples (x = 0, 0.3, 0.6, and 0.9) as a non-precious metal based
1486	bifunctional oxygen electrode for the use in regenerative fuel cells and studied their
1487	characteristics with XRD, SEM, TEM, and cyclic voltammetry. It was indicated that
1488	the $Cu_xMn_{0.9-x}Co_{2.1}O_4$ electrode exhibited promising ORR activity which was similar
1489	to Pt/C electrode and a peak power density of 80 mW cm ⁻² was obtained. Meanwhile,
1490	in electrolyzer mode, the prepared electrode showed better OER catalytic activity, with
1491	100 mV more negative onset potentials. Matsushima et al. [220] investigated the three-
1492	phase interfacial phenomena in alkaline regenerative fuel cell by a charge-coupled
1493	device (CCD) and confocal laser microscopy. It was shown from the results that the
1494	hydroxide ions reduced the surface tension, resulting in the spread of the three-phase
1495	interface. Consequently, the ORR was promoted as a result of the obvious enlargement
1496	of the reaction surface and the short diffusion path of dissolved oxygen. On the other
1497	hand, the OER was enhanced by the convectional factor of gas evolution. In summary,
1498	to develop a cost-effective energy storage technology that is for grid-scale applications,
1499	it is crucial to realize the utilization of renewable energy sources such as wind and solar.
1500	Undoubtedly, the RFCs using solar and wind are composed the idea of circulation and
1501	the concept of sustainable. Although great progress has been made, one issue needs to
1502	be addressed. Currently, the precious metals are mainly the electrocatalysts both in
1503	anode and cathode, leading to the high cost of the RFCs. As a result, the

commercialization is shadowed. Hence, it is urgent to develop non-precious metal
electrocatalysts to reduce the cost. However, the non-precious metal electrocatalysts in
one electrode are generally not effective enough to catalyze the two reactions. Hence,
future direction is to synthesize cost-efficient electrocatalysts with highly catalytic
activity.

1509 **8. Mathematical modeling**

1510 As an economical and useful tool, mathematical modeling can play a significant role in 1511 the quantification of the intricate physicochemical processes in AAEMFCs. Hence, 1512 various models have been conducted on predicting the hydroxyl anion conductivity 1513 [221], analyzing the concentration profile of carbonate ions [222], and studying the 1514 effect of design and operating parameters on the fuel cell performance [223-232]. Jiao 1515 et al. [223] developed a three-dimensional multiphase model to investigate the effect of 1516 design and operating parameters on the heat and mass transfer characteristics and 1517 performance. It was indicated the power output was improved sharply with more anode humidification at the range of 50% to 80%, whereas the enhancement was less 1518 significant at higher humidification levels. Moreover, the cathode humidification 1519 1520 played a more important role than that of anode, showing a positive effect on performance, especially at high current densities. When the liquid water volume 1521 fraction on the cathode reached 0.02, the liquid water began to move from channels to 1522

1523	the CL. With the liquid water volume fraction increasing to 0.08, a balance was formed
1524	between the anode and the cathode. The performance was promoted with the decrease
1525	of the membrane thickness due to the reduction of the mass transport loss between the
1526	anode and the cathode. Deng et al. [226] developed a 3-D multiphase non-isothermal
1527	model for the whole hydrogen-fed AAEMFC. It was shown from the results that the
1528	insertion of anode MPL, increment of anode back pressure and decrement of membrane
1529	thickness generally improved the cell performance. In addition, the water behavior was
1530	also studied and it was found that at high current densities, no water was observed in
1531	the cathode due to the electro-osmotic drag by ion transport and consumption as the
1532	reactant; while, at low current densities, liquid water may exist in cathode arising from
1533	improving the anode back diffusion or reducing the membrane thickness. When anode
1534	back pressure increased and membrane thickness decreased, the water transport from
1535	anode to cathode was changed from diffusion dominated to diffusion/hydraulic
1536	permeation dominated. Huo et al. [227] developed a numerical model to investigate the
1537	water transport in the anode. Fig. 12 (a) depicted the distributions of liquid water in
1538	anode catalyst layer and gas diffusion layer. It was indicated that the current density and
1539	temperature were two crucial parameters influencing the liquid water transport. Since
1540	the current density increased from 0.05 to 1.45 A cm ⁻² , the liquid water volume fraction
1541	in the anode increased due to more water produced and dragged to the anode. In addition,

1542 the liquid water volume fraction in the anode decreased with the temperature due to 1543 more water evaporated, suggesting that the anode flooding was suppressed. Shiau et al. 1544 [228] developed a two-dimensional nonisothermal multiphase model to investigate the 1545 effects of operation condition on the performance. When the gases were fully humidified, the current density was higher than that of partially humidified, which was 1546 1547 ascribed to enhanced ORR kinetics and ion/water transport through the membrane. The performance was also improved with increasing temperature due to the same reasons. 1548 1549 A theoretical analysis conducted by Deng et al. [229] showed that a higher ionomer 1550 content resulted in a better performance under various gas relative humidity due to the improved membrane hydration and enhanced ionic conductivity. As the cathode might 1551 1552 suffer from large performance losses resulting from the lack of water, properly 1553 increasing the water amount in cathode could effectively reduce mass transport and 1554 ohmic losses. Moreover, slight anode pressurization and insertion of MPL were 1555 preferred. However, Huo et al. [230] argued that the best configuration was only inserting MPL in anode rather than placing MPLs both in anode and cathode as shown 1556 1557 in Fig. 12 (b). It was explained that the MPL implemented in anode forced the liquid 1558 water to back-diffuse to the cathode and MPL eliminated in cathode enhanced the water 1559 transport to the cathode CL, both of which led to a high reaction rate and membrane conductivity. Besides, decreasing the cathode CL contact angle improves the 1560

1561	performance because more water could be kept in the cathode CL decreasing
1562	polarization losses. Nevertheless, attention should be paid into the possibility of cathode
1563	flooding problem. Recently, Niu et al. [231] took the two-phase turbulent flow in fuel
1564	cell flow channel into consideration, which was largely ignored in previous studies.
1565	They developed a direct numerical simulation (DNS) model with modified volume-of-
1566	fluid (VOF) approach for tracking the air/water interface. It could be seen from Fig. 12
1567	(c) that the water droplet was deformed asymmetrically and became water films
1568	spreading on the GDL surface, which was advantageous for reducing the flow resistance.
1569	Whereas such water films were difficult to be removed, therefore, the reactant supply
1570	was suppressed. Subsequently, the DNS model was used to investigate the behavior of
1571	two droplets and three droplets in turbulent and laminar flows [232]. Fig. 12 (d)
1572	depicted the proccess. In the two-droplet case, the front droplet firstly became flat and
1573	moved towards the other one. Eventually, they were merged in turbulent flow. In the
1574	laminar flow, the two droplets were also merged and the finally merged droplet was
1575	higher. In the three-droplet case, the two droplets downstream were merged firstly,
1576	followed by combining with the front droplet in turbulent flow. It was similar that the
1577	three droplets were merged and the finally merged droplet was higher in the laminar
1578	flow. Since the liquid films formed on the GDL surface moved slowly, a hydrophobic
1579	GDL surface was required for water removal enhancement.

1580 In summary, along with the experiments, modeling and simulation play a critical role 1581 in providing detailed insights concerning the complex mass, heat and charged particle 1582 transport in an AAEMFC. Modeling is especially important when an experiment is 1583 either too expensive to conduct or unable to capture the detailed underlying physics. As the modeling studies are conducted on investigating the mass transport phenomenon in 1584 1585 the AAEMFCs, particularly on the water management, the results can be expressed: 1586 anode flooding can be a critical issue at 100% RH, whereas at lower RH high ionic 1587 transport resistance in the cathode dominates due to dehydrated ionomer phase at high current, where the impact of water-consuming ORR kinetic polarization is also crucial. 1588

1589 9. Remaining challenges and perspectives

Platinum has been widely used as electrocatalyst both in anode and cathode due to its
desirable electrochemical activities. However, the high cost becomes the main
constraint, which makes the AAEMFC less attractive.

For the anode electrocatalysts, although the HOR is the simplest electrochemical reaction, high activity catalysts are in urgent need due to the less active HOR in basic media than that in acid media. Thus, the Pt alloys and hybrid structures with high activity and low cost have been proposed. However, there are still several problems needed for further investigation, which can be concluded as follows: (1) synthesizing highly active non-PGM electrocatalysts; (2) improving the durability of the 1599 electrocatalysts in hash alkaline media; (3) studying the HOR process on1600 electrocatalysts.

1601 For the cathode electrocatalysts, considerable improvements have been made to 1602 synthesize novel ORR electrocatalysts to replace the Pt recently, but there are still 1603 remaining some problems unsolved, i.e. the low stability, the high overpotential, and 1604 the low reactivity. The proposed alternative non-PGM electrocatalysts are supposed to 1605 enhance the direct four-electron pathway and inhibit the formation of hydrogen peroxide, resulting in the promotion of the catalytic activity. Although many non-1606 platinum electrocatalysts showing comparable activity to Pt have been prepared, as 1607 1608 mentioned earlier, the durability and stability problems still should be addressed. 1609 As the key component of the MEA, the AAEM is directly related to the fuel cell 1610 performance. Hence, it should be pointed out the future research direction for the 1611 synthesis of the membrane as well as the ionomer. Tang et al. [233] and Slade et al. 1612 [206] have indicated that the dissoluble ionomer is essential because the ionomer can be impregnated into the pores of the porous electrodes, working as a binder that can 1613 significantly decrease the interfacial resistance. Zeng et al. [234] found that the 1614 1615 fundamental improvement of the fuel cell performance was attributed to the water removal from the surface of catalyst. Hence, a low swelling ionomer film with a highly 1616 hydrophilic surface is recommended. In addition, for the application of the AAEMFCs, 1617

1618 the AAEM is expected to work normally at a wider range of temperature. Consequently,

- 1619 the AAEMs are required to be thermally stable. On the other hand, the thin films also
- 1620 need to be mechanically stable, being both flexible and strong.
- 1621 As an economical and useful tool, mathematical modeling can play a significant role in
- 1622 the quantification of the intricate physicochemical processes in AAEMFCs. However,
- 1623 as composed to the extensive experiment research on the AAEMFCs, mathematical
- 1624 modeling has not received similar attention. Moreover, the limited modeling studies are
- 1625 conducted on investigating the mass transport phenomenon in the AAEMFCs,
- 1626 particularly on the water management. Although water management has been verified
- 1627 to have vital effects on the fuel cell performance, the modeling research on the
- 1628 electrochemical process on the CLs is still deficient. Herein, we suggest that more
- 1629 attention should be focused on the modeling and mathematical analysis.
- 1630 **10. Concluding remarks**

As the promising emerging energy technology, the AAEMFC has attracted worldwide attention recently due to the significant reduction of the cost. Consequently, great progress has been made in promoting the power density, enhancing the durability, as well as reducing the cost. Generally, the peak power density is related to temperature, DL porosity, tuned ionomer carbon ratios, electrocatalyst loadings, and carefully controlled RHs. Typically, the performance increases with the increasing temperature

1637	due to the enhanced electrode reaction kinetics. Whereas, too high temperature is
1638	harmful to those components that are not stable enough, resulting in the performance
1639	degradation. Besides, higher DL porosity a lower mass/charge transport resistance,
1640	which is advantageous for improving power output. Nevertheless, a DL also functions
1641	as an electron transmitter and a CL supporter. Too high porosity is unfavorable for
1642	electron transport and mechanical support. Hence, an optimal DL porosity can be
1643	determined by taking these three aspects into consideration. The ionomer content has
1644	synergetic effects on the electrode microstructure and kinetic properties in terms of the
1645	active, ohmic, and mass diffusion polarizations. A deficient ionomer content in the CLs
1646	leads to non-continuous network for aiding the hydroxide transport, correspondingly
1647	lessening the reactive TPBs, and reducing the electrocatalyst utilization. However, an
1648	overloading ionomer content results in high shielding of electrocatalysts and heavy
1649	blocking of surface pores, which impedes the H_2 and O_2 in the process of diffusing to
1650	the electrocatalyst particles for carrying out the electrode reactions. Within an
1651	appropriate range, increasing electrocatalyst loading is beneficial for promoting peak
1652	power density, but too much loading will cause the agglomeration of electrocatalyst and
1653	decrease of active sites. Notably, humidifying both hydrogen and oxygen is obligatory.
1654	Considering the best performance to date, the RHs are 75% on anode and 85% on
1655	cathode. Too high RHs will result in electrode flooding problem, and too low RHs will

1656 result in low ORR kinetics and sluggish OH⁻ conductivity.

1657 This review provides an overview of the recent development on the AAEMFC, in terms 1658 of the physical and chemical processes, the electrocatalysts toward the HOR and ORR, the system designs and performance, as well as the remaining challenges and 1659 perspectives. Although promising, there is still plenty room for substantially increasing 1660 the power output before the widespread application. Further development of the 1661 1662 AAEMFC may concentrate on, but not be limited to the following: (1) synthesize high activity, high durability, and non-PGM electrocatalysts for both hydrogen oxidation 1663 reaction and oxygen reduction reaction; (2) identify the active sites of the 1664 electrocatalysts, which is critical for understanding the catalytic mechanism and 1665 1666 designing new electrocatalysts; (3) develop the high hydroxide-ion conductivity, low 1667 water uptake, and high durability polymer electrolyte membrane; (4) optimize the 1668 electrode design for high transport rates of mass, ions and electrons, including the 1669 ionomers and structures; (5) optimize the operating conditions for the maximum power 1670 output.

1671 Acknowledgements

1672 This work was supported by a grant from the Research Grants Council of the Hong
1673 Kong Special Administrative Region, China (HKUST9/CRF/11G) and a grant from the
1674 Natural Science Foundation of China (No. 51506039).

1675 **References**

88

- 1676 [1] L. An, T.S. Zhao, J.B. Xu, A bi-functional cathode structure for alkaline-acid direct
- 1677 ethanol fuel cells, Int. J. Hydrogen Energy 36 (2011) 13089-13095.
- 1678 [2] L. An, T.S. Zhao, S.Y. Shen, Q.X. Wu, R. Chen, An alkaline direct oxidation fuel
- 1679 cell with non-platinum catalysts capable of converting glucose to electricity at high
- 1680 power output, J. Power Sources 196 (2011) 186-190.
- 1681 [3] M. Mamlouk, J.A. Horsfall, C. Williams, K. Scott, Radiation grafted membranes for
- 1682 superior anion exchange polymer membrane fuel cells performance, Int. J. Hydrogen
- 1683 Energy 37 (2012) 11912-11920.
- 1684 [4] L. An, T.S. Zhao, X.L. Zhou, X.H. Yan, C.Y. Jung, A low-cost, high-performance
- 1685 zinc-hydrogen peroxide fuel cell, J. Power Sources 275 (2015) 831-834.
- 1686 [5] L. An, T.S. Zhao, X.L. Zhou, L. Wei, X.H. Yan, A high-performance ethanol-
- 1687 hydrogen peroxide fuel cell, RSC Adv. 4 (2014) 65031-65034.
- 1688 [6] J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M.A. Hickner, P.A. Kohl, A.R.
- 1689 Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, T.W. Xu, L. Zhuang, Anion-exchange
- 1690 membranes in electrochemical energy systems, Energy Environ. Sci. 7 (2014) 3135-
- 1691 3191.
- 1692 [7] L. An, R. Chen, Mathematical modeling of direct formate fuel cells, Applied
- 1693 Thermal Engineering 124 (2017) 232-240.
- 1694 [8] Y.S. Li, T.S. Zhao, Ultra-low catalyst loading cathode electrode for anion exchange

- 1695 membrane fuel cells, Int. J. Hydrogen Energy 37 (2012) 15334-15338.
- 1696 [9] J.R. Varcoe, M. Beillard, D.M. Halepoto, J.P. Kizewski, S.D. Poynton, R.C.T. Slade,
- 1697 Membrane and electrode materials for alkaline membrane fuel cells, ECS Transactions
- 1698 16 (2008) 1819-1834.
- 1699 [10] E.H. Yu, X. Wang, U. Krewer, L. Li, K. Scott, Direct oxidation alkaline fuel cells:
- 1700 from materials to systems, Energy Environ. Sci. 5 (2012) 5668-5680.
- 1701 [11] L. An, T.S. Zhao, Z.H. Chai, L. Zeng, P. Tan, Modeling of the mixed potential in
- 1702 hydrogen peroxide-based fuel cells, Int. J. Hydrogen Energy 39 (2014) 7407-7416.
- 1703 [12] Y.S. Li, Y.L. He, Layer reduction method for fabricating Pd-coated Ni foams as
- 1704 high-performance ethanol electrode for anion-exchange membrane fuel cells, RSC Adv.
- 1705 4 (2014) 16879-16884.
- 1706 [13] C.C. Duan, D. Hook, Y.C. Chen, J.H. Tong, R. O'Hayre, Zr and Y co-doped
- 1707 perovskite as a stable, high performance cathode for solid oxide fuel cells operating
- 1708 below 500oC, Energy Environ. Sci. 10 (2017) 176-182.
- 1709 [14] L. An, T.S. Zhao, L. Zeng, X.H. Yan, Performance of an alkaline direct ethanol
- 1710 fuel cell with hydrogen peroxide as oxidant, Int. J. Hydrogen Energy 39 (2014) 2320-
- 1711 2324.
- 1712 [15] L. An, T.S. Zhao, Performance of an alkaline-acid direct ethanol fuel cell, Int. J.
- 1713 Hydrogen Energy 36 (2011) 9994-9999.

- 1714 [16] H. Zhang, H. Ohashi, T. Tamaki, T. Yamaguchi, Direction and management of
- 1715 water movement in solid-state alkaline fuel cells, J. Phys. Chem. C 116 (2012) 7650-
- 1716 7657.
- 1717 [17] L. An, T.S. Zhao, L. Zeng, Agar chemical hydrogel electrode binder for fuel-
- 1718 electrolyte-fed fuel cells, Applied Energy 109 (2013) 67-71.
- 1719 [18] L. An, C.Y. Jung, Transport phenomena in direct borohydride fuel cells, Applied
- 1720 Energy 205 (2017) 1270-1282.
- 1721 [19] I. Gunasekara, M. Lee, D. Abbott, S. Mukerjee, Mass transport and oxygen
- 1722 reduction kinetics at an anion exchange membrane interface: microelectrode studies on
- 1723 effect of carbonate exchange, ECS Electrochemistry Letters 1 (2012) F16-F19.
- 1724 [20] L. An, R. Chen, Recent progress in alkaline direct ethylene glycol fuel cells for
- sustainable energy production, J. Power Sources 329 (2016) 484-501.
- 1726 [21] L. An, T.S. Zhao, X.H. Yan, X.L. Zhou, P. Tan, The dual role of hydrogen peroxide
- 1727 in fuel cells, Science Bulletin 60 (2015) 55-64.
- 1728 [22] Y.S. Li, J.H. Lv, Y.L. He, A monolithic carbon foam-supported pd-based catalyst
- 1729 towards ethanol electro-oxidation in alkaline media, J. The Electrochemical Society 163
- 1730 (2016) F424-F427.
- 1731 [23] H.Y. Hou, Recent research progress in alkaline polymer electrolyte membranes
- 1732 for alkaline solid fuel cells, Acta Phys. -Chim. Sin. 30 (2014) 1393-1407.

- 1733 [24] L. An, L. Zeng, T.S. Zhao, An alkaline direct ethylene glycol fuel cell with an
- alkali-doped polybenzimidazole membrane, Int. J. Hydrogen Energy 38 (2013) 10602-
- 1735 10606.
- 1736 [25] L. An, T.S. Zhao, An alkaline direct ethanol fuel cell with a cation exchange
- 1737 membrane, Energy Environ. Sci. 4 (2011) 2213-2217.
- 1738 [26] G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel
- 1739 cells: A review, J. Membrane Science 377 (2011) 1-35.
- 1740 [27] E. Gülzow, M. Schulze, Long-term operation of AFC electrodes with CO2
- 1741 containing gases, J. Power Sources 127 (2004) 243-251.
- 1742 [28] G.F. McLean, T. Niet, S. Prince-Richard, N. Djilali, An assessment of alkaline fuel
- 1743 cell technology, Int. J. Hydrogen Energy 27 (2002) 507-526.
- 1744 [29] P. Gouérec, L. Poletto, J. Denizot, E. Sanchez-Cortezon, J.H. Miners, The
- 1745 evolution of the performance of alkaline fuel cells with circulating electrolyte, J. Power
- 1746 Sources 129 (2004) 193-204.
- 1747 [30] Y.J. Wang, J.L. Qiao, R. Baker, J.J. Zhang, Alkaline polymer electrolyte
- 1748 membranes for fuel cell applications, Chem. Soc. Rev. 42 (2013) 5768-5787.
- 1749 [31] Y.S. Li, T.S. Zhao, R. Chen, Cathode flooding behaviour in alkaline direct ethanol
- 1750 fuel cells, J. Power Sources 196 (2011) 133-139.
- 1751 [32] L. An, T.S. Zhao, Y.S. Li, Carbon-neutral sustainable energy technology: Direct

- 1752 ethanol fuel cells, Renew. Sustain. Energy Rev. 50 (2015) 1462-1468.
- 1753 [33] L. An, T.S. Zhao, Y.S. Li, Q.X. Wu, Charge carriers in alkaline direct oxidation
- 1754 fuel cells, Energy Environ. Sci. 5 (2012) 7536-7538.
- 1755 [34] L. An, T.S. Zhao, Transport phenomena in alkaline direct ethanol fuel cells for
- 1756 sustainable energy production, J. Power Sources 341 (2017) 199-211.
- 1757 [35] D.L. Yang, H.M. Yu, G.F. Li, W. Song, Y.X. Liu, Z.G. Shao, Effect of gas diffusion
- 1758 electrode parameters on anion exchange membrane fuel cell performance, Chinese
- 1759 Journal of Catalysis 35 (2014) 1091-1097.
- 1760 [36] Y.S. Li, Y.L. He, W.W. Yang, Performance characteristics of air-breathing anion-
- 1761 exchange membrane direct ethanol fuel cells, Int. J. Hydrogen Energy 38 (2013) 13427-
- 1762 13433.
- 1763 [37] L. An, T.S. Zhao, Q.X. Wu, L. Zeng, Comparison of different types of membrane
- 1764 in alkaline direct ethanol fuel cells, Int. J. Hydrogen Energy 37 (2012) 14536-14542.
- 1765 [38] L. An, R. Chen, Direct formate fuel cells: A review, J. Power Sources 320 (2016)
 1766 127-139.
- 1767 [39] N. Follain, S. Roualdes, S. Marais, J. Frugier, M. Reinholdt, J. Durand, Water
- 1768 transport properties of plasma-modified commercial anion-exchange membrane for
- 1769 solid alkaline fuel cells, J. Phys. Chem. C 116 (2012) 8510-8522.
- 1770 [40] Y.S. Li, A liquid-electrolyte-free anion-exchange membrane direct formate-

- 1771 peroxide fuel cell, Int. J. Hydrogen Energy 41 (2016) 3600-3604.
- 1772 [41] Y.S. Li, T.S. Zhao, Understanding the performance degradation of anion-exchange
- 1773 membrane direct ethanol fuel cells, Int. J. Hydrogen Energy 37 (2012) 4413-4421.
- 1774 [42] S. Kabir, K. Lemire, K. Artyushkova, A. Roy, M. Odgaard, D. Schlueter, A.
- 1775 Oshchepkov, A. Bonnefont, E. Savinova, D.C. Sabarirajan, P. Mandal, E.J. Crumlin,
- 1776 I.V. Zenyuk, P. Atanassov, A. Serov, Platinum group metal-free NiMo hydrogen
- 1777 oxidation catalysts: high performance and durability in alkaline exchange membrane
- 1778 fuel cells, J. Mater. Chem. A 5 (2017) 24433-24443.
- 1779 [43] E.F. Holby, P. Zelenay, Linking structure to function: The search for active sites in
- 1780 non-platinum group metal oxygen reduction reaction catalysts, Nano Energy 29 (2016)
- 1781 54-64.
- 1782 [44] Y.S. Li, H. Wu, Y.L. He, Y. Liu, L. Jin, Performance of direct formate-peroxide
- 1783 fuel cells, J. Power Sources 287 (2015) 75-80.
- 1784 [45] Y.S. Li, T.S. Zhao, Z.X. Liang, Performance of alkaline electrolyte-membrane-
- 1785 based direct ethanol fuel cells, J. Power Sources 187 (2009) 387-392.
- 1786 [46] Z.F. Pan, R. Chen, L. An, Y.S. Li, Alkaline anion exchange membrane fuel cells
- 1787 for cogeneration of electricity and valuable chemicals, J. Power Sources 365 (2017)
- 1788 430-445.
- 1789 [47] Y.S. Li, Y. Feng, X.D. Sun, Y.L. He, A sodium-ion-conducting direct formate fuel

- 1790 cell: generating electricity and producing base, Angew. Chem. 129 (2017) 5828-5831.
- 1791 [48] Y.S. Li, X.D. Sun, Y. Feng, Hydroxide self-feeding high-temperature alkaline
- 1792 direct formate fuel cells, ChemSusChem 10 (2017) 2135-2139.
- 1793 [49] X.Y. Chen, T.C. Li, J.N. Shen, Z.L. Hu, From structures, packaging to application:
- 1794 A system-level review for micro direct methanol fuel cell, Renewable and Sustainable
- 1795 Energy Reviews 80 (2017) 669-678.
- 1796 [50] Y.S. Li, T.S. Zhao, A passive anion-exchange membrane direct ethanol fuel cell
- 1797 stack and its applications, Int. J. Hydrogen Energy 41 (2016) 20336-20342.
- 1798 [51] Y.S. Li, Y.L. He, W.W. Yang, A high-performance direct formate-peroxide fuel cell
- 1799 with palladium-gold alloy coated foam electrodes, J. Power Sources 278 (2015) 569-
- 1800 573.
- 1801 [52] Z. Zakaria, S.K. Kamarudin, S.N. Timmiati, Membranes for direct ethanol fuel
- 1802 cells: An overview, Applied Energy 163 (2016) 334-342.
- 1803 [53] I. Bakosa, A. Paszternák, D. Zitoun, Pd/Ni synergestic activity for hydrogen
- 1804 oxidation reaction in alkaline conditions, Electrochimica Acta 176 (2015) 1074-1082.
- 1805 [54] S.F. Lu, J. Pan, A.B. Huang, L. Zhuang, J.T. Lu, Alkaline polymer electrolyte fuel
- 1806 cells completely free from noble metal catalysts, PNAS 105 (2008) 20611-20614.
- 1807 [55] R. Vinodh, D. Sangeetha, Carbon supported silver (Ag/C) electrocatalysts for
- 1808 alkaline membrane fuel cells, J. Mater Sci 47 (2012) 852-859.

- 1809 [56] M. Mamlouk, S.M.S. Kumar, P. Gouerec, K. Scott, Electrochemical and fuel cell
- 1810 evaluation of Co based catalyst for oxygen reduction in anion exchange polymer
- 1811 membrane fuel cells, J. Power Sources 196 (2011) 7594-7600.
- 1812 [57] Y. Ogihara, H. Yano, T. Matsumoto, D.A. Tryk, A. Liyama, H. Uchida, In situ FTIR
- 1813 analysis of co-tolerance of a Pt-Fe alloy with stabilized Pt skin layers as a hydrogen
- 1814 anode catalyst for polymer electrolyte fuel cells, Catalysts 7 (2017) 8.
- 1815 [58] J. Fu, J.L. Qiao, X.Z. Wang, J.X. Ma, T. Okada, Alkali doped poly(vinyl alcohol)
- 1816 for potential fuel cell applications, Synthetic Metals 160 (2010) 193-199.
- 1817 [59] M. Tanaka, K. Fukasawa, E. Nishino, S. Yamaguchi, K. Yamada, H. Tanaka, B.
- 1818 Bae, K. Miyatake, M. Watanabe, Anion conductive block poly(arylene ether)s:
- 1819 synthesis, properties, and application in alkaline fuel cells, J. Am. Chem. Soc. 133 (2011)
- 1820 10646-10654.
- 1821 [60] J.L. Yan, L. Zhu, B.L. Chaloux, M.A. Hickner, Anion exchange membranes by
- 1822 bromination of tetramethylbiphenol-based poly(sulfone)s, Polym. Chem. 8 (2017)1823 2442-2449.
- 1824 [61] X. Wang, M.Q. Li, B.T. Golding, M. Sadeghi, Y.C. Cao, E.H. Yu, K. Scott, A
- 1825 polytetrafluoroethylene-quaternary 1,4-diazabicyclo- [2.2.2]-octane polysulfone
- 1826 composite membrane for alkaline anion exchange membrane fuel cells, Int. J. Hydrogen
- 1827 Energy 36 (2011) 10022-10026.

- 1828 [62] X.H. Li, J.X. Tao, G.H. Nie, L.C. Wang, L.H. Li, S.J. Liao, Cross-linked multiblock
- 1829 copoly(arylene ether sulfone) ionomer/nano-ZrO2 composite anion exchange
- 1830 membranes for alkaline fuel cells, RSC Adv. 4 (2014) 41398-41410.
- 1831 [63] M.S. Cha, J.Y. Lee, T.H. Kim, H.Y. Jeong, H.Y. Shin, S.G. Oh, Y.T. Hong,
- 1832 Preparation and characterization of crosslinked anion exchange membrane (AAEM)
- 1833 materials with poly(phenylene ether)-based short hydrophilic block for use in
- 1834 electrochemical applications, J. Membrane Science 530 (2017).
- 1835 [64] Y.S. Li, Y.L. He, An all-in-one electrode for high-performance liquid-feed micro
- 1836 polymer electrolyte membrane fuel cells, J. The Electrochemical Society 163 (2016)
- 1837 F663-F667.
- 1838 [65] W.C. Sheng, H.A. Gasteiger, Y. Shao-Horn, Hydrogen oxidation and evolution
- 1839 reaction kinetics on platinum: acid vs alkaline electrolytes, J. The Electrochemical
- 1840 Society 157 (2010) B1529-B1536.
- 1841 [66] J. Durst, A. Siebel, C. Simon, F. Hasche, J. Herranz, H.A. Gasteiger, New insights
- 1842 into the electrochemical hydrogen oxidation and evolution reaction mechanism, Energy
- 1843 Environ. Sci. 7 (2014) 2255-2260.
- 1844 [67] W.C. Sheng, Z.B. Zhuang. M.R. Gao, J. Zheng, J.G.G. Chen, Y.S. Yan, Correlating
- 1845 hydrogen oxidation and evolution activity on platinum at different pH with measured
- 1846 hydrogen binding energy, Nat. Commun. 6 (2015) 5848-5853.

1847 [68] I. Ledezma-Yanez, W.D.Z. Wallace, P. Sebastián-Pascual, V. Climent, J.M. Feliu,

- 1848 M.T.M. Koper, Interfacial water reorganization as a pH-dependent descriptor of the
- 1849 hydrogen evolution rate on platinum electrodes, Nature Energy (2017) 2 17031-17037.
- 1850 [69] M. Alesker, M. Page, M. Shviro, Y. Paska, G. Gershinsky, D.R. Dekel, D. Zitoun,
- 1851 Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in
- alkaline membrane fuel cell, J. Power Sources 304 (2016) 332-339.
- 1853 [70] J. Ohyama, T. Sato, A. Satsuma, High performance of Ru nanoparticles supported
- 1854 on carbon for anode electrocatalyst of alkaline anion exchange membrane fuel cell, J.
- 1855 Power Sources 225 (2013) 311-315.
- 1856 [71] S.F. Lu, J. Pan, A.B. Huang, L. Zhuang, J.T. Lu, Alkaline polymer electrolyte fuel
- 1857 cells completely free from noble metal catalysts, PNAS 105 (2008) 20611-20614.
- 1858 [72] S.Q. Lu, Z.B. Zhuang, Electrocatalysts for hydrogen oxidation and evolution
- 1859 reactions, Sci China Mater 59 (2016) 217-238.
- 1860 [73] H.A. Miller, A. Lavacchi, F. Vizza, M. Marelli, F.D. Benedetto, F. D'Acapito, Y.
- 1861 Paska, M. Page, D.R. Dekel, A Pd/C-CeO2 anode catalyst for high-performance
- 1862 platinum-free anion exchange membrane fuel cells, Angew. Chem. Int. Ed. 55 (2016)
- 1863 6004-6007.
- 1864 [74] Q.P. Hu, G.W. Li, J. Pan, L.S. Tan, J.T. Lu, L. Zhuang, Alkaline polymer electrolyte
- 1865 fuel cell with Ni-based anode and Co-based cathode, Int. J. Hydrogen Energy 38 (2013)

1866 16264-16268.

- 1867 [75] W.C. Sheng, A.P. Bivens, M. Myint, Z.B. Zhuang, R.V. Forest, Q.R. Fang, Ji.G.G.
- 1868 Chen, Y.S. Yan, Non-precious metal electrocatalysts with high activity for hydrogen
- 1869 oxidation reaction in alkaline electrolytes, Energy Environ. Sci. 7 (2014) 1719-1724.
- 1870 [76] Z.B. Zhuang, S.A. Giles, J. Zhang, G.R. Jenness, S. Caratzoulas, D.G. Vlachos,
- 1871 Y.S. Yan, Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation
- 1872 reaction catalyst in alkaline electrolyte, Nat. Commun. 7 (2016) 10141-10148.
- 1873 [77] S.M. Alia, B.S. Pivovar, Y.S. Yan, Platinum-coated copper nanowires with high
- 1874 activity for hydrogen oxidation reaction in base, J. Am. Chem. Soc. 135 (2013) 13473-
- 1875 13478.
- 1876 [78] N.A. Maiorova, A.A. Mikhailova, O.A. Khazova, V.A. Grinberg, Thin-film
- 1877 rotating disk electrode as a tool for comparing the activity of catalysts in the hydrogen
- 1878 oxidation reaction, Russ. J. Electrochem. 42 (2006) 331-338.
- 1879 [79] C. Gabrielli, P.P. Grand, A. Lasia, H. Perrot, Investigation of hydrogen adsorption
- and absorption in palladium thin films II. Cyclic voltammetry, J. Electrochem. Soc. 151
- 1881 (2004) A1937-A1942.
- 1882 [80] P.N. Bartlett, B. Gollas, S. Guerin, J. Marwan, The preparation and characterisation
- 1883 of H1-e palladium films with a regular hexagonal nanostructure formed by
- 1884 electrochemical deposition from lyotropic liquid crystalline phases, Phys. Chem. Chem.

- 1885 Phys. 4 (2002) 3835-3842.
- 1886 [81] M.S. Rau, P.M. Quiano, M.R. Gennero de Chialvo, A.C. Chialvo, Hydrogen
- 1887 oxidation reaction: Evidences of different electrocatalytic activity between α and β Pd-
- 1888 H, Electrochem. Commun. 10 (2008) 208-212.
- 1889 [82] Z.L.A. Feng, E.E. Gabaly, X.F. Ye, Z.X. Shen, W.C. Chueh, Fast vacancy-mediated
- 1890 oxygen ion incorporation across the ceria-gas electrochemical interface, Nat. Commun.
- 1891 5 (2014) 4374.
- 1892 [83] T. Skála, F. Šutara, M. Škoda, K.C. Prince, V. Matolín, Palladium interaction with
- 1893 CeO2, Sn-Ce-O and Ga-Ce-O layers, J. Phys. Condens. Matter 21 (2009) 055005.
- 1894 [84] H.A. Miller, F. Vizza, M. Marelli, A. Zadick, L. Dubau, M. Chatenet, S. Geiger, S.
- 1895 Cherevko, H. Doan, R.K. Pavlicek, S. Mukerjee, D.R. Dekel, Highly active
- 1896 nanostructured palladium-ceria electrocatalysts for the hydrogen oxidation reaction in
- 1897 alkaline medium, Nano Energy 33 (2017) 293-305.
- 1898 [85] N.A. Anastasijevic, V. Vesovic, R.R. Adzic, Determination of the kinetic
- 1899 parameters of the oxygen reduction reaction using the rotating ring-disk electrode, J.
- 1900 Electroanal. Chem. 229 (1987) 305-316.
- 1901 [86] Q.G. He, E.J. Cairns, Review-recent progress in electrocatalysts for oxygen
- 1902 reduction suitable for alkaline anion exchange membrane fuel cells, J. The
- 1903 Electrochemical Society 162 (2015) F1504-F1539.

- 1904 [87] J.R. Varcoe, R.C.T. Slade, G.L. Wright, Y.L. Chen, Steady-state dc and impedance
- 1905 investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and
- 1906 Au/C cathodes, J. Phys. Chem. B 110 (2006) 21041-21049.
- 1907 [88] L.M. Dai, Y.H. Xue, L.T. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen
- 1908 reduction reaction, Chem. Rev. 115 (2015) 4823-4892.
- 1909 [89] S.D. Poynton, J.P. Kizewski, R.C.T. Slade, J.R. Varcoe, Novel electrolyte
- 1910 membranes and non-Pt catalysts for low temperature fuel cells, Solid State Ionics 181
- 1911 (2010) 219-222.
- 1912 [90] S. Maheswari, G. Selvarani, P. Sridhar, S. Pitchumani, A. Shukla, Oxygen
- 1913 reduction catalysts for alkaline polymer electrolyte fuel cells, ECS Transactions 33
- 1914 (2010) 1795-1807.
- 1915 [91] S. Maheswari, S. Karthikeyan, P. Murugan, P. Sridhar, S. Pitchumani, Carbon-
- 1916 supported Pd-Co as cathode catalyst for APEMFCs and validation by DFT, Phys. Chem.
- 1917 Chem. Phys. 14 (2012) 9683-9695.
- 1918 [92] Q. Zhang, J.X. Feng, A.J. Wang, J. Wei, J.J Feng, Simple synthesis of bimetallic
- 1919 alloyed Pd-Au nanochain networks supported on reduced graphene oxide for enhanced
- 1920 oxygen reduction reaction, Rsc Adv. 4 (2014) 52640-52646.
- 1921 [93] G.T. Fu, Z.Y. Liu, Y. Chen, J. Lin, Y.W. Tang, T.H. Lu, Synthesis and
- 1922 electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction

- 1923 reaction, Nano Res. 7 (2014) 1205-1214.
- 1924 [94] I. Kruusenberg, L. Matisen, Q. Shah, A.M. Kannan, K. Tammeveski, Non-platinum
- 1925 cathode catalysts for alkaline membrane fuel cells, Int. J. Hydrogen Energy 37 (2012)
- 1926 4406-4412.
- 1927 [95] X.G. Li, B.N. Popov, T. Kawahara, H. Yanagi, Non-precious metal catalysts
- 1928 synthesized from precursors of carbon, nitrogen, and transition metal for oxygen
- reduction in alkaline fuel cells, J. Power Sources 196 (2011) 1717-1722.
- 1930 [96] P. Song, Y.W. Zhang, J. Pan, L. Zhuang, W.L. Xu, Cheap carbon black-based high-
- 1931 performance electrocatalysts for oxygen reduction reaction, Chem. Commun. 51 (2015)1932 1972-1975.
- 1933 [97] Q.G. He, Q. Li, S. Khene, X.M. Ren, F.E. López-Suárez, D. Lozano-Castelló, A.
- 1934 Bueno-López, G. Wu, High-loading cobalt oxide coupled with nitrogen-doped
- 1935 graphene for oxygen reduction in anion-exchange-membrane alkaline fuel cells, J. Phys.
- 1936 Chem. C 117 (2013) 8697-8707.
- 1937 [98] J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y.
- 1938 Shao-Horn, Design principles for oxygen-reduction activity on perovskite oxide
- 1939 catalysts for fuel cells and metal-air batteries, Nature Chemistry 3 (2011) 546-550.
- 1940 [99] J. Sunarso, A.A.J. Torriero, W. Zhou, P.C. Howlett, M. Forsyth, Oxygen reduction
- 1941 reaction activity of la-based perovskite oxides in alkaline medium: a thin-film rotating

- 1942 ring-disk electrode study, J. Phys. Chem. C 116 (2012) 5827-5834.
- [100] C. Jin, X.C. Cao, L.Y. Zhang, C. Zhang, R.Z. Yang, Preparation and
 electrochemical properties of urchin-like La_{0.8}Sr_{0.2}MnO₃ perovskite oxide as a
 bifunctional catalyst for oxygen reduction and oxygen evolution reaction, J. Power
 Sources 241 (2013) 225-230.
- 1947 [101] K.A. Stoerzinger, M. Risch, J. Suntivich, W.M. Lu, J.G. Zhou, M.D. Biegalski,
- 1948 H.M. Christen, Ariando, T. Venkatesan, Y. Shao-Horn, Oxygen electrocatalysis on
- 1949 (001)-oriented manganese perovskite films: Mn valency and charge transfer at the
- 1950 nanoscale, Energy Environ. Sci. 6 (2013) 1582-1588.
- 1951 [102] M. Risch, K.A. Stoerzinger, S. Maruyama, W.T. Hong, I. Takeuchi, Y. Shao-Horn,
- 1952 La_{0.8}Sr_{0.2}MnO_{3-δ} decorated with Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-δ}: A bifunctional surface for
- 1953 oxygen electrocatalysis with enhanced stability and activity, J. Am. Chem. Soc. 136
- 1954 (2014) 5229-5232.
- 1955 [103] A. Pendashteh, J. Palma, M. Anderson, R. Marcilla, NiCoMnO₄ nanoparticles on
- 1956 N-doped graphene: Highly efficient bifunctional electrocatalyst for oxygen
- reduction/evolution reactions, Applied Catalysis B: Environmental 201 (2017) 241-252.
- 1958 [104] S. Gupta, W. Kellogg, H. Xu, X.E. Liu, J. Cho, G. Wu, Bifunctional perovskite
- 1959 oxide catalysts for oxygen reduction and evolution in alkaline media, Chem. Asian J.
- 1960 11 (2016) 10-21.

- 1961 [105] Y. Nie, L. Li, Z.D. Wei, Recent advancements in Pt and Pt-free catalysts for
- 1962 oxygen reduction reaction, Chem. Soc. Rev. 44 (2015) 2168-2201.
- 1963 [106] Y.Q. Zhang, H.B. Tao, J. Liu, Y.F. Sun, J. Chen, B. Hua, T. Thundat, J.L. Luo, A
- 1964 rational design for enhanced oxygen reduction: Strongly coupled silver nanoparticles
- and engineered perovskite nanofibers, Nano Energy 38 (2017) 392-400.
- 1966 [107] D.C. Higgins, Z.W. Chen, Nitrogen doped carbon nanotube thin films as efficient
- 1967 oxygen reduction catalyst for alkaline anion exchange membrane fuel cell, ECS
- 1968 Transactions 28 (2010) 63-68.
- 1969 [108] C.V. Rao, Y. Ishikawa, Activity, selectivity, and anion-exchange membrane fuel
- 1970 cell performance of virtually metal-free nitrogen-doped carbon nanotube electrodes for
- 1971 oxygen reduction reaction, J. Phys. Chem. C 116 (2012) 4340-4346.
- 1972 [109] W. Ding, Z.D. Wei, S.G. Chen, X.Q. Qi, T. Yang, J.S. Hu, D. Wang, L.J. Wan, S.F.
- 1973 Alvi, L. Li, Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-
- 1974 doped graphene for the catalysis of oxygen reduction, Angew. Chem. Int. Ed. 52 (2013)
- 1975 11755-11759.
- 1976 [110] J.L. Shui, M. Wang, F. Du, L.M. Dai, N-doped carbon nanomaterials are durable
- 1977 catalysts for oxygen reduction reaction in acidic fuel cells, Sci. Adv. 1 (2015) e1400129.
- 1978 [111] B. Xu, S.S. Hou, G.P. Cao, F. Wu, Y.S. Yang, Sustainable nitrogen-doped porous
- 1979 carbon with high surface areas prepared from gelatin for supercapacitors, J. Mater.

- 1980 Chem. 22 (2012) 19088-19093.
- 1981 [112] H.W. Liang, Z.Y. Wu, L.F. Chen, C. Li, S.H. Yu, Bacterial cellulose derived
- 1982 nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction
- 1983 electrocatalyst for zinc-air battery, Nano Energy 11 (2015) 366-376.
- 1984 [113] Z.J. Lu, M.W. Xu, S.J. Bao, K. Tan, H. Chai, C.J. Cai, C.C. Ji, Q. Zhang, Facile
- 1985 preparation of nitrogen-doped reduced graphene oxide as a metal-free catalyst for
- 1986 oxygen reduction reaction, J. Mater Sci. 48 (2013) 8101-8107.
- 1987 [114] G. Merle, S.S. Hosseiny, M. Wessling, K. Nijmeijer, New cross-linked PVA based
- 1988 polymer electrolyte membranes for alkaline fuel cells, J. Membrane Science 409-410
- 1989 (2012) 191-199.
- 1990 [115] J. Zhang, T.C. Zhou, J.L. Qiao, Y.Y. Liu, J.J. Zhang, Hydroxyl anion conducting
- 1991 membranes poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) for alkaline
- 1992 fuel cellapplications: Effect of molecular weight, Electrochimica Acta 111 (2013) 351-1993 358.
- 1994 [116] A. Jasti, V.K. Shahi, A facile synthesis of highly stable multiblock poly(arylene
- 1995 ether)s based alkaline membranes for fuel cells, J. Power Sources 267 (2014) 714-722.
- 1996 [117] X.H. Li, S.S. Cheng, L.C. Wang, Q. Long, J.X. Tao, G.H. Nie, S.J. Liao, Anion
- 1997 exchange membranes by bromination of benzylmethyl-containing poly(arylene ether)s
- 1998 for alkaline membrane fuel cells, RSC Adv. 4 (2014) 29682-29693.

- 1999 [118] Y.S. Li, T.S. Zhao, W.W. Yang, Measurements of water uptake and transport
 2000 properties in anion-exchange membranes, Int. J. Hydrogen Energy 35 (2010) 56562001 5665.
- 2002 [119] J.L. Qiao, J. Fu, L.L. Liu, J. Zhang, J. Xie, G. Li, Synthesis and properties of
- 2003 chemically cross-linked poly(vinyl alcohol)-poly(acrylamide-co-
- 2004 diallyldimethylammonium chloride) (PVA-PAADDA) for anion-exchange membranes,
- 2005 Solid State Ionics 214 (2012) 6-12.
- 2006 [120] J.L. Qiao, J. Zhang, J.J. Zhang, Anion conducting poly(vinyl 2007 alcohol)/poly(diallyldimethylammonium chloride) membranes with high durable 2008 alkaline stability for polymer electrolyte membrane fuel cells, J. Power Sources 237
- 2009 (2013) 1-4.
- 2010 [121] J. Zhang, J.L. Qiao, G.P. Jiang, L.L. Liu, Y.Y. Liu, Cross-linked poly(vinyl
- 2011 alcohol)/poly (diallyldimethylammonium chloride) as anion-exchange membrane for
- 2012 fuel cell applications, J. Power Sources 240 (2013) 359-367.
- 2013 [122] W.T. Lu, Z.G. Shao, G. Zhang, Y. Zhao, B.L. Yi, Crosslinked poly(vinylbenzyl
- 2014 chloride) with a macromolecular crosslinker for anion exchange membrane fuel cells,
- 2015 J. Power Sources 248 (2014) 905-914.
- 2016 [123] M. Tanaka, K. Fukasawa, E. Nishino, S. Yamaguchi, K. Yamada, H. Tanaka, B.
- 2017 Bae, K. Miyatake, M. Watanabe, Anion conductive block poly(arylene ether)s:

2018 synthesis, properties, and application in alkaline fuel cells, J. Am. Chem. Soc. 133 (2011)

- 2019 10646-10654.
- 2020 [124] A.L. Ong, S. Saad, R. Lan, R.J. Goodfellow, S.W. Tao, Anionic membrane and
- 2021 ionomer based on poly(2,6-dimethyl-1,4-phenylene oxide) for alkaline membrane fuel
- 2022 cells, J. Power Sources 196 (2011) 8272-8279.
- 2023 [125] X.C. Lin, L. Wu, Y.B. Liu, A.L. Ong, S.D. Poynton, J.R. Varcoe, T.W. Xu, Alkali
- 2024 resistant and conductive guanidinium-based anion-exchange membranes for alkaline
- 2025 polymer electrolyte fuel cells, J. Power Sources 217 (2012) 373-380.
- 2026 [126] X.C. Lin, X.H. Liang, S.D. Poynton, J.R. Varcoe, A.L. Ong, J. Ran, Y. Li, Q.H.
- 2027 Li, T.W. Xu, Novel alkaline anion exchange membranes containing pendant
- 2028 benzimidazolium groups for alkaline fuel cells, J. Membrane Science 443 (2013) 193-
- 2029 200.
- 2030 [127] X.C. Lin, J.R. Varcoe, S.D. Poynton, X.H. Liang, A.L. Ong, J. Ran, Y. Li, T.W.
- 2031 Xu, Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for
- alkaline membrane fuel cells, J. Mater. Chem. A 1 (2013) 7262-7269.
- 2033 [128] N.W. Li, M.D. Guiver, W.H. Binder, Towards high conductivity in anion-
- 2034 exchange membranes for alkaline fuel cells, ChemSusChem 6 (2013) 1376-1383.
- 2035 [129] H.S. Dang, P. Jannasch, A comparative study of anion-exchange membranes
- 2036 tethered with different hetero-cycloaliphatic quaternary ammonium hydroxides, J.

- 2037 Mater. Chem. A 5 (2017) 21965-21978.
- 2038 [130] X.J. Wang, P. Wang, Y.Y. Sun, J.L. Wang, H.G. Fang, S.Z. Yang, H.B. Wei, Y.S.
- 2039 Ding, A mechanically strong and tough anion exchange membrane engineered with
- 2040 non-covalent modalities, Chem. Commun. 53 (2017) 12369-12372.
- 2041 [131] N. Benipal, J. Qi, J.C. Gentile, W.Z. Li, Direct glycerol fuel cell with
- 2042 polytetrafluoroethylene (PTFE) thin film separator, Renewable Energy 105 (2017) 647-
- 2043 655.
- 2044 [132] Y. Zhao, H.M. Yu, D.L. Yang, J. Li, Z.G. Shao, B.L. Yi, High-performance
- 2045 alkaline fuel cells using crosslinked composite anion exchange membrane, J. Power
- 2046 Sources 221 (2013) 247-251.
- 2047 [133] Y. Zhao, J. Pan, H.M. Yu, D.L. Yang, J. Li, L. Zhuang, Z.G. Shao, B.L. Yi,
- 2048 Quaternary ammonia polysulfone-PTFE composite alkaline anion exchange membrane
- 2049 for fuel cells application, Int. J. Hydrogen Energy 38 (2013) 1983-1987.
- 2050 [134] G.W. Li, J. Pan, J.J. Han, C. Chen, J.T. Lu, L. Zhuang, Ultrathin composite
- 2051 membrane of alkaline polymer electrolyte for fuel cell applications, J. Mater. Chem. A
- 2052 1 (2013) 12497-12502.
- 2053 [135] J.F. Zhou, M. Unlu, J.A. Vega, P.A. Kohl, Anionic polysulfone ionomers and
- 2054 membranes containing fluorenyl groups for anionic fuel cells, J. Power Sources 190
- 2055 (2009) 285-292.
- 2056 [136] Y.Q. Yang, J. Wang, J.F. Zheng, S.H. Li, S.B. Zhang, A stable anion exchange
- 2057 membrane based on imidazolium salt for alkaline fuel cell, J. Membrane Science 4672058 (2014) 48-55.
- 2059 [137] X.H. Li, J.X. Tao, G.H. Nie, L.C. Wang, L.H. Li, S.J. Liao, Cross-linked
- 2060 multiblock copoly(arylene ether sulfone) ionomer/nano-ZrO2 composite anion
- 2061 exchange membranes for alkaline fuel cells, RSC Adv. 4 (2014) 41398-41410.
- 2062 [138] X.H. Zhang, S.W. Tay, Z.L. Liu, L. Hong, Alkaline anion-exchange polymer
- 2063 membrane with grid-plug microstructure for hydrogen fuel cell application, J. Power
- 2064 Sources 196 (2011) 5494-5498.
- 2065 [139] S.S. He, C.W. Frank, Facilitating hydroxide transport in anion exchange
- 2066 membranes via hydrophilic grafts, J. Mater. Chem. A 2 (2014) 16489-16497.
- 2067 [140] R. Vinodh, M. Purushothaman, D. Sangeetha, Novel quaternized
- 2068 polysulfone/ZrO₂ composite membranes for solid alkaline fuel cell applications, Int. J.
- 2069 Hydrogen Energy 36 (2011) 7291-7302.
- 2070 [141] J.R. Varcoe, R.C.T. Slade, E.L.H. Yee, An alkaline polymer electrochemical
- 2071 interface: a breakthrough in application of alkaline anion-exchange membranes in fuel
- 2072 cells, Chem. Commun. 13 (2006) 1428-1429.
- 2073 [142] J. Pan, Y. Li, L. Zhuang, J.T. Lu, Self-crosslinked alkaline polymer electrolyte
- 2074 exceptionally stable at 90°C, Chem. Commun. 46 (2010) 8597-8599.

- 2075 [143] J. Zhou, J.S. Guo, D. Chu, R.R. Chen, Impacts of anion-exchange-membranes
- 2076 with various ionic exchange capacities on the performance of H2/O2 fuel cells, J. Power
- 2077 Sources 219 (2012) 272-279.
- 2078 [144] N. Li, Y. Leng, M.A. Hickner, C.Y. Wang, Highly stable, anion conductive, comb-
- shaped copolymers for alkaline fuel cells, J. Am. Chem. Soc. 135 (2013) 10124-10133.
- 2080 [145] X.M. Ren, S.C. Price, A.C. Jackson, N. Pomerantz, F.L. Beyer, Highly conductive
- 2081 anion exchange membrane for high power density fuel-cell performance, ACS Appl.
- 2082 Mater. Interfaces 6 (2014) 13330-13333.
- 2083 [146] W.T. Lu, Z.G. Shao, G. Zhang, Y. Zhao, J. Li, B.L. Yi, Preparation and
- 2084 characterization of imidazoliumfunctionalized poly (ether sulfone) as anion exchange
- 2085 membrane and ionomer for fuel cell application, Int. J. Hydrogen Energy 38 (2013)
- 2086 9285-9296.
- 2087 [147] F.X. Zhang, H.M. Zhang, C. Qu, Imidazolium functionalized polysulfone anion
- 2088 exchange membrane for fuel cell application, J. Mater. Chem. 21 (2011) 12744-12752.
- 2089 [148] J. Ran, L. Wu, J.R. Varcoe, A.L. Ong, S.D. Poynton, T.W. Xu, Development of
- 2090 imidazolium-type alkaline anion exchange membranes for fuel cell application, J.
- 2091 Membrane Science 415-416 (2012) 242-249.
- 2092 [149] B. Xing, O. Savadogo, Hydrogenroxygen polymer electrolyte membrane fuel
- 2093 cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI), Electrochemistry

- 2094 Communications 2 (2000) 697-702.
- 2095 [150] S. Li, X.L. Zhu, D.Z. Liu, F. Sun, A highly durable long side-chain
 2096 polybenzimidazole anion exchange membrane for AEMFC, J. Membrane Science 546
 2097 (2018) 15-21.
- 2098 [151] Y. Wan, K.A.M. Creber, B. Peppley, V.T. Bui, E. Halliop, New solid polymer
- 2099 electrolyte membranes for alkaline fuel cells, Polym. Int. 54 (3005) 5-10.
- 2100 [152] Y. Wan, B. Peppley, K.A.M. Creber, V.T. Bui, E. Halliop, Preliminary evaluation
- 2101 of an alkaline chitosan-based membrane fuel cell, J. Power Sources 162 (2006) 105-
- 2102 113.
- 2103 [153] Y.T. Luo, J.C. Guo, C.S. Wang, D. Chu, Quaternized poly(methyl methacrylate-
- 2104 co-butyl acrylate-co-vinylbenzyl chloride) membrane for alkaline fuel cells, J. Power
- 2105 Sources 195 (2010) 3765-3771.
- 2106 [154] Y.T. Luo, J.C. Guo, C.S. Wang, D. Chu, An acrylate-polymer-based electrolyte
- 2107 membrane for alkaline fuel cell applications, ChemSusChem 4 (2011) 1557-1560.
- 2108 [155] Y. Luo, J. Guo, C. Wang, K.Y. Choi, D. Chu, High molecular weight copolymer
- 2109 alkaline fuel cell membrane via miniemulsion polymerization, ECS Transactions 33
- 2110 (2010) 1893-1902.
- 2111 [156] Y.T. Luo, J.C. Guo, C.S. Wang, D. Chu, Tunable high-molecular-weight anion-
- 2112 exchange membranes for alkaline fuel cells, Macromol. Chem. Phys. 212 (20110 2094-

- 2113 2102.
- 2114 [157] G.M. Wu, S.J. Lin, C.C. Yang, Preparation and characterization of high ionic
- 2115 conducting alkaline non-woven membranes by sulfonation, J. Membrane Science 284
- 2116 (2006) 120-127.
- 2117 [158] C. Sollogouba, A. Guinault, C. Bonnebat, M. Bennjima, L. Akrour, J.F. Fauvarque,
- 2118 L. Ogier, Formation and characterization of crosslinked membranes for alkaline fuel
- 2119 cells, J. Membrane Science 335 (2009) 37-42.
- 2120 [159] T. Hibino, Y. Shen, M. Nishida, M. Nagao, Hydroxide ion conducting
- 2121 antimony(v)-doped tin pyrophosphate electrolyte for intermediate-temperature alkaline
- 2122 fuel cells, Angew. Chem. Int. Ed. 51 (2012) 10786-10790.
- 2123 [160] T. Hibino, K. Kobayashi, An intermediate-temperature alkaline fuel cell using an
- 2124 Sn_{0.92}Sb_{0.08}P₂O₇-based hydroxide-ion-conducting electrolyte and electrodes, J. Mater.
- 2125 Chem. A 1 (2013) 1134-1140.
- 2126 [161] Y. Zhao, H.M. Yu, F. Xie, Y.X. Liu, Z.G. Shao, B.L. Yi, High durability and
- 2127 hydroxide ion conducting pore-filled anion exchange membranes for alkaline fuel cell
- applications, J. Power Sources 269 (2014) 1-6.
- 2129 [162] D.S. Kim, C.H. Fujimoto, M.R. Hibbs, A. Labouriau, Y.K. Choe, Y.S. Kim,
- 2130 Resonance stabilized perfluorinated ionomers for alkaline membrane fuel cells,
- 2131 Macromolecules 46 (2013) 7826-7833.

- 2132 [163] Y.N. Chen, Z.M. Li, N.J. Chen, R. Li, Y.J. Zhang, K. Li, F.H. Wang, H. Zhu, A
- 2133 new method for improving the conductivity of alkaline membrane by incorporating
- 2134 TiO₂- ionic liquid composite particles, Electrochimica Acta 255 (2017) 335-346.
- 2135 [164] B.R. Einsla, S. Chempath, L.R. Pratt, J.M. Boncella, J. Rau, C. Macomber, B.S.
- 2136 Pivovar, Stability of cations for anion exchange membrane fuel cells, ECS Transactions
- 2137 11 (2007) 1173-1180.
- 2138 [165] C.G. Arges, J. Parrondo, G. Johnson, A. Nadhan, V. Ramani, Assessing the
- 2139 influence of different cation chemistries on ionic conductivity and alkaline stability of
- anion exchange membranes, J. Mater. Chem. 22 (2012) 3733-3744.
- 2141 [166] J.S. Park, S.H. Park, S.D. Yim, Y.G. Yoon, W.Y. Lee, C.S. Kim, Performance of
- solid alkaline fuel cells employing anion-exchange membranes, J. Power Sources 178(2008) 620-626.
- 2144 [167] G.G. Wang, Y.M. Weng, J. Zhao, D. Chu, D. Xie, R.R. Chen, Developing a novel
- 2145 alkaline anion exchange membrane derived from poly(ether-imide) for improved ionic
- 2146 conductivity, Polym. Adv. Technol. 21 (2010) 554-560.
- 2147 [168] Y.T. Luo, J.C. Guo, Y.H. Liu, Q. Shao, C.S. Wang, D. Chu, Copolymerization of
- 2148 methyl methacrylate and vinylbenzyl chloride towards alkaline anion exchange
- 2149 membrane for fuel cell applications, J. Membrane Science 423-424 (2012) 209-214.
- 2150 [169] J. Pan, C. Chen, L. Zhuang, J.T. Lu, Designing advanced alkaline polymer

- 2151 electrolytes for fuel cell applications, Accounts of Chemical Research 45 (2012) 473-
- 2152 481.
- 2153 [170] W. Li, J. Fang, M. Lv, C.X. Chen, X.J. Chi, Y.X. Yang, Y.M. Zhang, Novel anion
- 2154 exchange membranes based on polymerizable imidazolium salt for alkaline fuel cell
- 2155 applications, J. Mater. Chem. 21 (2011) 11340-11346.
- 2156 [171] M. Mamlouk, K. Scott, Effect of anion functional groups on the conductivity and
- 2157 performance of anion exchange polymer membrane fuel cells, J. Power Sources 211
- 2158 (2012) 140-146.
- 2159 [172] R.Z. Jiang, D. Chu, An air-breathing H₂/air cell design suitable for fast screening
- 2160 of electrolytes, Electrochimica Acta 56 (2011) 8365-8370.
- 2161 [173] J.L. Yan, M.A. Hickner, Anion exchange membranes by bromination of
- 2162 benzylmethyl-containing poly(sulfone)s, Macromolecules 43 (2010) 2349-2356.
- 2163 [174] J.F. Zhou, M. Ünlü, J.A. Vega, P.A. Kohl, Anionic polysulfone ionomers and
- 2164 membranes containing fluorenyl groups for anionic fuel cells, J. Power Sources 190
- 2165 (2009) 285-292.
- 2166 [175] K. Fukuta, H. Inoue, S. Watanabe, H. Yanagi, In-situ observation of CO2 through
- 2167 the self-purging in alkaline membrane fuel cell (AMFC), ECS Transactions 19 (2009)
- 2168 23-27.
- 2169 [176] J.A. Vega, S. Smith, C. Chartier, W.E. Mustain, Effect of carbonate on anion

- 2170 exchange membrane conductivity and hydrogen oxidation for AAEMFCs, ECS
 2171 Transactions 28 (2010) 103-109.
- 2172 [177] J.A. Vega, C. Chartier, S. Smith, W.E. Mustain, Effect of carbonate on oxygen
- 2173 reduction, hydrogen oxidation and anion exchange membrane chemical stability, ECS
- 2174 Transactions 33 (2010) 1735-1749.
- 2175 [178] J.A. Vega, W.E. Mustain, Effect of CO2, HCO3- and CO3-2 on oxygen reduction
- 2176 in anion exchange membrane fuel cells, Electrochimica Acta 55 (2010) 1638-1644.
- 2177 [179] J.A. Vega, C. Chartier, W.E. Mustain, Effect of hydroxide and carbonate alkaline
- 2178 media on anion exchange membranes, J. Power Sources 195 (2010) 7176-7180.
- 2179 [180] M. Inaba, Y. Matsui, M. Saito, A. Tasaka, K. Fukuta, S. Watanabe, H. Yanagi,
- 2180 Effects of carbon dioxide on the performance of anion-exchange membrane fuel cells,
- 2181 Electrochemistry 79 (2011) 322-325.
- 2182 [181] Y. Matsui, M. Saito, A. Tasaka, M. Inaba, Influence of carbon dioxide on the
- 2183 performance of anion-exchange membrane fuel cells, ECS Transactions 25 (2010) 105-
- 2184 110.
- 2185 [182] S. Suzuki, H. Muroyama, T. Matsui, K. Eguchi, Influence of CO2 dissolution into
- 2186 anion exchange membrane on fuel cell performance, Electrochimica Acta 88 (2013)
- 2187552-558.
- 2188 [183] L. Gubler, Polymer design strategies for radiation-grafted fuel cell membranes,

- 2189 Adv. Energy Mater. 4 (2014) 1300827.
- 2190 [184] M.M. Nasef, Radiation-grafted membranes for polymer electrolyte fuel cells:
- current trends and future directions, Chem. Rev. 114 (2014) 12278-12329.
- 2192 [185] J.R. Varcoe, R.C.T. Slade, An electron-beam-grafted ETFE alkaline anion-
- 2193 exchange membrane in metal-cation-free solid-state alkaline fuel cells,
 2194 Electrochemistry Communications 8 (2006) 839-843.
- 2195 [186] S.D. Poynton, J.P. Kizewski, R.C.T. Slade, J.R. Varcoe, Novel electrolyte
- 2196 membranes and non-Pt catalysts for low temperature fuel cells, Solid State Ionics 181
- 2197 (2010) 219-222.
- 2198 [187] V.M. Nikolic, D.L. Zugic, A.D. Maksic, D.P. Saponjic, M.P.M. Kaninski,
- 2199 Performance comparison of modified poly(vinyl alcohol) based membranes in alkaline
- 2200 fuel cells, Int. J. Hydrogen Energy 36 (2011) 11004-11010.
- 2201 [188] O.I. Deavin, S. Murphy, A.L. Ong, S.D. Poynton, R. Zeng, H. Herman, J.R.
- 2202 Varcoe, Anion-exchange membranes for alkaline polymer electrolyte fuel cells:
- 2203 comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-
- 2204 head-groups, Energy Environ. Sci. 5 (2012) 8584-8597.
- 2205 [189] J. Fang, Y.X. Yang, X.H. Lu, M.L. Ye, W. Li, Y.M. Zhang, Cross-linked, ETFE-
- 2206 derived and radiation grafted membranes for anion exchange membrane fuel cell
- applications, Int. J. Hydrogen Energy 37 (2012) 594-602.

- 2208 [190] L.Q. Wang, E. Magliocca, E.L. Cunningham, W.E. Mustain, S.D. Poynton, R.
- 2209 Escudero-Cid, M.M. Nasef, J. Ponce-González, R. Bance-Souahli, R.C.T. Slade, D.K.
- 2210 Whelligan, J.R. Varcoe, An optimised synthesis of high performance radiation-grafted
- anion-exchange membranes, Green Chem. 19 (2017) 831-843.
- 2212 [191] L.Q. Wang, J.J. Brink, Y. Liu, A.M. Herring, J. Ponce-González, D.K. Whelligan,
- 2213 J.R. Varcoe, Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based anion-
- exchange membranes with high performance and stability, Energy Environ. Sci. 2017.
- 2215 [192] L. Sun, J.S. Guo, J. Zhou, Q.M. Xu, D. Chu, R.R. Chen, Novel nanostructured
- 2216 high-performance anion exchange ionomers for anion exchange membrane fuel cells,
- 2217 J. Power Sources 202 (2012) 70-77.
- 2218 [193] K. Matsumoto, T. Fujigaya, H. Yanagi, N. Nakashima, Very high performance
- alkali anion-exchange membrane fuel cells, Adv. Funct. Mater. 21 (2011) 1089-1094.
- 2220 [194] D.L. Yang, H.M. Yu, G.F. Li, Y. Zhao, Y.X. Liu, C.K. Zhang, W. Song, Z.G. Shao,
- 2221 Fine microstructure of high performance electrode in alkaline anion exchange
- 2222 membrane fuel cells, J. Power Sources 267 (2014) 39-47.
- 2223 [195] S. J. Ewing, R. Lan, X. X. Xu, S.W. Tao, Synthesis of dendritic nano-sized nickel
- for use as anodematerial in an alkaline membrane fuel cell, Fuel Cells 10 (2010) 72-76.
- 2225 [196] A. Kucernak, F. Bidault, G. Smith, Membrane electrode assemblies based on
- 2226 porous silver electrodes for alkaline anion exchange membrane fuel cells,

- 2227 Electrochimica Acta 82 (2012) 284-290.
- 2228 [197] M. Ünlü, J.F. Zhou, I. Anestis-Richard, P.A. Kohl, Characterization of anion
- exchange ionomers in hybrid polymer electrolyte fuel cells, ChemSusChem 3 (2010)
- 1398-1402.
- 2231 [198] S. Gu, W.C. Sheng, R. Cai, S.M. Alia, S.Q. Song, K.O. Jensen, Y.S. Yan, An
- 2232 efficient Ag-ionomer interface for hydroxide exchange membrane fuel cells, Chem.
- 2233 Commun. 49 (2013) 131-134.
- 2234 [199] M. Ünlü, J.F. Zhou, I. Anestis-Richard, H. Kim, P.A. Kohl, Improved gas
- 2235 diffusion electrodes for hybrid polymer electrolyte fuel cells, Electrochimica Acta 56
- 2236 (2011) 4439-4444.
- 2237 [200] J.F. Zhou, M. Ünlü, I. Anestis-Richard, H. Kim, P.A. Kohl, Solvent processible,
- 2238 high-performance partially fluorinated copoly(arylene ether) alkaline ionomers for
- alkaline electrodes, J. Power Sources 196 (2011) 7924-7930.
- 2240 [201] D. Kubo, K. Tadanaga, A. Hayashi, M. Tatsumisago, Improvement of
- 2241 electrochemical performance in alkaline fuel cell by hydroxide ion conducting Ni-Al
- 2242 layered double hydroxide, J. Power Sources 222 (2013) 493-497.
- 2243 [202] C. Tamain, S.D. Poynton, R.C.T. Slade, B. Carroll, J.R. Varcoe, Development of
- 2244 cathode architectures customized for H2/O2 metal-cation-free alkaline membrane fuel
- 2245 cells, J. Phys. Chem. C 111 (2007) 18423-18430.

- 2246 [203] M. Mamlouk, K. Scott, J.A. Horsfall, C. Williams, The effect of electrode
- 2247 parameters on the performance of anion exchange polymer membrane fuel cells, Int. J.
- 2248 Hydrogen Energy 36 (2011) 7191-7198.
- 2249 [204] Y. Oshiba, J. Hiura, Y. Suzuki, T. Yamaguchi, Improvement in the solid-state
- 2250 alkaline fuel cell performance through efficient water management strategies, J. Power
- 2251 Sources 345 (2017) 221-226.
- 2252 [205] T.J. Omasta, L. Wang, X. Peng, C.A. Lewis, J.R. Varcoe, W.E. Mustain,
- 2253 Importance of balancing membrane and electrode water in anion exchange membrane
- fuel cells, J. Power Sources xxx (2017) 1-9.
- 2255 [206] R.C.T. Slade, J.P. Kizewski, S.D. Poynton, R. Zeng, J.R. Varcoe, Fuel Cells:
- 2256 Selected Entries from the Encyclopedia of Sustainability Science, Springer, 2012
- 2257 (Chapter 2).
- 2258 [207] Y.T. Luo, J.C. Guo, C.S. Wang, D. Chu, Fuel cell durability enhancement by
- 2259 crosslinking alkaline anion exchange membrane electrolyte, Electrochemistry
- 2260 Communications 16 (2012) 65-68.
- 2261 [208] C. Fujimoto, D.S. Kim, M. Hibbs, D. Wrobleski, Y.S. Kim, Backbone stability of
- 2262 quaternized polyaromatics for alkaline membrane fuel cells, J. Membrane Science 423-
- 2263 424 (2012) 438-449.
- 2264 [209] M. Carmo, G. Doubek, R. C. Sekol, M. Linardi, A.D. Taylor, Development and

- 2265 electrochemical studies of membrane electrode assemblies for polymer electrolyte
- 2266 alkaline fuel cells using FAA membrane and ionomer, J. Power Sources 230 (2013)
- 169-175.
- 2268 [210] Y. Wang, G.W. Wang, G.W. Li, B. Huang, J. Pan, Q. Liu, J.J. Han, L. Xiao, J.T.
- 2269 Lu, L. Zhuang, Pt-Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect
- 2270 or electronic effect?, Energy Environ. Sci. 8 (2014) 177-181.
- 2271 [211] M. Ünlü, J.F. Zhou, P.A. Kohl, Hybrid polymer electrolyte fuel cells: alkaline
- 2272 electrodes with proton conducting membrane, Angew. Chem. Int. Ed. 49 (2010) 1299-
- 2273 1301.
- 2274 [212] W.D. Shen, F.Y. Zhang, A. Prasad, J. Hertz, Non-flooding hybrid polymer fuel
- 2275 cell, ECS Transactions 33 (2010) 2011-2016.
- 2276 [213] X.Q. Zhang, J.C. Chen, Maximum equivalent power output and performance
- 2277 optimization analysis of an alkaline fuel cell/heat-driven cycle hybrid system, J. Power
- 2278 Sources 196 (2011) 10088-10093.
- 2279 [214] M. Ünlü, J.F. Zhou, P.A. Kohl, Hybrid anion and proton exchange membrane fuel
- 2280 cells, J. Phys. Chem. C 113 (2009) 11416-11423.
- 2281 [215] M. Ünlü, J.F. Zhou, P.A. Kohl, Self-humidifying hybrid anion-cation membrane
- fuel cell operated under dry conditions, Fuel Cells 10 (2010) 54-63.
- 2283 [216] K. Fukuta, H. Inoue, Y. Chikashige, H. Yanagi, Improved maximum power

- 2284 density of alkaline membrane fuel cells (AMFCs) by the optimization of mea
- 2285 construction, ECS Transactions 28 (2010) 221-225.
- 2286 [217] J.W.D Ng, Y. Gorlin, T. Hatsukade, T.F. Jaramillo, A precious-metal-free
- regenerative fuel cell for storing renewable electricity, Adv. Energy Mater. 3 (2013)
- 1545-1550.
- 2289 [218] J.W.D. Ng, M. Tang, T.F. Jaramillo, A carbon-free, precious-metal-free, high
- 2290 performance O2 electrode for regenerative fuel cells and metal-air batteries, Energy
- 2291 Environ. Sci. 7 (2014) 2017-2024.
- 2292 [219] X. Wu, K. Scott, A non-precious metal bifunctional oxygen electrode for alkaline
- anion exchange membrane cells, J. Power Sources 206 (2012) 14-19.
- [220] H. Matsushima, W. Majima, Y. Fukunaka, Three-phase interfacial phenomena in
- alkaline unitized regenerative fuel cell, Electrochimica Acta 114 (2013) 509-513.
- 2296 [221] K.N. Grew, W.K.S. Chiu, A dusty fluid model for predicting hydroxyl anion
- 2297 conductivity in alkaline anion exchange membranes, J. The Electrochemical Society
- 2298 157 (2010) B327-B337.
- 2299 [222] Z. Siroma, S. Watanabe, K. Yasuda, K. Fukuta, H. Yanagib, Mathematical
- 2300 modeling of the concentration profile of carbonate ions in an anion exchange membrane
- fuel cell, J. The Electrochemical Society 158 (2011) B682-B689.
- 2302 [223] K. Jiao, P. He, Q. Du, Y. Yin, Three-dimensional multiphase modeling of alkaline

- anion exchange membrane fuel cell, Int. J. Hydrogen Energy 39 (2014) 5981-5995.
- 2304 [224] H. Deng, J.X. Chen, K. Jiao, X.R. Huang, An analytical model for alkaline
- 2305 membrane direct methanol fuel cell, Int. J. Heat and Mass Transfer 74 (2014) 376-390.
- 2306 [225] Z.L.A. Feng, E.E. Gabaly, X.F. Ye, Z.X. Shen, W.C. Chueh, Fast vacancy-
- 2307 mediated oxygen ion incorporation across the ceria-gas electrochemical interface, Nat.
- 2308 Commun. 5 (2014) 4374.
- 2309 [226] H. Deng, D.W. Wang, X. Xie, Y.B. Zhou, Y. Yin, Q. Du, K. Jiao, Modeling of
- 2310 hydrogen alkaline membrane fuel cell with interfacial effect and water management
- 2311 optimization, Renewable Energy 91 (2016) 166-177.
- 2312 [227] S. Huo, H. Deng, Y.F. Chang, K. Jiao, Water management in alkaline anion
- exchange membrane fuel cell anode, Int. J. Hydrogen Energy 37 (2012) 18389-18402.
- 2314 [228] H.S. Shiau, I.V. Zenyuk, A.Z. Weber, Water management in an alkaline-exchange-
- 2315 membrane fuel cell, ECS Transactions 69 (2015) 985-994.
- 2316 [229] H. Deng, D.W. Wang, R.F. Wang, X. Xie, Y. Yin, Q. Du, K. Jiao, Effect of
- 2317 electrode design and operating condition on performance of hydrogen alkaline
- 2318 membrane fuel cell, Applied Energy 183 (2016) 1272-1278.
- 2319 [230] S. Huo, J.W. Park, P. Hu, D.W. Wang, K. Jiao, Analytical modeling of liquid
- saturation jump effect for hydrogen alkaline anion exchange membrane fuel cell, Int. J.
- 2321 Heat and Mass Transfer 112 (2017) 891-902.

- 2322 [231] Z.Q. Niu, K. Jiao, F. Zhang, Q. Du, Y. Yin, Direct numerical simulation of two-
- phase turbulent flow in fuel cell flow channel, Int. J. hydrogen energy 41 (2016) 3147-
- 2324 3152.
- 2325 [232] Z.Q. Niu, R.F. Wang, K. Jiao, Q. Du, Y. Yin, Direct numerical simulation of low
- Reynolds number turbulent air-water transport in fuel cell flow channel, ScienceBulletin 62 (2017) 31-39.
- 2328 [233] D.P. Tang, J. Pan, S.F. Lu, L. Zhuang, J.T. Lu, Alkaline polymer electrolyte fuel
- cells: Principle, challenges, and recent progress, Sci China Chem 53 (2010) 357-164.
- 2330 [234] R. Zeng, J. Handsel, S.D. Poynton, A.J. Roberts, R.C.T. Slade, H. Herman, D.C.
- 2331 Apperley, J.R. Varcoe, Alkaline ionomer with tuneable water uptakes for
- electrochemical energy technologies, Energy Environ. Sci. 4 (2011) 4925-4928.
- 2333
- 2334
- 2335
- 2336
- 2337
- 2338

Table captions: 2340

- Table 1 Selected hydrogen/oxygen fuel cell performance with different HOR
 electrocatalysts reported in open literature.
- 2343 Table 2 Selected hydrogen/oxygen fuel cell performance with different ORR
- electrocatalysts reported in open literature.
- Table 3 Selected hydrogen/oxygen fuel cell performance with different AAEMs
- 2346 reported in open literature.
- Table 4 Selected hydrogen/oxygen fuel cell performance with different MEA structures
- 2348 reported in open literature.
- 2349 **Figure captions:**
- 2350 Figure 1. Schematic of a typical alkaline anion exchange membrane fuel cell
- 2351 (AAEMFC).
- 2352 Figure 2. AFM images of the Pd/Ni surfaces and size distribution of the grains observed
- 2353 for (A) 17% Pd coverage and (B) 35% Pd coverage [53]. Reproduced with permission
- from Elsevier.
- Figure 3. (a) General scheme of oxygen reduction reaction. [85]. Reproduced with
- 2356 permission from Elsevier. (b) Modified form of Pourbaix diagram [86]. Reproduced
- 2357 with permission from The Electrochemical Society.
- Figure 4. (a) Schematic of cathode side in the MEA using Ag/C as a catalyst [55].
- 2359 Reproduced with permission from Springer. (b) Optimal structure of rGO(N)-Co(II)-

- 2360 O-Co(II)-rGO(N) [97]. (c) ORR current densities of thin film of (I) LaNiO₃, LaCoO₃,
- 2361 LaFeO₃, LaMnO₃, and LaCrO₃ and (II) LaNi_{0.5}Co_{0.5}O₃, LaNi_{0.5}Fe_{0.5}O₃, LaNi_{0.5}Mn_{0.5}O₃,
- and LaNi_{0.5}Cr_{0.5}O₃. (III) (IV) Magnified portion to pinpoint the onset ORR potentials
- 2363 on panels I and II, respectively. Reproduced with permission from American Chemical
- 2364 Society [99]. (d) Schematic of the selectivity inside and outside of MMT during NG
- synthesis [109]. Reproduced with permission from Wiley.
- Figure 5. Effect of (a) the temperature and (b) the time on ionic conductivity [114].
- 2367 Reproduced with permission from Elsevier.
- Figure 6. Schematic of (a) an air-breathing cell and (b) the electrode configuration [172].
- 2369 Reproduced with permission from Elsevier.
- 2370 Figure 7. Schematic of (a) the preparation of the MWNT/PyPBI/Pt samples and (b)
- 2371 TEM image of the MWNT/PyPBI/Pt [193]. Reproduced with permission from Wiley.
- 2372 Figure 8. Schematic of the electrode structures made by (a) thin-film and (b) ionomer
- 2373 impregnation methods [199]. Reproduced with permission from Elsevier.
- Figure 9. (a) Durability tests of uncrosslinked QPMV and 10% crosslinked QPMV-
- 2375 PDVB AAEMs at 70°C, (b) Durability test of 10% crosslinked AAEM at 50°C [207].
- 2376 Reproduced with permission from Elsevier. (c) Cell performance of the AAEMFC
- using the PtRu anode or Pt anode [210]. Reproduced with permission from The Royal
- 2378 Society of Chemistry. (d) Performance of H₂/O₂ AAEMFC test data at 60 °C for E-R

2379 (squares) and E-6 (circles) using PtRu/C anodes and Pt/C cathodes and with no gas 2380 back-pressurization of the fully humidified gases [190]. (e) Performance of the 2381 AAEMFC with different hypothesized distribution of water across the AAEM and 2382 electrodes in an AAEMFC [205]. (f) Performance of H₂/O₂ AAEMFC at 80°C with the LDPE-AAEM with Pt/C (circles) or Ag/C (squares) as cathodes as well as PtRu/C 2383 2384 anode [191]. Reproduced with permission from Elsevier. 2385 Figure 10. (a) Schematic of a hybrid fuel cell comprising high pH AAEM electrodes 2386 and a PEM [211]. Reproduced with permission from Wiley. (b) Schematic of an 2387 AFC/heat-driven cycle hybrid system [213]. Reproduced with permission from Elsevier. 2388 (c) Schematic of the depletion region at the junction of the AAEM and PEM in contact

- 2389 [214]. Reproduced with permission from American Chemical Society. (d) Schematic of
- 2390 hybrid fuel cells comprising low pH anode/high pH cathode [215]. Reproduced with
- 2391 permission from Wiley.
- Figure 11. Schematic of an AAEM-URFC as an energy storage device for gridapplications [217]. Reproduced with permission from Wiley.
- 2394 Figure 12. (a) Distributions of liquid water in anode catalyst layer and gas diffusion
- 2395 layer at different current densities [227]. (b) Effect of MPL configurations on (I) cell
- voltage and power density and (II) activation and ohmic overpotential with 100%
- cathode inlet humidification [230]. (c) Phase boundary of the water droplet in the DNS

- 2398 model of turbulent two-phase flow at different time instances [231]. (d) Iso-surface of
- 2399 the water phase fraction for two-droplet case and three-droplet case at different time
- 2400 instances [232]. Reproduced with permission from Elsevier.

2402 Figure 1. Schematic of a typical alkaline anion exchange membrane fuel cell (AAEMFC).

Figure 3. (a) General scheme of oxygen reduction reaction. [85]. Reproduced with permission from
Elsevier. (b) Modified form of Pourbaix diagram [86]. Reproduced with permission from The
Electrochemical Society.

2415

Figure 4. (a) Schematic of cathode side in the MEA using Ag/C as a catalyst [55]. Reproduced with permission from Springer. (b) Optimal structure of rGO(N)-Co(II)-O-Co(II)-rGO(N) [97]. (c) ORR current densities of thin film of (I) LaNiO₃, LaCoO₃, LaFeO₃, LaMnO₃, and LaCrO₃ and (II) LaNi_{0.5}Co_{0.5}O₃, LaNi_{0.5}Fe_{0.5}O₃, LaNi_{0.5}Mn_{0.5}O₃, and LaNi_{0.5}Cr_{0.5}O₃. (III) (IV) Magnified portion to pinpoint the onset ORR potentials on panels I and II, respectively. Reproduced with permission from American Chemical Society [99]. (d) Schematic of the selectivity inside and outside of MMT during NG synthesis [109]. Reproduced with permission from Wiley.

2425

_ . _0

Figure 5. Effect of (a) the temperature and (b) the time on ionic conductivity [114]. Reproduced with permission from Elsevier.

Figure 6. Schematic of (a) an air-breathing cell and (b) the electrode configuration [172].Reproduced with permission from Elsevier.

2441 Figure 7. Schematic of (a) the preparation of the MWNT/PyPBI/Pt samples and (b) TEM image of

- the MWNT/PyPBI/Pt [193]. Reproduced with permission from Wiley.

2448 Figure 8. Schematic of the electrode structures made by (a) thin-film and (b) ionomer impregnation

- 2449 methods [199]. Reproduced with permission from Elsevier.

2455 Figure 9. (a) Durability tests of uncrosslinked QPMV and 10% crosslinked QPMV-PDVB AAEMs 2456 at 70°C, (b) Durability test of 10% crosslinked AAEM at 50°C [207]. Reproduced with permission 2457 from Elsevier. (c) Cell performance of the AEMFC using the PtRu anode or Pt anode [210]. 2458 Reproduced with permission from The Royal Society of Chemistry. (d) Performance of H₂/O₂ 2459 AEMFC test data at 60 °C for E-R (squares) and E-6 (circles) using PtRu/C anodes and Pt/C 2460 cathodes and with no gas back-pressurization of the fully humidified gases [190]. (e) Performance 2461 of the AEMFC with different hypothesized distribution of water across the AEM and electrodes in 2462 an AEMFC [205]. (f) Performance of H₂/O₂ AEMFC at 80 °C with the LDPE-AEM with Pt/C 2463 (circles) or Ag/C (squares) as cathodes as well as PtRu/C anode [191]. Reproduced with permission 2464 from Elsevier.

2466

Figure 10. (a) Schematic of a hybrid fuel cell comprising high pH AEM electrodes and a PEM [211]. Reproduced with permission from Wiley. (b) Schematic of an AFC/heat-driven cycle hybrid system [213]. Reproduced with permission from Elsevier. (c) Schematic of the depletion region at the junction of the AEM and PEM in contact [214]. Reproduced with permission from American Chemical Society. (d) Schematic of hybrid fuel cells comprising low pH anode/high pH cathode [215]. Reproduced with permission from Wiley.

2476 Figure 11. Schematic of an AEM-URFC as an energy storage device for grid applications [217].

2477 Reproduced with permission from Wiley.

Figure 12. (a) Distributions of liquid water in anode catalyst layer and gas diffusion layer at different current densities [227]. (b) Effect of MPL configurations on (I) cell voltage and power density and (II) activation and ohmic overpotential with 100% cathode inlet humidification [230]. (c) Phase boundary of the water droplet in the DNS model of turbulent two-phase flow at different time instances [231]. (d) Iso-surface of the water phase fraction for two-droplet case and three-droplet case at different time instances [232]. Reproduced with permission from Elsevier.

Fuel/Oxidant	Anode	Cathode	Membrane	T (°C)	P(mW cm ⁻²)	Ref.
$H_2 (RH = 100\%) / O_2 (RH)$ = 100%)	Cr/Ni (5 mg cm ⁻²)	Ag (1 mg cm ⁻²)	quaternary ammonium polysulphone membranes	60	50	54
200 sccm dry H ₂ / 1000 sccm air	Pd/Ni (1.5 mg cm ⁻²)	Ag (3 mg cm ⁻²)	AAEM	73	400	69
200 sccm dry H ₂ / 1000 sccm air	Pd (1.5 mg cm ⁻²)	Ag (3 mg cm ⁻²)	AAEM	73	180	69
200 sccm dry H ₂ / 1000 sccm air	Ni (1.5 mg cm ⁻²)	Ag (3 mg cm ⁻²)	AAEM	73	70	69
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Tokuyama A201	50	~185	70

$500 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 500 sccm O ₂ (RH = 100%)	3 nm Ru/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Tokuyama A201	50	~250	70
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	11 nm Ru/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Tokuyama A201	50	~135	70
200 sccm dry H ₂ / 1000 sccm air	Pd/C (0.3 mg cm ⁻²)	Ag (3 mg cm ⁻²)	AAEM	73	100	73
200 sccm dry H ₂ / 1000 sccm air	Pd/C-CeO ₂ (0.3 mg cm ⁻²)	Ag (3 mg cm ⁻²)	AAEM	73	500	73
50 sccm H ₂ (RH = 100%)/ 50 sccm O ₂ (RH = 100%)	Ni-W (17.5 mg cm ⁻²)	Coppy/C (2 mg cm ⁻²)	xQAPS membrane	60	40	74
50 sccm H ₂ (RH = 100%) / 50 sccm air (RH = 100%)	Ni-W (17.5 mg cm ⁻²)	Coppy/C (2 mg cm ⁻²)	xQAPS membrane	60	27.5	74
200 sccm dry H ₂ / 1000 sccm air	Pd/C-CeO ₂ (0.3 mg cm ⁻² , Pd 6%)	Ag (3 mg cm ⁻²)	AAEM	73	390	84
200 sccm dry H ₂ / 1000 sccm air	Pd/C-CeO ₂ (0.3 mg cm ⁻² , Pd 10%)	Ag (3 mg cm ⁻²)	AAEM	73	500	84
200 sccm dry H ₂ / 1000 sccm air	Pd/C-CeO ₂ (0.3 mg cm ⁻² , Pd 20%)	Ag (3 mg cm ⁻²)	AAEM	73	460	84

2494Table 1Selected hydrogen/oxygen fuel cell performance with different HOR2495electrocatalysts reported in open literature.

Fuel/Oxidant	Anode	Cathode	Membrane	T (°C)	P(mW cm ⁻²)	Ref.
H ₂ / O ₂	Pt/C (0.375 mg cm ⁻²)	Ag/C (0.5 mg cm ⁻²)	AEM	60	109	55
2000 sccm H ₂ (RH = 100%) / 2000 sccm O ₂ (RH = 100%)	Pt/C (20 wt%) (0.5 mg cm ⁻²)	Pt/C (20 wt%) (0.5 mg cm ⁻²)	AAEM-MEAs	50	~54	87
2000 sccm H ₂ (RH =	Pt/C (20 wt%)	Ag/C (60 wt%)	AAEM-MEAs	50	~47	87

$100\%) / 2000 \text{ sccm O}_2 (\text{RH})$ = 100%)	(0.5 mg cm^{-2})	(4 mg cm ⁻²)				
$2000 \text{ sccm H}_2 (\text{RH} = 100\%) / 2000 \text{ sccm O}_2 (\text{RH} = 100\%)$	Pt/C (20 wt%) (0.5 mg cm ⁻²)	Au/C (60 wt%) (4 mg cm ⁻²)	AAEM-MEAs	50	~20	87
$2000 \text{ sccm } H_2 \text{ (RH} =$ $100\%) / 2000 \text{ sccm } O_2 \text{ (RH}$ $= 82\%)$	Pt/C (20 wt%) (0.5 mg cm ⁻²)	Pt/C (20 wt%) (0.5 mg cm ⁻²)	AAEM-MEAs	50	~28	87
2000 sccm H ₂ (RH = 82%) / 2000 sccm O ₂ (RH = 100%)	Pt/C (20 wt%) (0.5 mg cm ⁻²)	Pt/C (20 wt%) (0.5 mg cm ⁻²)	AAEM-MEAs	50	~25	87
H ₂ (RH = 100%) / Air (RH = 100%)	Pt/C (40 wt%) (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	the mixture of TMA and TMHDA with a ratio of 3:1	60	28.2	88
H ₂ (RH = 100%) / Air (RH = 100%)	Pt/C (40 wt%) (0.5 mg cm ⁻²)	Ag/C (0.5 mg cm ⁻²)	the mixture of TMA and TMHDA with a ratio of 3:1	60	8.1	88
H ₂ (RH = 100%) / Air (RH = 100%)	Pt/C (40 wt%) (0.5 mg cm ⁻²)	Ag/C (1.0 mg cm ⁻²)	the mixture of TMA and TMHDA with a ratio of 3:1	60	19.9	88
H ₂ (RH = 100%) / Air (RH = 100%)	Pt/C (40 wt%) (0.5 mg cm ⁻²)	Ag/C (2.0 mg cm ⁻²)	the mixture of TMA and TMHDA with a ratio of 3:1	60	30.1	88
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	AHA Membrane (without ionomer in both anode and cathode)	R.T.	~6	90
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	ACS Membrane (without ionomer in both anode and cathode)	R.T.	2	90
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	AHA Membrane (with ionomer in both anode and cathode)	R.T.	55	90
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	AHA Membrane (with ionomer in cathode and without at anode)	R.T.	40	90
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pd/C (0.5 mg cm ⁻²)	AHA Membrane (with ionomer in cathode and without at anode)	R.T.	55	90

$500 \text{ sccm H}_2 (\text{RH} = 100\%) \\ / 500 \text{ sccm O}_2 (\text{RH} = 100\%) \\ 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	AHA Membrane (with ionomer in cathode and without at anode)	R.T.	40	90
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Au/C (0.5 mg cm ⁻²)	AHA Membrane (with ionomer in cathode and without at anode)	R.T.	1	90
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pd/C (0.5 mg cm ⁻²)	alkaline polymer electrolyte membrane	30	56	91
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	PdCo(1:1)/C (0.5 mg cm ⁻²)	alkaline polymer electrolyte membrane	30	26	91
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	PdCo(2:1)/C (0.5 mg cm ⁻²)	alkaline polymer electrolyte membrane	30	75	91
$500 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 500 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	PdCo(3:1)/C (0.5 mg cm ⁻²)	alkaline polymer electrolyte membrane	30	85	91
500 sccm H ₂ (RH = 100%) / 500 sccm air (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pd/C (0.5 mg cm ⁻²)	alkaline polymer electrolyte membrane	30	19	91
500 sccm H ₂ (RH = 100%) / 500 sccm air (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	PdCo(1:1)/C (0.5 mg cm ⁻²)	alkaline polymer electrolyte membrane	30	15	91
500 sccm H ₂ (RH = 100%) / 500 sccm air (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	PdCo(2:1)/C (0.5 mg cm ⁻²)	alkaline polymer electrolyte membrane	30	26	91
500 sccm H ₂ (RH = 100%) / 500 sccm air (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	PdCo(3:1)/C (0.5 mg cm ⁻²)	alkaline polymer electrolyte membrane	30	37	91
$200 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 400 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Tanaka Pt/C (0.6 mg cm ⁻²)	Tokuyama A201 membrane	45	~130	94
200 sccm H ₂ (RH = 100%) / 400 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	E-Tek Pt/C (0.6 mg cm ⁻²)	Tokuyama A201 membrane	45	~120	94
200 sccm H_2 (RH = 100%)	Pt/C	CoPc/MWCNT	Tokuyama A201	45	~100	94

$/400 \text{ sccm O}_2 (\text{RH} =$	(0.4 mg cm ⁻²)	(0.6 mg cm ⁻²)	membrane			
100%)						
200 sccm H ₂ (RH = 100%) / 400 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	FePc/MWCNT (0.6 mg cm ⁻²)	Tokuyama A201 membrane	45	~60	94
200 sccm H ₂ (RH = 100%) / 400 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	MWCNT (0.6 mg cm ⁻²)	Tokuyama A201 membrane	45	~25	94
200 sccm H ₂ (RH = 100%) / 400 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	anion exchange membrane	50	196	95
$200 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 400 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	CoFeN/C-HLH (4 mg cm ⁻²)	anion exchange membrane	50	177	95
$250 \text{ sccm H}_2 (\text{RH} = 57\%) / \\500 \text{ sccm O}_2 (\text{RH} = 100\%)$	Pt/C (1.5 mg cm ⁻²)	Pt/C (1.5 mg cm ⁻²)	Tokuyama A201	60	387	97
250 sccm H ₂ (RH = 57%)/ 500 sccm O ₂ (RH = 100%)	Pt/C (1.5 mg cm ⁻²)	CoO/rGO(N) (0.6 mg cm ⁻²)	Tokuyama A201	60	248	97
300 sccm H ₂ / 300 sccm O ₂	Pt/C (0.5 mg cm ⁻²)	ED-CNT (0.2 mg cm ⁻²)	commercial FAA anion exchange membrane	80	25.5	107
300 sccm H ₂ / 300 sccm O ₂	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.2 mg cm ⁻²)	commercial FAA anion exchange membrane	80	19.1	107

Table 2 Selected hydrogen/oxygen fuel cell performance with different ORRelectrocatalysts reported in open literature.

Fuel/Oxidant	Anode	Cathode	Membrane	T (°C)	P(mW cm ⁻²)	Ref.
H ₂ /O ₂	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	X-23 AAEM	60	823	3
H ₂ /O ₂	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	X-23 AAEM	50	718	3
H ₂ /O ₂	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	X-19 AAEM	40	640	3
H ₂ /O ₂	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	X-19 AAEM	20	648	3
H ₂ /Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	X-5 AAEM	60	506	3
H ₂ /Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	X-5 AAEM	50	464	3
H ₂ /Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	X-23 AAEM	40	450	3
$2000 \text{ sccm } H_2 \text{ (RH} =$ $100\%) / 2000 \text{ sccm } O_2 \text{ (RH}$ $= 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	radiation-grafted AAEMs-S80	50	~100	9
$2000 \text{ sccm H}_2 (\text{RH} = 100\%) / 2000 \text{ sccm O}_2 (\text{RH} = 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	radiation-grafted AAEMs-S50	50	~150	9
$2000 \text{ sccm } H_2 \text{ (RH =} \\ 100\%) / 2000 \text{ sccm } O_2 \text{ (RH} \\ = 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	radiation-grafted AAEMs-S20	50	~230	9
$2000 \text{ sccm } H_2 \text{ (RH} =$ $100\%) / 2000 \text{ sccm } O_2 \text{ (RH}$ $= 100\%)$	Pt/C (0.5 mg cm ⁻²)	Au/C (0.5 mg cm ⁻²)	radiation-grafted AAEMs-S80	50	36.6	9
2000 sccm H ₂ (RH = 100%) / 2000 sccm O ₂ (RH	Pt/C (0.5 mg cm ⁻²)	Ag/C (0.5 mg cm ⁻²)	radiation-grafted AAEMs-S80	50	19.1	9

= 100%)						
80 sccm H ₂ (RH = 100%)/	Pt/C	Pt/C	PTFE-QDPSU	30	~60	61
$100 \text{ sccm O}_2(\text{RH} = 100\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	composite membrane	50		01
80 sccm H ₂ (RH = 100%)/	Pt/C	Pt/C	PTFE-QDPSU	40	~100	61
$100 \text{ sccm O}_2(\text{RH} = 100\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	composite membrane		100	
80 sccm H ₂ (RH = 100%)/	Pt/C	Pt/C	PTFE-QDPSU	50	146	61
$100 \text{ sccm O}_2(\text{RH} = 100\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	composite membrane	50	140	01
80 sccm H ₂ (RH = 100%)/	Pt/C	Pt/C	PTFE-ODPSU			
100 sccm CO ₂ free air (RH	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	composite membrane	50	103	61
= 100%)	(0.0 mg 0	(0.0 mg 0.11)	· · · · · · · · · · · · · · · · · · ·			
40 sccm H ₂ (RH = 100%)/	Pt/C	Pt/C	PVA ₁₅ membrane	25	72	114
$80 \text{ sccm O}_2(\text{RH} = 100\%)$	(4 mg cm^{-2})	(4 mg cm^{-2})			/_	
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	PVA/PDDA AAEM	25	35.1	115
$/ 70 \text{ sccm O}_2 (\text{RH} = 100\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	(HMw)			
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	PVA/PDDA AAEM			
$/70 \text{ sccm O}_2 (\text{RH} = 100\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	(MMw)	25	28.5	115
100 scorn H (PH - 100%)	Dt/C	Dt/C				
$100 \text{ seem } H_2 (\text{RH} = 100\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	(I Mw)	25	23.4	115
$100 \text{ sccm H}_2(\text{RH} = 100\%)$	(0.5 mg cm ⁻)	(0.5 mg cm ⁻)				
$/70 \text{ sccm } \Omega_2 (\text{RH} = 100\%)$	(0.5 mg cm^{-2})	$(0.5 \mathrm{mg}\mathrm{cm}^{-2})$		25	18.2	115
$300 \text{ sccm H}_2(\text{RH} = 100\%)$	(0.5 mg cm ⁻)	(0.5 mg cm ⁻)	OBMPAE-d alkaline			
/ 800 sccm air(RH =	Pt/C	Pt/C	anion exchange	70	20.1	117
100%)	(0.1 mg cm^{-2})	(0.2 mg cm^{-2})	membrane	70	20.1	117
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	PVA/PDDA-OH ⁻			
$/70 \text{ sccm } O_2(RH = 100\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	membrane	25	32.7	120
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C				
$/70 \text{ sccm O}_2 (\text{RH} = 100\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	Tokuyama A901	R.T.	37.7	121
			PVA/PDDA-OH-			
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	alkaline membranes	R.T.	14.8	121
$/70 \text{ sccm O}_2(\text{RH} = 100\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	(PVA:PDDA=1:0.75)			
			PVA/PDDA-OH ⁻			
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	alkaline membranes	R.T.	35.1	121
$/ 70 \text{ sccm O}_2 (\text{RH} = 100\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	(PVA:PDDA=1:0.5)			
	P (5)	P (5	PVA/PDDA-OH-			
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	alkaline membranes	R.T.	11.5	121
$/ 0 \operatorname{sccm} O_2(\mathrm{RH} = 100\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	(PVA:PDDA=1:0.25)			
40 sccm H ₂ (RH = 100%)/	Pt/C	Pt/C	PVAc(1)-c-PVBC(1)/OH	40	124.7	122

$70 \text{ sccm O}_2 (\text{RH} = 100\%)$	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	membrane			
$5 \text{ sccm H}_2 (\text{RH} = 100\%) /$	Pt/C	Pt/C	PPO-based anion	25	2	124
$10 \text{ sccm O}_2 (\text{RH} = 100\%)$	$(0.65 \text{ mg cm}^{-2})$	$(0.65 \text{ mg cm}^{-2})$	exchange membrane	23	~3	124
$5 \text{ sccm H}_2 (\text{RH} = 100\%) /$	Pt/C	Pt/C	PPO-based anion	20	2	124
$10 \text{ sccm O}_2 (\text{RH} = 100\%)$	$(0.65 \text{ mg cm}^{-2})$	$(0.65 \text{ mg cm}^{-2})$	exchange membrane	30	~3	124
$5 \text{ sccm H}_2 (\text{RH} = 100\%) /$	Pt/C	Pt/C	PPO-based anion	40	0.5	124
$10 \text{ sccm O}_2 (\text{RH} = 100\%)$	$(0.65 \text{ mg cm}^{-2})$	$(0.65 \text{ mg cm}^{-2})$	exchange membrane	40	~8.5	124
$5 \text{ sccm H}_2 (\text{RH} = 100\%)/$	Pt/C	Pt/C	PPO-based anion			
$10 \text{ sccm } O_2(\text{RH} = 100\%)$	$(0.65 \text{ mg cm}^{-2})$	$(0.65 \text{ mg cm}^{-2})$	exchange membrane	50	~8	124
	((
$5 \text{ sccm H}_2 (\text{RH} = 100\%)/$	Pt/C	Pt/C	PPO-based anion	60	~11.5	124
$10 \text{ sccm O}_2(\text{RH} = 100\%)$	$(0.65 \text{ mg cm}^{-2})$	$(0.65 \text{ mg cm}^{-2})$	exchange membrane			
$5 \text{ sccm H}_2 (\text{RH} = 100\%) /$	Pt/C	Pt/C	PPO-based anion	70	19.5	124
$10 \text{ sccm O}_2(\text{RH} = 100\%)$	$(0.65 \text{ mg cm}^{-2})$	$(0.65 \text{ mg cm}^{-2})$	exchange membrane			
$5 \text{ sccm H}_2 (\text{RH} = 100\%) /$	Pt/C	Pt/C	PPO-based anion	80	~15	124
$10 \text{ sccm O}_2(\text{RH} = 100\%)$	$(0.65 \text{ mg cm}^{-2})$	$(0.65 \text{ mg cm}^{-2})$	exchange membrane			
$600 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C (0.4 mg cm ⁻²)			13	126
$/ 600 \text{ sccm O}_2 (\text{RH} =$	(0.4 mg cm^{-2})		BIm-PPO-0.54 AAEM	35		
100%)	(**************************************	(**************************************				
$600 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	alkaline polymer			
$/ 600 \text{ sccm O}_2 (\text{RH} =$	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	electrolyte membrane	35	56	127
100%)	(0g •)	(0 ing •ini)	(DIm-PPO-0.54)			
$600 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	alkaline polymer			
$/ 600 \text{ sccm O}_2 (\text{RH} =$	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	electrolyte membrane	35	40	127
100%)			(DIm-PPO-0.43)			
$600 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	alkaline polymer			
$/ 600 \text{ sccm O}_2 (\text{RH} =$	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	electrolyte membrane	50	30	127
100%)	(0.4 mg cm)	(0.4 mg cm)	(Im-PPO)			
200 sccm H_2 (RH = 100%)	Pt/C	Pt/C				
$/ 200 \text{ sccm O}_2 (\text{RH} =$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	1a electrolyte membrane	50	188.7	128
100%)	(0.5 mg cm ⁻)	(0.5 mg cm ⁻)				
200 sccm H_2 (RH = 100%)	Pt/C	Pt/C	TMA-20 electrolyte			
$/ 200 \text{ sccm O}_2 (\text{RH} =$	(0.5 mg cm^{-2})	(0.5 mg cm ⁻²)	membrane	50	62.3	128
100%)	/					
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C				
$/ 2000 \text{ sccm O}_2(\text{RH} =$	(0.4 mg cm ⁻²)	(0.4 mg cm ⁻²)	TPPVBN30	50	268	132
100%)						

$100 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 2000 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	TPPVBN30	60	348	132
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	QAPS/PTFE 29 um CCM	50	252	133
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	QAPS/PTFE 20 um CCM	50	315	133
100 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	QAPS/PTFE 29 um GDE	50	152	133
100 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	QAPS 30 um GDE	50	145	133
120 sccm H ₂ (RH = 100%) / 120 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	xQAPS@PTFE membrane	40 (0 MPa)	~180	134
120 sccm H ₂ (RH = 100%) / 120 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	xQAPS@PTFE membrane	50 (0 MPa)	~400	134
$120 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 120 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	xQAPS@PTFE membrane	60 (0 MPa)	~450	134
120 sccm H ₂ (RH = 100%) / 120 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	xQAPS@PTFE membrane	60 (0.1 MPa)	550	134
800 sccm H ₂ (RH = 100%) / 600 sccm O ₂ (RH = 100%)	Pt/C (2 mg cm ⁻²)	Pt/C (2 mg cm ⁻²)	PSU-PATC(1.2)	60	55	138
800 sccm H ₂ (RH = 100%) / 600 sccm O ₂ (RH = 100%)	Pt/C (2 mg cm ⁻²)	Pt/C (2 mg cm ⁻²)	PSU-PATC(1.5)	60	19	138
150 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (2 mg cm ⁻²)	QA-PSf membrane	60	115	139
$150 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	QA-PSf-g-PEG350	60	~138	139
$/ 200 \text{ sccm O}_2 (\text{RH} = 100\%)$	(0.5 mg cm^{-2})	(2 mg cm ⁻²)	membrane			
---	--------------------------------------	--------------------------------------	--	------	------	-----
$150 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (2 mg cm ⁻²)	QA-PSf-g-PEG750 membrane	60	180	139
$H_2 (RH = 100\%) / O_2 (RH)$ = 100%)	Pt/C (0.375 mg cm ⁻²)	Pt/C (0.125 mg cm ⁻²)	QPSU membrane	R.T.	~70	140
$H_2 (RH = 100\%) / O_2 (RH)$ = 100%)	Pt/C (0.375 mg cm ⁻²)	Pt/C (0.125 mg cm ⁻²)	QPSU / 2.5% ZrO ₂ composite membrane	R.T.	~75	140
$H_2 (RH = 100\%) / O_2 (RH)$ = 100%)	Pt/C (0.375 mg cm ⁻²)	Pt/C (0.125 mg cm ⁻²)	QPSU / 5% ZrO ₂ composite membrane	R.T.	~80	140
$H_2 (RH = 100\%) / O_2 (RH)$ = 100%)	Pt/C (0.375 mg cm ⁻²)	Pt/C (0.125 mg cm ⁻²)	QPSU / 7.5% ZrO ₂ composite membrane	R.T.	~110	140
$H_2 (RH = 100\%) / O_2 (RH)$ $= 100\%)$	Pt/C (0.375 mg cm ⁻²)	Pt/C (0.125 mg cm ⁻²)	QPSU / 10% ZrO ₂ composite membrane	R.T.	140	140
$H_2 (RH = 100\%) / O_2 (RH) = 100\%)$	Pt/C (0.375 mg cm ⁻²)	Pt/C (0.125 mg cm ⁻²)	QPSU membrane	60	~155	140
$H_2 (RH = 100\%) / O_2 (RH) = 100\%)$	Pt/C (0.375 mg cm ⁻²)	Pt/C (0.125 mg cm ⁻²)	QPSU / 2.5% ZrO ₂ composite membrane	60	~165	140
$H_2 (RH = 100\%) / O_2 (RH) = 100\%)$	Pt/C (0.375 mg cm ⁻²)	Pt/C (0.125 mg cm ⁻²)	QPSU / 5% ZrO ₂ composite membrane	60	~175	140
$H_2 (RH = 100\%) / O_2 (RH)$ $= 100\%)$	Pt/C (0.375 mg cm ⁻²)	Pt/C (0.125 mg cm ⁻²)	QPSU / 7.5% ZrO ₂ composite membrane	60	~210	140
$H_2 (RH = 100\%) / O_2 (RH)$ = 100%)	Pt/C (0.375 mg cm ⁻²)	Pt/C (0.125 mg cm ⁻²)	QPSU / 10% ZrO ₂ composite membrane	60	250	140
$2000 \text{ sccm H}_2 (\text{RH} = 100\%) / 2000 \text{ sccm O}_2 (\text{RH} = 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	AAEM-MEAs with alkaline interface polymer	50	55	141
$2000 \text{ sccm H}_2 (\text{RH} = 100\%) / 2000 \text{ sccm O}_2 (\text{RH} = 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	AAEM-MEAs without alkaline interface polymer	50	1.6	141
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH =	Pt/C (1 mg cm ⁻²)	Pt/C (1 mg cm ⁻²)	A901:0.97	50	343	143

100%)						
$200 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (1 mg cm ⁻²)	Pt/C (1 mg cm ⁻²)	SEBS:0.51	50	169	143
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (1 mg cm ⁻²)	Pt/C (1 mg cm ⁻²)	SEBS:0.70	50	222	143
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (1 mg cm ⁻²)	Pt/C (1 mg cm ⁻²)	SEBS:0.90	50	285	143
$200 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Tokuyama A201 (C16D40)	50	77	144
$200 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Tokuyama A201 (C6D60)	50	67	144
$500 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Tokuyama A201 (C6D60)	50	~80	144
$1000 \text{ sccm H}_2 (\text{RH} = 100\%) / 200 \text{ sccm O}_2 (\text{RH} = 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Tokuyama A201 (C6D60)	50	~105	144
$2000 \text{ sccm H}_2 (\text{RH} = 100\%) / 200 \text{ sccm O}_2 (\text{RH} = 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Tokuyama A201 (C6D60)	50	~120	144
$2000 \text{ sccm } H_2 (RH = 100\%) / 2000 \text{ sccm } O_2 (RH = 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Tokuyama A201 (C6D60)	50	145	144
250 sccm H ₂ (RH = 95%)/ 250 sccm air (RH = 95%)	Pt/C (1 mg cm ⁻²)	Pt/C (1 mg cm ⁻²)	Tokuyama A201	50	148	145
250 sccm H ₂ (RH = 95%)/ 250 sccm air (RH = 95%)	Pt/C (1 mg cm ⁻²)	Pt/C (1 mg cm ⁻²)	C30D70-1.7 AEM	50	168	145
$50 \text{ sccm H}_2 (\text{RH} = 100\%) / \\100 \text{ sccm O}_2 (\text{RH} = 100\%)$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	PES-MeIm/OH-#4 (FC-#1)	45	0.81	146
$50 \text{ sccm H}_2 (\text{RH} = 100\%) / \\100 \text{ sccm O}_2 (\text{RH} = 100\%)$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	PES-MeIm/OH-#4 (FC-#2)	45	7.1	146
$50 \text{ sccm H}_2 (\text{RH} = 100\%) / \\100 \text{ sccm O}_2 (\text{RH} = 100\%)$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	PES-MeIm/OH-#4 (FC-#3)	45	22.5	146

50 score H ($PH = 100\%$)/	Dt/C	Dt/C	DES Malm/OH #4			
$100 \text{ sccm O}_2 (\text{RH} = 100\%)$	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	(FC-#4)	45	21.0	146
$50 \text{ sccm H}_2 (\text{RH} = 100\%) /$	Pt/C	Pt/C	PES-MeIm/OH-#4			
$100 \text{ sccm O}_2(\text{RH} = 100\%)$	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	(FC-#5)	45	29.5	146
$H_2 (RH = 100\%) / O_2 (RH)$	Pt/C	Pt/C	PSf135-ImOH			
= 100%)	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	60	16	147
$H_2 (RH = 100\%) / O_2 (RH)$	Pt/C	Pt/C	PSf102-ImOH			
= 100%)	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	60	~6	147
$600 \text{ sccm H}_2 (\text{RH} = 100\%)$						
/600 sccm air (RH =	Pt/C	Pt/C	Alkaline anion exchange	50	30	148
100%)	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	membrane 5			_
80 sccm H_2 (RH = 60%)/	Pt/C	Pt/C	OPMBV 1 mombrono	60	25	152
$80 \text{ sccm O}_2 (\text{RH} = 60\%)$	(1.0 mg cm^{-2})	(1.0 mg cm^{-2})	QPMBV-1 memorane	60	55	155
80 sccm H_2 (RH = 60%)/	Pt/C	Pt/C	ODMDV 2 mombrono	60	22	153
80 sccm O_2 (RH = 60%)	(1.0 mg cm^{-2})	(1.0 mg cm^{-2})	QFIMB V-2 memorane	00	~22	155
80 sccm H ₂ (RH = 60%)/	Pt/C	Pt/C	ODMDV 2 mombrono	60	5	152
$80 \text{ sccm O}_2 (\text{RH} = 60\%)$	(1.0 mg cm^{-2})	(1.0 mg cm^{-2})	QPMB v-3 memorane	00	~3	155
80 sccm H_2 (RH = 60%)/	Pt/C	Pt/C		40	~11	153
$80 \text{ sccm O}_2 (\text{RH} = 60\%)$	(1.0 mg cm^{-2})	(1.0 mg cm^{-2})	QPMBV-1 memorane	40	~11	155
80 sccm H ₂ (RH = 60%)/	Pt/C	Pt/C	ODMDV 1 membrane	20	50	152
$80 \text{ sccm O}_2 (\text{RH} = 60\%)$	(1.0 mg cm^{-2})	(1.0 mg cm^{-2})	QPMB v-1 membrane	80	39	155
$100 \text{ sccm H}_2 (\text{RH} = 80\%) /$	Pt/C	Pt/C		50	115	154
$100 \text{ sccm O}_2 (\text{RH} = 80\%)$	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	QPMDV-APE	50	115	134
100 sccm H ₂ (RH = 80%)/	Pt/C	Pt/C		60	160	154
$100 \text{ sccm O}_2 (\text{RH} = 80\%)$	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	QPMDV-APE	00	100	134
$100 \text{ sccm H}_2 (\text{RH} = 80\%) /$	Pt/C	Pt/C		70	190	154
$100 \text{ sccm O}_2 (\text{RH} = 80\%)$	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	QPMBV-APE	/0	180	154
80 sccm H ₂ (RH = 80%) /	Pt/C	Pt/C	ODMDVAEM	50	15	155
$80 \text{ sccm O}_2 (\text{RH} = 80\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	QFIND V ALM	50	~15	155
$80 \text{ sccm H}_2 (\text{RH} = 80\%) /$	Pt/C	Pt/C	ODMDV AEM	60	25	155
$80 \text{ sccm O}_2 (\text{RH} = 80\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	QFIND V ALM	00	23	155
$80 \text{ sccm H}_2 (\text{RH} = 80\%) /$	Pt/C	Pt/C	ODMDV AEM	70	21	155
$80 \text{ sccm O}_2 (\text{RH} = 80\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	QI MB V AEM	70	~21	155
$100 \text{ sccm H}_2 (\text{RH} = 80\%) /$	Pt/C	Pt/C	OPMRV 1 mambrona	70	80	156
$100 \text{ sccm O}_2 (\text{RH} = 80\%)$	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})		/0	00	150
$100 \text{ sccm H}_2 (\text{RH} = 80\%) /$	Pt/C	Pt/C	OPMRV 2 mombron a	70		156
$100 \text{ sccm O}_2 (\text{RH} = 80\%)$	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	Qrivid v-2 memorane	70	~130	130

$100 \text{ sccm H}_2 (\text{RH} = 80\%) /$ $100 \text{ sccm O}_2 (\text{RH} = 80\%)$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	QPMBV-3 membrane	70	180	156
$\frac{100 \text{ sccm H}_2 (\text{RH} = 80\%)}{100 \text{ sccm O}_2 (\text{RH} = 80\%)}$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	QPMBV-1 membrane	60	~30	156
$\frac{100 \text{ sccm H}_2 (\text{RH} = 80\%)}{100 \text{ sccm O}_2 (\text{RH} = 80\%)}$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	QPMBV-2 membrane	60	~95	156
$100 \text{ sccm H}_2 (\text{RH} = 80\%) /$ $100 \text{ sccm O}_2 (\text{RH} = 80\%)$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	QPMBV-3 membrane	60	~105	156
$100 \text{ sccm H}_2 (\text{RH} = 70\%) /$ $100 \text{ sccm O}_2 (\text{RH} = 70\%)$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	QPMBV-2 membrane	70	~115	156
$100 \text{ sccm H}_2 (\text{RH} = 60\%) /$ $100 \text{ sccm O}_2 (\text{RH} = 60\%)$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	QPMBV-2 membrane	70	~75	156
$100 \text{ sccm H}_2 (\text{RH} = 50\%) /$ $100 \text{ sccm O}_2 (\text{RH} = 50\%)$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	QPMBV-2 membrane	70	~50	156
$\frac{100 \text{ sccm H}_2 (\text{RH} = 40\%)}{100 \text{ sccm O}_2 (\text{RH} = 40\%)}$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	QPMBV-2 membrane	70	~15	156
H ₂ (RH = 100%) / O ₂ (RH = 100%)	Pt/C (0.17 mg cm ⁻²)	Pt/C (0.17 mg cm ⁻²)	Anion exchange crosslinked membrane (cell 1)	25	100	158
H ₂ (RH = 100%) / O ₂ (RH = 100%)	Pt/C (0.17 mg cm ⁻²)	Pt/C (0.17 mg cm ⁻²)	Anion exchange crosslinked membrane (cell 2)	25	~100	158
$H_2 (RH = 100\%) / O_2 (RH)$ = 100%)	Pt/C (0.17 mg cm ⁻²)	Pt/C (0.17 mg cm ⁻²)	Anion exchange crosslinked membrane (cell 3)	25	~95	158
$H_2 (RH = 100\%) / O_2 (RH)$ = 100%)	Pt/C (0.17 mg cm ⁻²)	Pt/C (0.17 mg cm ⁻²)	Anion exchange crosslinked membrane (cell 4)	25	~90	158
50 sccm H ₂ (RH = 100%)/ 50 sccm air (RH = 100%)	Pt/C (unmodified) (2 mg cm ⁻²)	Pt/C (unmodified) (2 mg cm ⁻²)	Sn _{0.92} Sb _{0.08} P ₂ O ₇ -PTFE composite membrane	75	15	160
50 sccm H ₂ (RH = 100%)/ 50 sccm air (RH = 100%)	Pt/C (unmodified) (2 mg cm ⁻²)	Pt/C (unmodified) (2 mg cm ⁻²)	Sn _{0.92} Sb _{0.08} P ₂ O ₇ -PTFE composite membrane	100	~20	160
50 sccm H ₂ (RH = 100%)/ 50 sccm air (RH = 100%)	Pt/C (unmodified) (2 mg cm ⁻²)	Pt/C (unmodified) (2 mg cm ⁻²)	Sn _{0.92} Sb _{0.08} P ₂ O ₇ -PTFE composite membrane	125	~28	160

50 sccm H ₂ (RH = 100%)/ 50 sccm air (RH = 100%)	Pt/C (unmodified) (2 mg cm ⁻²)	Pt/C (unmodified) (2 mg cm ⁻²)	Sn _{0.92} Sb _{0.08} P ₂ O ₇ -PTFE composite membrane	150	~35	160
50 sccm H ₂ (RH = 100%)/ 50 sccm air (RH = 100%)	Pt/C (unmodified) (2 mg cm ⁻²)	Pt/C (unmodified) (2 mg cm ⁻²)	Sn _{0.92} Sb _{0.08} P ₂ O ₇ -PTFE composite membrane	175	~50	160
50 sccm H ₂ (RH = 100%)/ 50 sccm air (RH = 100%)	Pt/C (unmodified) (2 mg cm ⁻²)	Pt/C (unmodified) (2 mg cm ⁻²)	Sn _{0.92} Sb _{0.08} P ₂ O ₇ -PTFE composite membrane	200	61	160
50 sccm H ₂ (RH = 100%)/ 50 sccm air (RH = 100%)	Pt/C (modified) (2 mg cm ⁻²)	Pt/C (modified) (2 mg cm ⁻²)	Sn _{0.92} Sb _{0.08} P ₂ O ₇ -PTFE composite membrane	75	76	160
50 sccm H ₂ (RH = 100%)/ 50 sccm air (RH = 100%)	Pt/C (modified) (2 mg cm ⁻²)	Pt/C (modified) (2 mg cm ⁻²)	Sn _{0.92} Sb _{0.08} P ₂ O ₇ -PTFE composite membrane	100	94	160
50 sccm H ₂ (RH = 100%)/ 50 sccm air (RH = 100%)	Pt/C (modified) (2 mg cm ⁻²)	Pt/C (modified) (2 mg cm ⁻²)	Sn _{0.92} Sb _{0.08} P ₂ O ₇ -PTFE composite membrane	125	114	160
50 sccm H ₂ (RH = 100%)/ 50 sccm air (RH = 100%)	Pt/C (modified) (2 mg cm ⁻²)	Pt/C (modified) (2 mg cm ⁻²)	Sn _{0.92} Sb _{0.08} P ₂ O ₇ -PTFE composite membrane	150	130	160
50 sccm H ₂ (RH = 100%)/ 50 sccm air (RH = 100%)	Pt/C (modified) (2 mg cm ⁻²)	Pt/C (modified) (2 mg cm ⁻²)	Sn _{0.92} Sb _{0.08} P ₂ O ₇ -PTFE composite membrane	175	132	160
50 sccm H ₂ (RH = 100%) / 50 sccm air (RH = 100%)	Pt/C (modified) (2 mg cm ⁻²)	Pt/C (modified) (2 mg cm ⁻²)	Sn _{0.92} Sb _{0.08} P ₂ O ₇ -PTFE composite membrane	200	147	160
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	ACDH96 membrane (electrode1)	50	252	161
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	ACDH98 membrane	50	278	161
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	CD96 membrane	50	237	161
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	ACDH96 membrane (electrode2)	50	370	161
H ₂ (RH = 100%) / O ₂ (RH = 100%)	Pt/C (3.4 mg cm ⁻²)	Pt/C (6.5 mg cm ⁻²)	ATM-PP (ionomer: M-Nafion- FA-TMG)	80	577	162

H ₂ (RH = 100%) / air (RH = 100%)	Pt/C (3.4 mg cm ⁻²)	Pt/C (6.5 mg cm ⁻²)	ATM-PP (ionomer: M-Nafion- FA-TMG)	80	466	162
$H_2 (RH = 100\%) / O_2 (RH)$ $= 100\%)$	Pt/C (3.4 mg cm ⁻²)	Pt/C (6.5 mg cm ⁻²)	ATM-PP (ionomer : ATM-PP)	80	335	162
200 sccm H ₂ (RH = 95%)/ 200 sccm O ₂ (RH = 95%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	PSF-DMP AEM (IEC = 1.81 mmol g ⁻¹)	70	~8	165
$\frac{200 \text{ sccm H}_2 (\text{RH} = 95\%)}{200 \text{ sccm O}_2 (\text{RH} = 95\%)}$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	PSF-TMA AEM (IEC = 1.79 mmol g^{-1})	70	46	165
$200 \text{ sccm H}_2 (\text{RH} = 95\%) / \\200 \text{ sccm O}_2 (\text{RH} = 95\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	PSF-TMA AEM (IEC = 2.05 mmol g^{-1})	70	179	165
$\frac{200 \text{ sccm H}_2 (\text{RH} = 95\%)}{200 \text{ sccm air} (\text{RH} = 95\%)}$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	PSF-DMP AEM (IEC = 1.81 mmol g^{-1})	70	~53	165
200 sccm H ₂ (RH = 95%) / 200 sccm air (RH = 95%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	PSF-TMA AEM (IEC = 1.79 mmol g^{-1})	70	~2	165
200 sccm H ₂ (RH = 95%) / 200 sccm air (RH = 95%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	PSF-TMA AEM (IEC = 2.05 mmol g^{-1})	70	~40	165
$50 \text{ sccm H}_2 (\text{RH} = 100\%) /$ 100 sccm O ₂ (RH = 100%)	Pt/C (2 mg cm ⁻²)	Pt/C (2 mg cm ⁻²)	AEM based on [VBMI]Cl	30	33	170
20 sccm H ₂ / Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	solid alkaline electrolyte membrane (1 M KOH)	20	~10	172
20 sccm H ₂ / Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	solid alkaline electrolyte membrane (1 M KOH)	40	~17	172
20 sccm H ₂ / Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	solid alkaline electrolyte membrane (1 M KOH)	60	~22	172
20 sccm H ₂ / Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	solid alkaline electrolyte membrane (1 M KOH)	80	~28	172
20 sccm H ₂ / Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	solid alkaline electrolyte membrane (1 M TMAOH)	20	13.6	172

	Pt/C	Pt/C	solid alkaline			
20 sccm H ₂ / Air	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	electrolyte membrane	20	~12.5	172
	(0.4 mg cm)	(0.4 mg cm ⁻)	(1 M TEAOH)			
	Pt/C (0.4 mg cm ⁻²)	Pt/C	solid alkaline			
20 sccm H ₂ / Air			electrolyte membrane	20	~12	172
		(0.4 mg cm)	(0.5 M TPrAOH)			
			solid alkaline			
20 sccm H ₂ / Air	Pt/C	Pt/C	electrolyte membrane	20	2.4	172
	(0.4 mg cm^2)	(0.4 mg cm)	(0.05 M TMAOH)			
	D:/C		solid alkaline			
20 sccm H ₂ / Air	Pt/C	Pt/C	electrolyte membrane	20	7.0	172
	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	(0.2 M TMAOH)			
		Pt/C (0.4 mg cm ⁻²)	solid alkaline			
20 sccm H ₂ / Air	Pt/C		electrolyte membrane	20	13.5	172
	(0.4 mg cm^{-2})		(0.6 M TMAOH)			
	7.10	P (<i>G</i>	solid alkaline			
20 sccm H ₂ / Air	Pt/C	Pt/C	electrolyte membrane	40	16.3	172
	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	(1 M TMAOH)			
20 sccm H ₂ / Air	- /	_ / _	solid alkaline			
	Pt/C	Pt/C	electrolyte membrane	60	18.6	172
	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	(1 M TMAOH)			
	D / 0	D / 2	solid alkaline			
20 sccm H ₂ / Air	Pt/C	Pt/C (0.4 mg cm ⁻²)	electrolyte membrane	80	20.2	172
	(0.4 mg cm^{-2})		(1 M TMAOH)			
			solid alkaline			
20 sccm H ₂ / Air	Pt/C	Pt/C	electrolyte membrane	20	4.1	172
	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	(1 M TMACO ₃ PH=8)			
			solid alkaline			
20 sccm H ₂ / Air	Pt/C	Pt/C	electrolyte membrane	20	2.1	172
	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	(1 M TMA-Ac PH=7.6)			
			solid alkaline			
20 sccm H ₂ / Air	Pt/C	Pt/C	electrolyte membrane	20	1.1	172
	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	(1 M TMA-SO ₄ PH=4.6)			
			solid alkaline			
20 sccm H ₂ / Air	Pt/C	Pt/C	electrolyte membrane	40	~4.8	172
	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	(1 M TMACO ₃ PH=8)			
	Pt/C	Pt/C	solid alkaline			
20 sccm H ₂ / Air	(0.4 mg cm^{-2})	(0.4 mg cm ⁻²)	electrolyte membrane	60	~6.5	172

			(1 M TMACO ₃ PH=8)			
20 sccm H ₂ / Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	solid alkaline electrolyte membrane (1 M TMACO ₃ PH=8)	80	9.7	172
20 sccm H ₂ / Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	solid alkaline electrolyte membrane (1 M TMA-Ac PH=7.6)	40	~2.2	172
20 sccm H ₂ / Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	solid alkaline electrolyte membrane (1 M TMA-Ac PH=7.6)	60	~2.6	172
20 sccm H ₂ / Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	solid alkaline electrolyte membrane (1 M TMA-Ac PH=7.6)	80	~3.0	172
20 sccm H ₂ / Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	solid alkaline electrolyte membrane (1 M TMA-SO ₄ PH=4.6)	40	~1.2	172
20 sccm H ₂ / Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	solid alkaline electrolyte membrane (1 M TMA-SO ₄ PH=4.6)	60	~1.4	172
20 sccm H ₂ / Air	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	solid alkaline electrolyte membrane (1 M TMA-SO ₄ PH=4.6)	80	~1.6	172
$2000 \text{ sccm H}_2 (\text{RH} = 100\%) / 2000 \text{ sccm O}_2 (\text{RH} = 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	ETFE-based AAEM	60	110	185
$2000 \text{ sccm H}_2 (\text{RH} = 100\%) / 2000 \text{ sccm O}_2 (\text{RH} = 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	ETFE-based AAEM	50	90	185
$2000 \text{ sccm } H_2 (RH = 100\%) / 2000 \text{ sccm } O_2 (RH = 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	4 mg cm ⁻² catalysed AAEM	50	130	185
H_2 / O_2	Pt/C (0.2 mg cm ⁻²)	Pt/C (0.2 mg cm ⁻²)	PVA membrane	R.T.	~5.0	187
H ₂ / O ₂	Pt/C (0.2 mg cm ⁻²)	Pt/C (0.2 mg cm ⁻²)	γ-PVA membrane	R.T.	~6.4	187
H ₂ / O ₂	Pt/C (0.2 mg cm ⁻²)	Pt/C (0.2 mg cm ⁻²)	PVA-Mo membrane	R.T.	~6.8	187
$600 \text{ sccm } H_2 (RH = 100\%)$	Pt/C	Pt/C	PVBTMA-OH ⁻ (1)	50	~140	188

$/ 600 \text{ sccm O}_2 (\text{RH} = 100\%)$	(0.4 mg cm ⁻²)	(0.4 mg cm^{-2})	AAEM			
600 sccm H ₂ (RH = 100%) / 600 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	PVBMI-OH ⁻ (1) AAEM	50	~0.8	188
600 sccm H ₂ (RH = 100%) / 600 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	PVBMI-OH ⁻ (2) AAEM	50	~1.1	188
1000 sccm H ₂ (RH = 100%) / 1000 sccm O ₂ (RH = 100%)	PtRu/C (0.4 mg _{pt} cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	E-6 AAEM	60	1160	190
1000 sccm H ₂ (RH = 100%) / 1000 sccm O ₂ (RH = 100%)	PtRu/C (0.4 mg _{pt} cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	E-R AAEM	60	910	190
1000 sccm H ₂ (RH = 100%) / 1000 sccm O ₂ (RH = 100%)	PtRu/C (0.4 mg _{pt} cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	LDPE-AAEM	80	1450	191
$1000 \text{ sccm H}_2 (\text{RH} =$ $100\%) / 1000 \text{ sccm O}_2 (\text{RH} =$ = 100%)	PtRu/C (0.4 mg _{pt} cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	ETFE-AAEM	80	1210	191
$1000 \text{ sccm H}_2 (\text{RH} = 68\%)$ / 1000 sccm O ₂ (RH = 68%)	PtRu/C (0.4 mg _{pt} cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	LDPE-AAEM	60	960	191
$1000 \text{ sccm H}_2 (\text{RH} = 68\%)$ / 1000 sccm O ₂ (RH = 68%)	PtRu/C (0.4 mg _{pt} cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	ETFE-AAEM	60	910	191
$1000 \text{ sccm } H_2 (RH =$ $100\%) / 1000 \text{ sccm } O_2 (RH)$ $= 100\%)$	PtRu/C (0.4 mg _{pt} cm ⁻²)	Ag/C (0.8 mg cm ⁻²)	LDPE-AAEM	80	~980	191
1000 sccm H ₂ (RH = 100%) / 1000 sccm air (RH = 100%)	PtRu/C (0.4 mg _{pt} cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	LDPE-AAEM	80	630	191
$1000 \text{ sccm H}_2 (\text{RH} = 75\%)$ / 1000 sccm O ₂ (RH = 85%)	PtRu/C (0.67 mg cm ⁻²)	Pt/C (0.53 mg cm ⁻²)	ETFE-g-VBCTMA AAEM	60	1400	205
100 sccm H ₂ (RH = 100%) / 100 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	10% crosslinked QPMV- PDVB AAEM	50	46	207

$100 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 100 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	5% crosslinked QPMV- PDVB AAEM	50	~45	207
100 sccm H ₂ (RH = 100%) / 100 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	0% crosslinked QPMV- PDVB AAEM	50	~55	207
H_2 / O_2	Pt/C (3 mg cm ⁻²)	Pt/C (3 mg cm ⁻²)	F-PAE AEM	60	193	208
H ₂ / O ₂	Pt/C (3 mg cm ⁻²)	Pt/C (3 mg cm ⁻²)	ATM-PP 1 AEM	60	205	208
H ₂ / O ₂	Pt/C (3 mg cm ⁻²)	Pt/C (3 mg cm ⁻²)	ATM-PP 2 AEM	60	80	208
H ₂ / O ₂	Pt/C (3 mg cm ⁻²)	Pt/C (3 mg cm ⁻²)	ATM-PP 3 AEM	60	~20	208
$400 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 400 sccm O ₂ (RH = 100%)	PtRu/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	aQAPS-S ₈ membrane	60	1000	210
$\begin{array}{c} 400 \; \mathrm{sccm} \; \mathrm{H_2} \; (\mathrm{RH} = 100\%) \\ / \; 400 \; \mathrm{sccm} \; \mathrm{O_2} \; (\mathrm{RH} = \\ 100\%) \end{array}$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	aQAPS-S ₈ membrane	60	870	210

2523 Table 3 Selected hydrogen/oxygen fuel cell performance with different AEMs reported

in open literature.

Fuel/Oxidant	Anode	Cathode	Membrane	T (°C)	P(mW cm ⁻²)	Ref.
$H_2 (RH = 100\%) / O_2 (RH)$ = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	Anion exchange polymer membrane (ionomer: TMA)	50	478	171
$H_2 (RH = 100\%) / O_2 (RH)$	Pt/C	Pt/C	Anion exchange polymer	50	236	171

= 100%)	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	membrane			
			(ionomer: TMHDA)			
$H_2 (RH = 100\%) / O_2 (RH) = 100\%)$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	Anion exchange polymer membrane (ionomer: DABCO)	50	116	171
$H_2 (RH = 100\%) / O_2 (RH)$ = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	Anion exchange polymer membrane (ionomer: TEA)	50	100	171
$H_2 (RH = 100\%) / O_2 (RH)$ = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	Anion exchange polymer membrane (ionomer: DMS)	50	58	171
$200 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (1.28 mg cm ⁻²)	Pt/C (1.28 mg cm ⁻²)	Tokuyama A901 (ionomer: QSEBS-L)	50	~70	192
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (1.28 mg cm ⁻²)	Pt/C (1.28 mg cm ⁻²)	Tokuyama A901 (ionomer: QSEBS-M)	50	210	192
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (1.28 mg cm ⁻²)	Pt/C (1.28 mg cm ⁻²)	Tokuyama A901 (ionomer: QSEBS-H)	50	~200	192
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (1.28 mg cm ⁻²)	Pt/C (1.28 mg cm ⁻²)	Tokuyama A901 (ionomer: QBSF)	50	30	192
1000 sccm H ₂ (RH = 95%) / 2000 sccm air (RH = 95%)	Pt/C (0.45 mg cm ⁻²)	Pt/C (0.45 mg cm ⁻²)	Tokuyama A2012 AEM (ionomer : PyPBI)	50	256	193
1000 sccm H ₂ (RH = 95%) / 2000 sccm O ₂ (RH = 95%)	Pt/C (0.45 mg cm ⁻²)	Pt/C (0.45 mg cm ⁻²)	Tokuyama A2012 AEM (ionomer : AS-4)	50	174	193
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	Tokuyama A201 (ionomer content: 10) (solvent : IPA)	50	~85	194
$100 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	Tokuyama A201 (ionomer content: 15) (solvent : IPA)	50	~330	194

100 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	Tokuyama A201 (ionomer content: 20) (solvent : IPA)	50	358	194
100 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	Tokuyama A201 (ionomer content: 25) (solvent : IPA)	50	~135	194
100 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	Tokuyama A201 (ionomer content: 20) (solvent : EtOH)	50	321	194
100 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	Tokuyama A201 (ionomer content: 20) (solvent : PA)	50	220	194
100 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	Tokuyama A201 (ionomer content: 20) (solvent : NBA)	50	407	194
$H_2 (RH = 75\%) / O_2 (RH = 75\%)$	Pt/C (50 ug cm ⁻²)	Pt/C (50 ug cm ⁻²)	porous silver membrane (Laminated)	50	~5	196
$H_2 (RH = 75\%) / O_2 (RH = 75\%)$	Pt/C (50 ug cm ⁻²)	Pt/C (50 ug cm ⁻²)	porous silver membrane (Not Laminated)	50	~7.5	196
$H_2 (RH = 75\%) / O_2 (RH = 75\%)$	Pt/C (50 ug cm ⁻²)	Pt/C (50 ug cm ⁻²)	porous silver membrane (Not Laminated, Tokuyama ionomer)	50	30	196
H ₂ (RH = 75%) / O ₂ (RH = 75%)	Pt/C (50 ug cm ⁻²)	Pt/C (50 ug cm ⁻²)	porous silver membrane (Nafion ionomer in catalyst layer + AS4 interface layer)	50	30	196
H ₂ (RH = 75%) / O ₂ (RH = 75%)	Pt/C (50 ug cm ⁻²)	Pt/C (50 ug cm ⁻²)	porous silver membrane (AS4 ionomer in catalyst layer + AS4 interface layer)	50	60	196
$H_2 (RH = 0\%) / O_2 (RH = 0\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	MEA-2	70	~180	197
$H_2 (RH = 50\%) / O_2 (RH = 50\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	MEA-2	70	~100	197
$H_2 (RH = 100\%) / O_2 (RH) = 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	MEA-2	70	~56	197
200 sccm H_2 (RH = 100%)	Pt/C	Ag/P	FAA commercial	80	208	198

$/ 200 \text{ sccm O}_2 (\text{RH} = 100\%)$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	membrane			
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	FAA commercial membrane	80	196	198
$200 \text{ sccm H}_2 (\text{RH} = 100\%)$ / 200 sccm O ₂ (RH = 100%)	Ni/C (5 mg cm ⁻²)	Ag/TPQPOH (0.5 mg cm ⁻²)	TPQPOH152 membrane	70	76	198
H ₂ (RH = 100%) / O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Nafion membrane and AEM (thin-film method)	70	44	199
H ₂ (RH = 100%) / O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Nafion membrane and AEM (ionomer impregnation)	70	125	199
$H_2 (RH = 100\%) / O_2 (RH)$ = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Nafion membrane and AEM (ionomer impregnation with 9% PTFE)	70	315	199
$H_2 (RH = 0\%) / O_2 (RH = 0\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Nafion membrane and AEM (thin-film method)	70	144	199
$H_2 (RH = 0\%) / O_2 (RH = 0\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Nafion membrane and AEM (ionomer impregnation)	70	191	199
H ₂ (RH = 0%) / O ₂ (RH = 0%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Nafion membrane and AEM (ionomer impregnation with 9% PTFE)	70	369	199
$H_2 (RH = 100\%) / O_2 (RH) = 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	AEM and Nafion membrane (thin-film method)	70	95	199
H ₂ (RH = 100%) / O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	AEM and Nafion membrane (ionomer impregnation)	70	375	199
H ₂ (RH = 100%) / O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	QAPSF	25	~160	200
$H_2 (RH = 100\%) / O_2 (RH)$ $= 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	QAPAE-4	25	~230	200

$H_{2}(RH = 100\%) / O_{2}(RH)$	Pt/C	Pt/C				
= 100%	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	QAPSF	60	215	200
$H_2 (RH = 100\%) / O_2 (RH)$	Pt/C	Pt/C		60	215	200
= 100%)	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	QAPAE-4	00	515	200
2000 11 (D11	Pt/C (20 wt%)	Pt/C (20 wt%)				
$2000 \text{ sccm H}_2 \text{ (RH} =$	(0.5 mg cm^{-2})	(0.5 mg cm ⁻²)	MEA-A	50	5.5	202
$(100\%)/2000 \text{ sccm } O_2(\text{RH})$	XC-72	XC-72	(Solvay AAEM)	50	55	202
= 100%)	(2 mg cm ⁻²)	(2 mg cm^{-2})				
2000 11 (D11	Pt/C (20 wt%)	Pt/C (20 wt%)				
$2000 \text{ sccm H}_2 \text{ (RH} =$	(0.53 mg cm ⁻²)	$(0.53 \text{ mg cm}^{-2})$	MEA-B	50	25	202
$100\%)/2000 \text{ sccm O}_2(\text{RH})$	XC-72	XC-72	(Solvay AAEM)	50	25	202
= 100%)	(2.1 mg cm ⁻²)	(2.1 mg cm ⁻²)				
2000 11 (D11	Pt/C (20 wt%)	Pt/C (20 wt%)				
$2000 \text{ sccm H}_2 (\text{RH} = 1000) (2000 \text{ sccm H}_2 (\text{RH} = 1000))$	$(0.56 \text{ mg cm}^{-2})$	$(0.56 \text{ mg cm}^{-2})$	MEA-C		2.4	
$100\%)/2000 \text{ sccm O}_2(\text{RH})$	XC-72	XC-72	(Solvay AAEM)	50	34	202
= 100%)	(2.2 mg cm^{-2})	(2.2 mg cm^{-2})				
2000 11 (D11	Pt/C (20 wt%)	Pt/C (20 wt%)				
$2000 \text{ sccm H}_2 (\text{RH} =$ 100%) / 2000 \text{ sccm O}_2 (\text{RH} = = 100%)	$(0.55 \text{ mg cm}^{-2})$	$(0.55 \text{ mg cm}^{-2})$	MEA-D	50	22	202
	XC-72	XC-72	(Solvay AAEM)	50	32	202
	(2.2 mg cm^{-2})	(2.2 mg cm^{-2})				
2000 11 (D11	Pt/C (20 wt%)	Pt/C (20 wt%)				
$2000 \text{ sccm H}_2 \text{ (RH} =$	$(0.57 \text{ mg cm}^{-2})$	$(0.57 \text{ mg cm}^{-2})$	MEA-E	50	25	202
$100\%)/2000 \text{ sccm O}_2(\text{RH})$	XC-72	XC-72	(Solvay AAEM)	50	35	
= 100%)	(2.3 mg cm^{-2})	(2.3 mg cm^{-2})				
2000 11 (D11	Pt/C (20 wt%)	Pt/C (20 wt%)				
$2000 \text{ sccm H}_2 \text{ (RH} =$	$(0.55 \text{ mg cm}^{-2})$	$(0.55 \text{ mg cm}^{-2})$	MEA-F	50	0.0	202
$100\%)/2000 \text{ sccm O}_2(\text{RH})$	XC-72	XC-72	(Solvay AAEM)	50	80	202
= 100%)	(2.2 mg cm ⁻²)	(2.2 mg cm ⁻²)				
2000 11 (D11	Pt/C (20 wt%)	Pt/C (20 wt%)				
$2000 \text{ sccm H}_2 \text{ (RH} =$	$(0.57 \text{ mg cm}^{-2})$	$(0.57 \text{ mg cm}^{-2})$	MEA-G	50		
$100\%)/2000 \text{ sccm O}_2(\text{RH})$	XC-72	XC-72	(Solvay AAEM)	50	/5	202
= 100%)	(2.3 mg cm^{-2})	(2.3 mg cm^{-2})				
2000 11 (D11	Pt/C (20 wt%)	Pt/C (20 wt%)				
$2000 \text{ sccm H}_2 \text{ (RH} =$	(0.49 mg cm ⁻²)	(0.49 mg cm ⁻²)	MEA-H	50	(1	202
$100\%)/2000 \text{ sccm } O_2(\text{RH})$	XC-72	XC-72	(Solvay AAEM)	50	61	202
= 100%)	(2.0 mg cm^{-2})	(2.0 mg cm^{-2})				
2000 sccm H ₂ (RH =	XC-72	XC-72	MEA-I	50	22	202
100%) / 2000 sccm O ₂ (RH	(2.2 mg cm^{-2})	(2.2 mg cm^{-2})	(Solvay AAEM)	50	22	202

				1		1
= 100%)						
2000 sccm H ₂ (RH = 100%) / 2000 sccm O ₂ (RH = 100%)	Pt/C (20 wt%) (0.55 mg cm ⁻²) XC-72 (2.2 mg cm ⁻²)	Pt/C (20 wt%) (0.55 mg cm ⁻²) XC-72 (2.2 mg cm ⁻²)	MEA-J (Surrey AAEM)	50	104	202
$H_2 (RH = 100\%) / air (RH)$ = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	57 um LDPE-VBC membrane	50	255	203
H ₂ (RH = 100%) / air (1 bar gauge) (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	57 um LDPE-VBC membrane	50	300	203
H ₂ (RH = 100%) / air (1 bar gauge) (RH = 100%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	57 um LDPE-VBC membrane	60	337	203
$H_2 (RH = 100\%) / O_2 (RH)$ $= 100\%)$	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	57 um LDPE-VBC membrane	60	390	203
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	FAA-3 membrane (0.6 activated) (25% FAA ionomer) (150 cN m)	50	71	209
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	FAA-3 membrane (0.1 activated) (25% FAA ionomer) (150 cN m)	50	75	209
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	FAA-3 membrane (VI activated) (25% FAA ionomer) (150 cN m)	50	110	209
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	FAA-3 membrane (VI activated) (25% FAA ionomer) (150 cN m)	40	41	209
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	FAA-3 membrane (VI activated) (25% FAA ionomer) (150 cN m)	50	112	209
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	FAA-3 membrane (VI activated) (25% FAA ionomer) (150 cN m)	60	176	209
200 sccm H_2 (RH = 100%)	Pt/C	Pt/C	FAA-3 membrane	60	140	209

$/ 200 \text{ sccm O}_2 (\text{RH} =$	(0.4 mg cm^{-2})	(0.4 mg cm^{-2})	(VI activated)			
100%)			(25% FAA ionomer)			
			(150 cN m)			
			FAA-3 membrane			
$200 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	(VI activated)			• • • •
$/ 200 \text{ sccm O}_2 (\text{RH} =$	(0.5 mg cm^{-2})	(0.5 mg cm^{-2})	(25% FAA ionomer)	60	178	209
100%)			(150 cN m)			
			FAA-3 membrane			
$200 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	(VI activated)		101	• • • •
$/ 200 \text{ sccm O}_2 (\text{RH} =$	(0.6 mg cm ⁻²)	(0.6 mg cm ⁻²)	(25% FAA ionomer)	60	181	209
100%)			(150 cN m)			
			FAA-3 membrane			
$200 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	(VI activated)	C 0	201	200
$/200 \text{ sccm O}_2(\text{RH} =$	(0.8 mg cm^{-2})	(0.8 mg cm ⁻²)	(25% FAA ionomer)	60	201	209
100%)			(150 cN m)			
			FAA-3 membrane			
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C	Pt/C	(VI activated)			• • • •
	(1.0 mg cm^{-2})	(1.0 mg cm^{-2})	(25% FAA ionomer)	60	194	209
			(150 cN m)			
			FAA-3 membrane			
$200 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C (0.8 mg cm ⁻²)	Pt/C	(VI activated)	60	77	209
$/200 \text{ sccm O}_2(\text{RH} = 1000)$		(0.8 mg cm^{-2})	(15% FAA ionomer)			
100%)			(150 cN m)			
			FAA-3 membrane			
$200 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	(VI activated)			• • • •
$/200 \text{ sccm O}_2 (\text{RH} =$	(0.8 mg cm^{-2})	(0.8 mg cm^{-2})	(25% FAA ionomer)	60	176	209
100%)			(150 cN m)			
			FAA-3 membrane			
$200 \text{ sccm H}_2 (\text{RH} = 100\%)$	Pt/C	Pt/C	(VI activated)			
$/ 200 \text{ sccm O}_2 (\text{RH} =$	(0.8 mg cm ⁻²)	(0.8 mg cm ⁻²)	(45% FAA ionomer)	60	153	209
100%)			(150 cN m)			
			FAA-3 membrane			
200 sccm H ₂ (RH = 100%)	Pt/C	Pt/C	(VI activated)	60	1.50	•
$/ 200 \text{ sccm O}_2 (\text{RH} =$	(0.8 mg cm^{-2})	(0.8 mg cm^{-2})	(25% FAA ionomer)	60	150	209
100%)			(100 cN m)			

200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.8 mg cm ⁻²)	Pt/C (0.8 mg cm ⁻²)	FAA-3 membrane (VI activated) (25% FAA ionomer) (150 cN m)	60	199	209
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.8 mg cm ⁻²)	Pt/C (0.8 mg cm ⁻²)	FAA-3 membrane (VI activated) (25% FAA ionomer) (200 cN m)	60	223	209
200 sccm H ₂ (RH = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.8 mg cm ⁻²)	Pt/C (0.8 mg cm ⁻²)	FAA-3 membrane (VI activated) (25% FAA ionomer) (250 cN m)	60	177	209
$6 \text{ sccm H}_2 (\text{RH} = 0\%) / 8$ sccm O ₂ (RH = 0%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	AEM/PEM(Nafion)/AE M	60	78.3	211
6 sccm H ₂ (RH = 100%) / 8 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	AEM/PEM(Nafion)/AE M	60	55.6	211
12 sccm H ₂ (RH = 100%)/ 6 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	HMEA-II (a high-pH cathode with a Nafion core membrane)	50	22	214
12 sccm H ₂ (RH = 80%) / 6 sccm O ₂ (RH = 80%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	HMEA-II (a high-pH cathode with a Nafion core membrane)	50	35	214
12 sccm H ₂ (RH = 37%)/ 6 sccm O ₂ (RH = 37%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	HMEA-II (a high-pH cathode with a Nafion core membrane)	50	63	214
12 sccm H ₂ (RH = 0%) / 6 sccm O ₂ (RH = 0%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	HMEA-II (a high-pH cathode with a Nafion core membrane)	50	52	214
1000 sccm H ₂ (RH = 95%) / 2000 sccm air (RH = 95%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	A901	50	~330	216
500 sccm H ₂ (RH = 95%) / 1000 sccm air (RH = 95%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	A201	50	~260	216
500 sccm H ₂ (RH = 95%) / 1000 sccm air (RH = 95%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	A201 (Pt/C:AS-4 = 6:4)	50	~20	216

500 sccm H ₂ (RH = 95%) / 1000 sccm air (RH = 95%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	A201 (Pt/C:AS-4 = 7:3)	50	~275	216
500 sccm H ₂ (RH = 95%) / 1000 sccm air (RH = 95%)	Pt/C (0.4 mg cm ⁻²)	Pt/C (0.4 mg cm ⁻²)	A201 (Pt/C:AS-4 = 8:2)	50	~140	216
500 sccm H ₂ (RH = 95%) / 1000 sccm air (RH = 95%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	A201 (Pt/C:AS-4 = 7:3)	50	~260	216
500 sccm H ₂ (RH = 95%) / 1000 sccm air (RH = 95%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	A201 (Pt/C:AS-X = 7:3)	50	~295	216
1000 sccm H ₂ (RH = 95%) / 2000 sccm air (RH = 95%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	A901 (Pt/C:AS-X = 7:3)	50	340	216
1000 sccm H ₂ (RH = 95%) / 2000 sccm O ₂ (RH = 95%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	A901 (Pt/C:AS-X = 7:3)	50	450	216

2535 Table 4 Selected hydrogen/oxygen fuel cell performance with different MEA structures

2536 reported in open literature.

Fuel/Oxidant	Anode	Cathode	Membrane	T (°C)	P(mW cm ⁻²)
$H_2 (RH = 100\%) / O_2 (RH)$ = 100%)	Cr/Ni (5 mg cm ⁻²)	Ag (1 mg cm ⁻²)	quaternary ammonium polysulphone membranes	60	50
200 sccm dry H ₂ /1000 sccm air	Pd/Ni (1.5 mg cm ⁻²)	Ag (3 mg cm ⁻²)	AAEM	73	400

200 sccm dry $H_2/1000$	Pd	Ag	ΔΔΕΜ	73	180
sccm air	(1.5 mg cm^{-2})	(3 mg cm^{-2})	AALIVI	73	180
200 sccm dry $H_2/1000$	Ni	Ag	ΔΔΕΜ	72	70
sccm air	(1.5 mg cm^{-2})	(3 mg cm^{-2})	AALWI	73	70
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Tokuyama A201	50	~185
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	3 nm Ru/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Tokuyama A201	50	~250
500 sccm H ₂ (RH = 100%) / 500 sccm O ₂ (RH = 100%)	11 nm Ru/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Tokuyama A201	50	~135
200 sccm dry H ₂ /1000 sccm air	Pd/C (0.3 mg cm ⁻²)	Ag (3 mg cm ⁻²)	AAEM	73	100
200 sccm dry H ₂ / 1000 sccm air	$Pd/C-CeO_2$ (0.3 mg cm ⁻²)	Ag (3 mg cm ⁻²)	AAEM	73	500